Supplementary M aterial to "Optimal linear discriminant analysis for high-dimensional functional data"

1 Notations

First we recall the basic notations used throughout the paper. For every $\mathrm{j} \leq \mathrm{p}_{n}$, consider the diagonal matrices or structures

$$
\begin{aligned}
& \Lambda_{j}=\operatorname{diag}\left\{\omega_{j 1}, \omega_{j 2}, \ldots\right\}, \quad \Lambda_{j}^{(1)}=\operatorname{diag}\left\{\omega_{j 1}, \ldots, \omega_{j s_{n}}\right\}, \quad \Lambda_{j}^{(2)}=\operatorname{diag}\left\{\omega_{j, s_{n}+1}, \omega_{j, s_{n}+2}, \ldots\right\}, \\
& \hat{\Lambda}_{j}=\operatorname{diag}\left\{\omega_{j 1}, \omega_{j 2}, \ldots\right\}, \quad \hat{\Lambda}_{j}^{(1)}=\operatorname{diag}\left\{\omega_{j 1}, \ldots, \omega_{j s_{n}}\right\}, \quad \hat{\Lambda}_{j}^{(2)}=\operatorname{diag}\left\{\omega_{j, s_{n}+1}, \omega_{j, s_{n}+2}, \ldots\right\},
\end{aligned}
$$

we then denote several block matrices or structures as

$$
\begin{array}{lll}
\Lambda=\operatorname{diag}\left\{\Lambda_{j}: \mathrm{j} \leq \mathrm{p}_{n}\right\}, & \Lambda^{(1)}=\operatorname{diag}\left\{\Lambda_{j}^{(1)}: \mathrm{j} \leq \mathrm{p}_{n}\right\}, & \Lambda^{(2)}=\operatorname{diag}\left\{\Lambda_{j}^{(2)}: \mathrm{j} \leq \mathrm{p}_{n}\right\}, \\
\Lambda_{T}=\operatorname{diag}\left\{\Lambda_{j}: \mathrm{j} \in \mathrm{~T}\right\}, & \Lambda_{T}^{(1)}=\operatorname{diag}\left\{\Lambda_{j}^{(1)}: \mathrm{j} \in \mathrm{~T}\right\}, & \Lambda_{T}^{(2)}=\operatorname{diag}\left\{\Lambda_{j}^{(2)}: \mathrm{j} \in \mathrm{~T}\right\}, \\
\hat{\Lambda}=\operatorname{diag}\left\{\hat{\Lambda}_{j}: \mathrm{j} \leq \mathrm{p}_{n}\right\}, & \hat{\Lambda}^{(1)}=\operatorname{diag}\left\{\hat{\Lambda}_{j}^{(1)}: \mathrm{j} \leq \mathrm{p}_{n}\right\}, & \hat{\Lambda}^{(2)}=\operatorname{diag}\left\{\hat{\Lambda}_{j}^{(2)}: \mathrm{j} \leq \mathrm{p}_{n}\right\}, \\
\hat{\Lambda}_{T}=\operatorname{diag}\left\{\hat{\Lambda}_{j}: \mathrm{j} \in \mathrm{~T}\right\}, & \hat{\Lambda}_{T}^{(1)}=\operatorname{diag}\left\{\hat{\Lambda}_{j}^{(1)}: \mathrm{j} \in \mathrm{~T}\right\}, & \hat{\Lambda}_{T}^{(2)}=\operatorname{diag}\left\{\hat{\Lambda}_{j}^{(2)}: \mathrm{j} \in \mathrm{~T}\right\} .
\end{array}
$$

Similar to the constructions of $\boldsymbol{\xi}^{(1)}$ and $\boldsymbol{\xi}_{T}^{(1)}$, we let $\boldsymbol{\xi}^{(2)}=\left(\tilde{\xi}_{1}^{(2)^{\prime}}, \ldots, \tilde{\xi}_{p_{n}}^{(2)^{\prime}}\right)^{\prime}$ with sub-vectors $\tilde{\xi}_{j}^{(2)}=\left(\xi_{j, s_{n}+1}, \xi_{j, s_{n}+2}, \ldots\right)^{\prime}$, and $\xi_{T}^{(2)}$ as stacking $\left\{\tilde{\xi}_{j}^{(2)}: j \in T\right\}$ in a column. Given index sets \mathbf{T} and \mathbf{N}, we define several covariance matrices and structures as

$$
\begin{aligned}
& \Sigma_{T T}^{(1)}=\operatorname{var}\left(\xi_{T}^{(1)}\right), \quad \Sigma_{N N}^{(1)}=\operatorname{var}\left(\xi_{N}^{(1)}\right), \quad \Sigma_{T N}^{(1)}=\operatorname{cov}\left(\xi_{T}^{(1)}, \xi_{N}^{(1)}\right), \quad \Sigma_{N T}^{(1)}=\operatorname{cov}\left(\xi_{N}^{(1)} \xi_{T}^{(1)}\right), \\
& \Sigma_{T T}^{(2)}=\operatorname{var}\left(\xi_{T}^{(2)}\right), \quad \Sigma_{N N}^{(2)}=\operatorname{var}\left(\xi_{N}^{(2)}\right), \quad \Sigma_{T N}^{(2)}=\operatorname{cov}\left(\xi_{T}^{(2)}, \boldsymbol{\xi}_{N}^{(2)}\right), \quad \Sigma_{N T}^{(2)}=\operatorname{cov}\left(\xi_{N}^{(2)} \xi_{T}^{(2)}\right), \\
& \Sigma_{T T}^{(1,2)}=\operatorname{cov}\left(\xi_{T}^{(1)}, \xi_{T}^{(2)}\right), \quad \Sigma_{N N}^{(1,2)}=\operatorname{cov}\left(\xi_{N}^{(1)}, \xi_{N}^{(2)}\right), \quad \Sigma_{T N}^{(1,2)}=\operatorname{cov}\left(\xi_{T}^{(1)}, \xi_{N}^{(2)}\right), \\
& \Sigma_{N T}^{(1,2)}=\operatorname{cov}\left(\xi_{N}^{(1)}, \xi_{T}^{(2)}\right), \quad \Sigma_{T T}^{(2,1)}=\operatorname{cov}\left(\xi_{T}^{(2)}, \xi_{T}^{(1)}\right), \quad \Sigma_{N N}^{(2,1)}=\operatorname{cov}\left(\xi_{N}^{(2)} \xi_{N}^{(1)}\right), \\
& \Sigma_{T N}^{(2,1)}=\operatorname{cov}\left(\xi_{T}^{(2)}, \xi_{N}^{(1)}\right), \quad \Sigma_{N T}^{(2,1)}=\operatorname{cov}\left(\xi_{N}^{(2)}, \xi_{T}^{(1)}\right) .
\end{aligned}
$$

Similar to the constructions of the vectors $\xi_{T}^{(1)}, \mu_{1, T}^{(1)}, \mu_{2, T}^{(1)}$, and $\nu_{T}^{(1)}$, we define $\xi_{i, T}^{(1)}, \hat{\mu}_{1, T}^{(1)}$, $\hat{\mu}_{2, T}^{(1)}$, and $\hat{\nu}_{T}^{(1)}$ as restricting the vectors $\xi_{i}^{(1)}, \hat{\mu}_{1}^{(1)}, \hat{\mu}_{2}^{(1)}$, and $\hat{\nu}^{(1)}$ to the discriminant set T.

Given index sets \mathbf{T} and \mathbf{N}, we define several sample covariance matrices as

$$
\begin{aligned}
& \mathrm{S}^{(1)}=\left\{\left(\mathrm{n}_{1}-1\right) \mathrm{S}_{1}^{(1)}+\left(\mathrm{n}_{2}-1\right) \mathrm{S}_{2}^{(1)}\right\} /(\mathrm{n}-2), \\
& \mathrm{S}_{T T}^{(1)}=\left\{\left(\mathrm{n}_{1}-1\right) \mathrm{S}_{1, T T}^{(1)}+\left(\mathrm{n}_{2}-1\right) \mathrm{S}_{2, T T}^{(1)}\right\} /(\mathrm{n}-2), \\
& \mathrm{S}_{N T}^{(1)}=\left\{\left(\mathrm{n}_{1}-1\right) \mathrm{S}_{1, N T}^{(1)}+\left(\mathrm{n}_{2}-1\right) \mathrm{S}_{2, N T}^{(1)}\right\} /(\mathrm{n}-2),
\end{aligned}
$$

where

$$
\begin{aligned}
& \begin{aligned}
& \mathrm{S}_{1}^{(1)}= \\
& \\
& \mathrm{X} \underset{\mathrm{X}}{\mathrm{X}} \mathrm{H}
\end{aligned} \\
& \mathrm{~S}_{2}^{(1)}={\underset{\substack{i \in H_{2} \\
\mathrm{X}}}{\mathrm{X}}\left(\xi_{i}^{(1)}-\hat{\mu}_{2}^{(1)}\right)\left(\xi_{i}^{(1)}-\hat{\mu}_{2}^{(1)}\right)^{\prime} \prime\left(\mathrm{n}_{2}-1\right), ~}_{\text {, }} \\
& \mathrm{S}_{1, T T}^{(1)}={\underset{\substack{i \in H_{1}}}{\mathrm{X}}\left(\xi_{i, T}^{(1)}-\hat{\mu}_{1, T}^{(1)}\right)\left(\xi_{i, T}^{(1)}-\hat{\mu}_{1, T}^{(1)}\right)^{\prime} /\left(\mathrm{n}_{1}-1\right), ~}_{\mathrm{X}} \\
& \mathrm{~S}_{2, T T}^{(1)}={ }_{i \in H_{2}}^{\mathrm{X}}\left(\boldsymbol{\xi}_{i, T}^{(1)}-\hat{\mu}_{2, T}^{(1)}\right)\left(\xi_{i, T}^{(1)}-\hat{\mu}_{2, T}^{(1)}\right)^{\prime} /\left(\mathrm{n}_{2}-1\right),
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{S}_{2, N T}^{(1)}={ }_{i \in H_{2}}^{\mathrm{X}}\left(\boldsymbol{\xi}_{i, N}^{(1)}-\hat{\mu}_{2, N}^{(1)}\right)\left(\xi_{i, T}^{(1)}-\hat{\mu}_{2, T}^{(1)}\right)^{\prime} /\left(\mathrm{n}_{2}-1\right) .
\end{aligned}
$$

Similar to the definitions of $\mu_{1}^{(1)}, \mu_{2}^{(1)}, \boldsymbol{\nu}^{(1)}, \mu_{1, T}^{(1)}, \mu_{2, T}^{(1)}$, and $\boldsymbol{\nu}_{T}^{(1)}$, we denote for any ${ }^{`}=1,2$,

$$
\begin{aligned}
& \mu_{\ell}^{(2)}=\mathrm{E}\left(\xi^{(2)} \mid \mathrm{Y}=`\right)=\left(\tilde{\mu}_{\ell 1}^{(2)^{\prime}}, \ldots, \tilde{\mu}_{\ell p_{n}}^{(2)^{\prime}}\right)^{\prime}, \\
& \tilde{\mu}_{\ell j}^{(2)}=\mathrm{E}\left(\tilde{\xi}_{j}^{(2)} \mid \mathrm{Y}=`\right)=\left(\mu_{\ell j, s_{n}+1}, \mu_{\ell j, s_{n}+2}, \ldots\right)^{\prime} \in \mathbb{R}^{\infty}, \quad \mathrm{j}=1, \ldots, \mathrm{p}_{n},
\end{aligned}
$$

$\mu_{\ell, T}^{(2)}$: formed by stacking $\left\{\tilde{\mu}_{\ell j}^{(2)}: j \in T\right\}$ in a column,

$$
\nu^{(2)}=\mu_{2}^{(2)}-\mu_{1}^{(2)}, \quad v_{T}^{(2)}=\mu_{2, T}^{(2)}-\mu_{1, T}^{(2)} .
$$

Similar to the constructions of $\boldsymbol{\beta}^{(1)}$ and $\boldsymbol{\beta}_{T}^{(1)}$, we denote $\boldsymbol{\beta}^{*(1)}, \boldsymbol{\beta}_{T}^{*(1)}, \boldsymbol{\beta}^{*(2)}$, and $\boldsymbol{\beta}_{T}^{*(2)}$ as

$$
\begin{aligned}
& \beta^{*(1)}=\left(\beta_{1}^{*(1)^{\prime}}, \ldots, \beta_{p_{n}}^{*(1)^{\prime}}\right)^{\prime} \text { with each } \beta_{j}^{*(1)}=\left(\beta_{j 1}^{*}, \ldots, \beta_{j s_{n}}^{*}\right)^{\prime}, \\
& \beta_{T}^{*(1)}: \text { formed by stacking }\left\{\beta_{j}^{*(1)}: j \in T\right\} \text { in a column, } \\
& \beta^{*(2)}=\left(\beta_{1}^{*(2)^{\prime}}, \ldots, \beta_{p_{n}}^{*(2)^{\prime}}\right)^{\prime} \text { with each } \beta_{j}^{*(2)}=\left(\beta_{j, s_{n}+1}^{*}, \beta_{j, s_{n}+2}^{*}, \ldots\right)^{\prime}, \\
& \beta_{T}^{*(2)}: \quad \text { formed by stacking }\left\{\beta_{j}^{*(2)}: j \in T\right\} \text { in a column. }
\end{aligned}
$$

In the next section, we present the proofs of the main results, Theorems 1-2 and Corollary 1.

2 Proofs of Theorems 1-2 and Corollary 1

Proof of Theorem 1: Under conditions (A1) and (A2), property (i) holds directly from Lemma 1. To show property (ii), first note that

$$
\begin{aligned}
\Delta & =\left(\beta_{T^{*}}^{*} \Sigma_{T^{*} T^{*}} \beta_{T^{*}}^{*}\right)^{1 / 2}=\left\{\left(\Lambda_{T^{*}}^{1 / 2} \beta_{T^{*}}^{*}\right)^{\prime}\left(\Lambda_{T^{*}}^{\dagger 1 / 2} \Sigma_{T^{*} T^{*}} \Lambda_{T^{*}}^{\dagger 1 / 2}\right)\left(\Lambda_{T^{*}}^{1 / 2} \beta_{T^{*}}^{*}\right)\right\}^{1 / 2} \\
& \geq \mathrm{c}_{1}^{1 / 2} \mathrm{k} \Lambda_{T^{*}}^{1 / 2} \beta_{T^{*}}^{*} \mathrm{k}_{2}=\mathrm{c}_{1}^{1 / 2}\left(\mathrm{X}_{j \in T^{*} k=1}^{\infty} \omega_{j k} \beta_{j k}^{* 2}\right)^{1 / 2}
\end{aligned}
$$

Together with condition (A3), it can be seen that

$$
\begin{equation*}
\Delta \rightarrow \infty, \quad \text { as } \mathrm{n} \rightarrow \infty \tag{1}
\end{equation*}
$$

Hence, property (ii) holds from (6) in the main paper and (1). To show property (iii), first note that

$$
\begin{equation*}
\Delta^{(1)}=\left\{1+\mathrm{o}\left(\mathrm{r}_{n}^{-1}\right)+\mathrm{o}\left(\mathrm{r}_{n}^{-1 / 2} \boldsymbol{\alpha}_{n}^{1 / 2}\right)\right\} \Delta \rightarrow \infty \tag{2}
\end{equation*}
$$

by Lemma 1 and (1). Moreover, by definition, it is not hard to verify that

$$
\begin{equation*}
\mathrm{R}\left(\boldsymbol{\beta}^{*}\right) / \mathrm{R}^{\circ}\left(\boldsymbol{\beta}^{(1)}\right)=\left(\pi_{1}+\pi_{2} \Omega_{1}\right)\left(\Pi_{1}+\pi_{2} \Omega_{2}\right)^{-1} \Omega_{3} \tag{3}
\end{equation*}
$$

where

$$
\begin{aligned}
& \Omega_{1}=\Phi\left(-\Delta / 2+\log \left(\Pi_{1} / \pi_{2}\right) / \Delta\right) / \Phi\left(-\Delta / 2+\log \left(\Pi_{2} / \pi_{1}\right) / \Delta\right) \\
& \Omega_{2}=\Phi\left(-\Delta^{(1)} / 2+\log \left(\Pi_{1} / \Pi_{2}\right) / \Delta^{(1)}\right) / \Phi\left(-\Delta^{(1)} / 2+\log \left(\Pi_{2} / \pi_{1}\right) / \Delta^{(1)}\right) \\
& \Omega_{3}=\Phi\left(-\Delta / 2+\log \left(\Pi_{2} / \pi_{1}\right) / \Delta\right) / \Phi\left(-\Delta^{(1)} / 2+\log \left(\Pi_{2} / \pi_{1}\right) / \Delta^{(1)}\right)
\end{aligned}
$$

For the term Ω_{1}, it can be rewritten as

$$
\begin{equation*}
\Omega_{1}=\Phi\left(-\frac{1}{R} / 2\left(1+\vartheta_{n}\right)\right) / \Phi\left(- \text { o / } / 2{ }^{2}\right), \tag{4}
\end{equation*}
$$

where $\%=\left\{\Delta / 2-\log \left(\Pi_{2} / \pi_{1}\right) / \Delta\right\}^{2}$ and $\vartheta_{n}=4 \log \left(\pi_{2} / \pi_{1}\right) /\left\{\Delta^{2}-2 \log \left(\Pi_{2} / \pi_{1}\right)\right\}$. Since $\% \rightarrow \infty$ and $\% \vartheta_{n} \rightarrow \log \left(\Pi_{2} / \pi_{1}\right)$ under (1), we immediately conclude that

$$
\begin{equation*}
\Omega_{1} \rightarrow \Pi_{2} / \Pi_{1} \tag{5}
\end{equation*}
$$

by applying Lemma 1 of Shao et al. (2011) to (4). Similar argument leads to

$$
\begin{equation*}
\Omega_{2} \rightarrow \Pi_{2} / \pi_{1} \tag{6}
\end{equation*}
$$

For the term Ω_{3}, it can be expressed as

$$
\begin{equation*}
\Omega_{3}=\Phi\left(-\alpha / \lambda_{n} / 2\left(1+\tilde{\vartheta}_{n}\right)\right) / \Phi\left(-\alpha / \lambda_{n}^{2}\right), \tag{7}
\end{equation*}
$$

where $\%=\left\{\Delta^{(1)} / 2-\log \left(\Pi_{2} / \pi_{1}\right) / \Delta^{(1)}\right\}^{2}$ and $\tilde{\vartheta}_{n}=\left[\left\{\Delta \Delta^{(1)}+2 \log \left(\Pi_{2} / \Pi_{1}\right)\right\}\left(\Delta-\Delta^{(1)}\right)\right] /\left\{\Delta \Delta^{(1) 2}-\right.$ $\left.2 \log \left(\pi_{2} / \pi_{1}\right) \Delta\right\}$. Based on (2) and (A3), one can show that

$$
\% \rightarrow \infty, \quad \% \tilde{\vartheta}_{n} \rightarrow 0
$$

Together with (7) and Lemma 1 of Shao et al. (2011), it can be concluded that

$$
\Omega_{3} \rightarrow 1
$$

Together with (3), (5) and (6), we have $R\left(\boldsymbol{\beta}^{*}\right) / \mathbf{R}^{\circ}\left(\boldsymbol{\beta}^{(1)}\right) \rightarrow 1$, which completes the proof.

Remark: Although not part of the proof, it is important to justify that the ideal classifier in (3) of the main article is really the optimal rule. By definition, we have

$$
\xi\left|Y=1 \sim N\left(\mu_{1}, \Sigma\right), \quad \xi\right| Y=2 \sim N\left(\mu_{2}, \Sigma\right)
$$

which implies

$$
\Sigma^{\dagger 1 / 2} \xi\left|Y=1 \sim N\left(\Sigma^{\dagger 1 / 2} \mu_{1}, \mathbf{I}\right), \quad \Sigma^{\dagger 1 / 2} \xi\right| Y=2 \sim N\left(\Sigma^{\dagger 1 / 2} \mu_{2}, \mathbf{I}\right)
$$

Therefore, the conditional density functions of $\mathbf{Z}=\Sigma^{\dagger 1 / 2} \boldsymbol{\xi}$ take the form:

$$
\mathbf{f}_{z}(\mathbf{z} \mid \mathbf{Y}=\mathbf{i}) \propto \exp \left\{-2^{-1}\left(\mathbf{z}-\Sigma^{\dagger 1 / 2} \boldsymbol{\mu}_{i}\right)^{\prime}\left(\mathbf{z}-\Sigma^{\dagger 1 / 2} \boldsymbol{\mu}_{i}\right)\right\}, \quad \text { for } \quad \mathbf{i}=1,2
$$

where $\hat{\mathbf{V}}_{T}$ is defined in (16) of the main paper and

$$
\begin{aligned}
& \tilde{\mathrm{V}}_{T}=\left\{\mathrm{n}_{1} \mathrm{n}_{2} \mathrm{n}^{-1}(\mathrm{n}-2)^{-1}\right\}\left\{1+\lambda_{n} \hat{\nu}_{T}^{(1)^{\prime}} \mathrm{S}_{T T}^{(1)-1} \hat{\Lambda}_{T}^{(1) 1 / 2} \operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right)\right\} 1+ \\
& \left\{\mathrm{n}_{1} \mathrm{n}_{2} \mathrm{n}^{-1}(\mathrm{n}-2)^{-1}\right\} \hat{\nu}_{T}^{(1)^{\prime}} \mathrm{S}_{T T}^{(1)-1} \hat{\nu}_{T}^{(1)}{ }^{-1} \mathrm{~S}_{T T}^{(1)-1} \hat{\nu}_{T}^{(1)}-\lambda_{n} \mathrm{~S}_{T T}^{(1)-1} \hat{\Lambda}_{T}^{(1) 1 / 2} \operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right) .
\end{aligned}
$$

To prove property (i), based on (8), (9) and the Karush-Kuhn-Tucker conditions, it is sufficient to show that there exist positive constants $\mathrm{C}_{5}, \mathrm{C}_{6}>0$ such that

$$
\begin{align*}
\mathrm{P} & \left\{\mathrm{n}_{1} \mathrm{n}_{2} \mathrm{n}^{-1}(\mathrm{n}-2)^{-1}\right\} \hat{\nu}_{T}^{(1)}-\left\{\mathrm{S}_{T T}^{(1)}+\mathrm{n}_{1} \mathrm{n}_{2} \mathrm{n}^{-1}(\mathrm{n}-2)^{-1} \hat{\nu}_{T}^{(1)} \hat{\nu}_{T}^{(1)^{\prime}}\right\} \tilde{\mathbf{v}}_{T}= \\
& \lambda_{n} \hat{\Lambda}_{T}^{(1) 1 / 2} \operatorname{sgn}\left(\tilde{\mathbf{v}}_{T}\right) \geq 1-\mathrm{c}_{5}\left[\left\{\left(\mathrm{p}_{n}-\mathrm{q}_{n}\right) \mathrm{s}_{n}\right\}^{-1}+\left(\mathrm{q}_{n} \mathrm{~s}_{n}\right)^{-1}+\{\log (\mathrm{n})\}^{-1}+\right. \\
& \left.\exp \left(-\mathrm{n} \pi_{1} / 12\right)+\exp \left(-\mathrm{n} n_{2} / 12\right)\right] \tag{10}
\end{align*}
$$

and

$$
\begin{align*}
& \mathrm{P} \quad \hat{\Lambda}_{N}^{(1)-1 / 2}\left\{\mathrm{n}_{1} \mathrm{n}_{2} \mathrm{n}^{-1}(\mathrm{n}-2)^{-1}\right\} \hat{\nu}_{N}^{(1)}-\left\{\mathrm{S}_{N T}^{(1)}+\mathrm{n}_{1} \mathrm{n}_{2} \mathrm{n}^{-1}(\mathrm{n}-2)^{-1} \hat{\nu}_{N}^{(1)} \boldsymbol{\nu}_{T}^{(1))^{\prime}}\right\} \\
& \\
& \cdot \tilde{\mathrm{v}}_{T} \quad \infty \leq \lambda_{n} \geq 1-\mathrm{c}_{6}\left[\left\{\left(\mathrm{p}_{n}-\mathrm{q}_{n}\right) \mathrm{s}_{n}\right\}^{-1}+\left(\mathrm{q}_{n} \mathrm{~s}_{n}\right)^{-1}+\{\log (\mathrm{n})\}^{-1}+\right. \tag{11}\\
& \\
& \\
& \left.\exp \left(-\mathrm{n} \pi_{1} / 12\right)+\exp \left(-\mathrm{n} \pi_{2} / 12\right)\right] .
\end{align*}
$$

Note that the random quantity $\mathrm{S}_{N T}^{(1)}$ can be expressed as $\mathrm{S}_{N T}^{(1)}=\left\{\left(\mathrm{n}_{1}-1\right) \mathrm{S}_{1, N T}^{(1)}+\left(\mathrm{n}_{2}-\right.\right.$ 1) $\left.\mathrm{S}_{2, N T}^{(1)}\right\} /(\mathrm{n}-2)$, where $\mathrm{S}_{1, N T}^{(1)}={ }^{\mathrm{P}}{ }_{i \in H_{1}}\left(\boldsymbol{\xi}_{i, N}^{(1)}-\hat{\mu}_{1, N}^{(1)}\right)\left(\boldsymbol{\xi}_{i, T}^{(1)}-\hat{\mu}_{1, T}^{(1)}\right)^{\prime} /\left(\mathrm{n}_{1}-1\right)$ and $\mathbf{S}_{2, N T}^{(1)}=$ P ${ }_{i \in H_{2}}\left(\xi_{i, N}^{(1)}-\hat{\mu}_{2, N}^{(1)}\right)\left(\boldsymbol{\xi}_{i, T}^{(1)}-\hat{\mu}_{2, T}^{(1)}\right)^{\prime} /\left(\mathrm{n}_{2}-1\right)$. Since $\tilde{\mathbf{v}}_{T}$ is the solution to the convex optimization problem specified in Lemma 2, the first order condition together with Lemma 11 yields (10) immediately. To show (11), we first note that

$$
\begin{align*}
& \hat{\Lambda}_{N}^{(1)-1 / 2}\left\{\mathrm{n}_{1} \mathrm{n}_{2} \mathrm{n}^{-1}(\mathrm{n}-2)^{-1}\right\} \hat{\nu}_{N}^{(1)}-\left\{\mathrm{S}_{N T}^{(1)}+\mathrm{n}_{1} \mathrm{n}_{2} \mathrm{n}^{-1}(\mathrm{n}-2)^{-1} \times\right. \tag{12}\\
& \left.\hat{\nu}_{N}^{(1)} \hat{\nu}_{T}^{(1)^{\prime}}\right\} \tilde{\mathrm{v}}_{T} \quad \leq \quad \leq 1+\mathrm{k} \hat{\Lambda}_{N}^{(1)-1 / 2} \Lambda_{N}^{(1) 1 / 2}-\mathrm{I}_{\left(p_{\mathrm{n}}-q_{\mathrm{n}}\right) s_{\mathrm{n}}} \mathrm{k}_{\max } \cdot \mathrm{k} \Psi \mathrm{k}_{\infty}
\end{align*}
$$

where $\Psi=\Lambda_{N}^{(1)-1 / 2}\left\{\mathrm{~S}_{N T}^{(1)}+\mathrm{n}_{1} \mathrm{n}_{2} \mathrm{n}^{-1}(\mathrm{n}-2)^{-1} \hat{\nu}_{N}^{(1)} \hat{\nu}_{T}^{(1)^{\prime}}\right\} \widetilde{\mathrm{v}}_{T}-\left\{\mathrm{n}_{1} \mathrm{n}_{2} \mathrm{n}^{-1}(\mathrm{n}-2)^{-1}\right\} \hat{\nu}_{N}^{(1)}$. By
definition, conditional on any nonempty set $\left\{\mathrm{Y}_{i}=\mathrm{y}_{i}\right\}_{i=1}^{n} \cap \mathrm{M}_{n}$,

$$
\begin{align*}
& (\mathrm{n}-2) \Lambda^{(1)-1 / 2} \mathbf{S}^{(1)} \Lambda^{(1)-1 / 2} \mid\left\{\mathrm{Y}_{i}=\mathrm{y}_{i}\right\}_{i=1}^{n} \cap \mathrm{M}_{n} \\
\sim & \text { Wishart }\left(\mathrm{n}-2 \mid \Lambda^{(1)-1 / 2} \Sigma^{(1)} \Lambda^{(1)-1 / 2}\right) . \tag{13}
\end{align*}
$$

where the set $M_{n}=\left\{\Pi_{1} / 2 \leq n_{1} / n \leq 3 \Pi_{1} / 2\right\} \cap\left\{\Pi_{2} / 2 \leq n_{2} / n \leq 3 \Pi_{2} / 2\right\}$ is defined in Lemma 3. Moreover, conditional on any nonempty $\left\{\mathrm{Y}_{i}=\mathrm{y}_{i}\right\}_{i=1}^{n} \cap \mathrm{M}_{n}$,

$$
(\mathrm{n}-2) \Lambda^{(1)-1 / 2} \mathbf{S}^{(1)} \Lambda^{(1)-1 / 2} \quad \perp \mathcal{D}^{(1)},
$$

where the symbol \perp means independent of. Together with (13), it can be concluded that there exists a collection $\left\{Z_{l}\right\}_{l=1}^{n-2}$ of $n-2$ random vectors in $\mathbb{R}^{p_{n} s_{n}}$ satisfying (14) to (16) as follows.

$$
\begin{equation*}
(\mathrm{n}-2) \Lambda^{(1)-1 / 2} \mathbf{S}^{(1)} \Lambda^{(1)-1 / 2}=\mathrm{X}_{l=1}^{\mathrm{X}^{-2}} \mathrm{Z}_{l} \mathrm{Z}_{l}^{\prime} \tag{14}
\end{equation*}
$$

Conditional on any nonempty set $\left\{\mathrm{Y}_{i}=\mathrm{y}_{i}\right\}_{i=1}^{n} \cap \mathrm{M}_{n}$,

$$
\begin{equation*}
\left\{\mathrm{Z}_{l}\right\}_{l=1}^{n-2} \quad \perp \quad \hat{\nu}^{(1)} . \tag{15}
\end{equation*}
$$

Conditional on any nonempty set $\left\{\mathrm{Y}_{i}=\mathrm{y}_{i}\right\}_{i=1}^{n} \cap \mathrm{M}_{n}$,

$$
\begin{equation*}
\mathrm{Z}_{l} \mid\left\{\mathrm{Y}_{i}=\mathrm{y}_{i}\right\}_{i=1}^{n} \cap \mathrm{M}_{n} \stackrel{i . i . d}{\sim} \mathrm{~N}\left(0, \Lambda^{(1)-1 / 2} \Sigma^{(1)} \Lambda^{(1)-1 / 2}\right), \quad \mathrm{I}=1, \ldots, \mathrm{n}-2 . \tag{16}
\end{equation*}
$$

For each $\mathbf{I}=1, \ldots, \mathrm{n}-2$, we write the vector $\mathbf{Z}_{l}=\left(\tilde{\mathbf{Z}}_{l 1}^{\prime}, \ldots, \tilde{\mathbf{Z}}_{l p_{\mathrm{n}}}^{\prime}\right)^{\prime} \in \mathbb{R}^{p_{n} s_{n}}$ with subvectors $\tilde{\mathbf{Z}}_{l j}=\left(\mathbf{Z}_{l j 1}, \ldots, \mathbf{Z}_{l j s_{n}}\right)^{\prime} \in \mathbb{R}^{s_{n}}$. Similarly, for each $\mathbf{I}=1, \ldots, \mathbf{n}-2$, we let $\mathbf{Z}_{l, T}=$ $\left(\tilde{\mathbf{Z}}_{l 1}^{\prime}, \ldots, \tilde{\mathbf{Z}}_{l q_{\mathrm{n}}}^{\prime}\right)^{\prime} \in \mathbb{R}^{q_{\mathrm{n}} s_{\mathrm{n}}}$ and $\mathbf{Z}_{l, N}=\left(\tilde{\mathbf{Z}}_{l, q_{\mathrm{n}}+1}^{\prime}, \ldots, \tilde{\mathbf{Z}}_{l p_{\mathrm{n}}}^{\prime}\right)^{\prime} \in \mathbb{R}^{\left(p_{\mathrm{n}}-q_{\mathrm{n}}\right) s_{\mathrm{n}}}$. Accordingly, we denote

$$
\begin{align*}
\mathbf{Z}_{T} & =\left[\mathbf{Z}_{1, T}, \ldots, \mathbf{Z}_{n-2, T}\right] \in \mathbb{R}^{q_{\mathrm{n}} s_{n} \times(n-2)}, \\
\mathbf{Z}_{N} & =\left[\mathbf{Z}_{1, N}, \ldots, \mathbf{Z}_{n-2, N}\right] \in \mathbb{R}^{\left(p_{\mathrm{n}}-q_{n}\right) s_{n} \times(n-2)}, \tag{17}\\
\mathbf{Z} & =\left[\mathbf{Z}_{T}^{\prime}, \mathbf{Z}_{N}^{\prime}\right]^{\prime}=\left[\mathbf{Z}_{1}, \ldots, \mathbf{Z}_{n-2}\right] \in \mathbb{R}^{p_{n} s_{n} \times(n-2)} .
\end{align*}
$$

It follows from (15) and (17) that conditional on nonempty set $\left\{\mathrm{Y}_{i}=\mathrm{y}_{i}\right\}_{i=1}^{n} \cap \mathrm{M}_{n}$,

$$
\begin{equation*}
Z \perp \nu^{(1)} . \tag{18}
\end{equation*}
$$

Based on (14) and (17), it can be observed that

$$
\begin{align*}
(\mathrm{n}-2) \Lambda_{N}^{(1)-1 / 2} \mathbf{S}_{N T}^{(1)} \Lambda_{T}^{(1)-1 / 2}= & \mathbf{Z}_{N} \mathbf{Z}_{T}^{\prime}=\Lambda_{N}^{(1)-1 / 2} \Sigma_{N T}^{(1)} \Sigma_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2} \mathbf{Z}_{T} \mathbf{Z}_{T}^{\prime} \\
& +\left(\mathbf{Z}_{N}-\Lambda_{N}^{(1)-1 / 2} \Sigma_{N T}^{(1)} \Sigma_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2} \mathbf{Z}_{T}\right) \mathbf{Z}_{T}^{\prime} \tag{19}
\end{align*}
$$

The terms $\mathbf{Z}_{N}-\Lambda_{N}^{(1)-1 / 2} \Sigma_{N T}^{(1)} \Sigma_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2} \mathbf{Z}_{T}$ and \mathbf{Z}_{T} can be expressed as

$$
\begin{align*}
\mathbf{Z}_{N}-\Lambda_{N}^{(1)-1 / 2} \Sigma_{N T}^{(1)} \Sigma_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2} \mathbf{Z}_{T} & =\left[\mathbf{W} \mathbf{Z}_{1}, \ldots, \mathbf{W} \mathbf{Z}_{n-2}\right] \\
\mathbf{Z}_{T} & =\left[\mathbf{W} * \mathbf{Z}_{1}, \ldots, \mathbf{W}^{*} \mathbf{Z}_{n-2}\right] \tag{20}
\end{align*}
$$

where

$$
\begin{aligned}
& \mathbf{W}=\left[-\Lambda_{N}^{(1)-1 / 2} \Sigma_{N T}^{(1)} \Sigma_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2}, \mathbf{I}_{\left(p_{\mathrm{n}}-q_{\mathrm{n}}\right) s_{\mathrm{n}}}\right] \in \mathbb{R}^{\left(p_{\mathrm{n}}-q_{\mathrm{n}}\right) s_{\mathrm{n}} \times p_{\mathrm{n}} s_{\mathrm{n}}}, \\
& \mathbf{W}^{*}=\left[\mathbf{I}_{q_{\mathrm{n}} s_{\mathrm{n}}}, 0_{q_{\mathrm{n}} s_{\mathrm{n}} \times\left(p_{\mathrm{n}}-q_{\mathrm{n}}\right) s_{\mathrm{n}}}\right] \in \mathbb{R}^{q_{\mathrm{n}} s_{\mathrm{n}} \times p_{\mathrm{n}} s_{\mathrm{n}}} .
\end{aligned}
$$

Based on (16) and (20), it can be deduced that

$$
\mathrm{WZ}_{l} \quad\left\{\mathrm{Y}_{i}=\mathrm{y}_{i}\right\}_{i=1}^{n} \cap \mathrm{M}_{n} \stackrel{i . i . d}{\sim}
$$

$\mathbf{W}^{*} \mathbf{Z}_{l}$

$$
\Lambda_{N}^{(1)-1 / 2}\left(\Sigma_{N N}^{(1)}-\Sigma_{N T}^{(1)} \Sigma_{T T}^{(1)-1} \Sigma_{T N}^{(1)}\right) \Lambda_{N}^{(1)-1 / 2} \quad 0_{\left(p_{\mathrm{n}}-q_{\mathrm{n}}\right) s_{\mathrm{n}} \times q_{\mathrm{n}} s_{\mathrm{n}}} \quad!
$$

N $0_{p_{n} s_{n} \times 1}$,

$$
0_{q_{n} s_{n} \times\left(p_{n}-q_{n}\right) s_{n}}
$$

$$
\Lambda_{T}^{(1)-1 / 2} \Sigma_{T T}^{(1)} \Lambda_{T}^{(1)-1 / 2}
$$

for $\mathbf{I}=1, \ldots, \mathrm{n}-2$. Hence, by combining (16), (20) with (21), it can be concluded that conditional on any nonempty set $\left\{\mathrm{Y}_{i}=\mathrm{y}_{i}\right\}_{i=1}^{n} \cap \mathrm{M}_{n}$,

$$
\begin{equation*}
\mathbf{Z}_{T} \quad \perp \quad \mathbf{Z}_{N}-\Lambda_{N}^{(1)-1 / 2} \Sigma_{N T}^{(1)} \Sigma_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2} \mathbf{Z}_{T} \tag{22}
\end{equation*}
$$

Note that (18) entails that conditional on any nonempty set $\left\{\mathrm{Y}_{i}=\mathrm{y}_{i}\right\}_{i=1}^{n} \cap \mathrm{M}_{n}$,

$$
\begin{array}{ll}
\hat{\nu}_{T}^{(1)} & \perp\left\{\mathbf{Z}_{T}, \mathbf{Z}_{N}-\Lambda_{N}^{(1)-1 / 2} \Sigma_{N T}^{(1)} \Sigma_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2} \mathbf{Z}_{T}\right\} \\
\hat{\nu}_{T}^{(1)} & \perp \mathbf{Z}_{N}-\Lambda_{N}^{(1)-1 / 2} \Sigma_{N T}^{(1)} \Sigma_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2} \mathbf{Z}_{T} \tag{23}\\
\hat{\nu}_{T}^{(1)} & \perp \mathbf{Z}_{T}
\end{array}
$$

Piecing (22) and (23) together yields that conditional on any nonempty set $\left\{\mathrm{Y}_{i}=\mathrm{y}_{i}\right\}_{i=1}^{n} \cap$ M_{n},

$$
\begin{equation*}
\left\{\hat{v}_{T}^{(1)}, \mathbf{Z}_{T}\right\} \quad \perp \quad \mathbf{Z}_{N}-\Lambda_{N}^{(1)-1 / 2} \Sigma_{N T}^{(1)} \Sigma_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2} \mathbf{Z}_{T} \tag{24}
\end{equation*}
$$

In a similar fashion, the quantity $\Lambda_{N}^{(1)-1 / 2} \hat{\nu}_{N}^{(1)}$ can be decomposed into

$$
\begin{equation*}
\Lambda_{N}^{(1)-1 / 2} \hat{\nu}_{N}^{(1)}=\Lambda_{N}^{(1)-1 / 2}\left(\boldsymbol{\nu}_{N}^{(1)}-\Sigma_{N T}^{(1)} \Sigma_{T T}^{(1)-1} \hat{\nu}_{T}^{(1)}\right)+\Lambda_{N}^{(1)-1 / 2} \Sigma_{N T}^{(1)} \Sigma_{T T}^{(1)-1} \hat{\nu}_{T}^{(1)} . \tag{25}
\end{equation*}
$$

It is not difficult to verify that conditional on any nonempty set $\left\{\mathrm{Y}_{i}=\mathrm{y}_{i}\right\}_{i=1}^{n} \cap \mathrm{M}_{n}$,

$$
\begin{aligned}
& \Lambda_{N}^{(1)-1 / 2}\left(\hat{\nu}_{N}^{(1)}-\Sigma_{N T}^{(1)} \Sigma_{T T}^{(1)-1} \hat{\nu}_{T}^{(1)}\right) \\
& \Lambda_{N}^{(1)-1 / 2}\left(\boldsymbol{\nu}_{N}^{(1)}-\Sigma_{N T}^{(1)} \Sigma_{T T}^{(1)-1} \boldsymbol{\nu}_{T}^{(1)}\right) \\
& \left\{\mathrm{Y}_{i}=\mathrm{y}_{i}\right\}_{i=1}^{n} \cap \mathrm{M}_{n} \sim \mathrm{~N} \\
& \Lambda_{T}^{(1)-1 / 2} \hat{\boldsymbol{\nu}}_{T}^{(1)} \quad \Lambda_{T}^{(1)-1 / 2} \boldsymbol{\nu}_{T}^{(1)} \\
& \Lambda_{N}^{(1)-1 / 2}\left(\Sigma_{N N}^{(1)}-\Sigma_{N T}^{(1)} \Sigma_{T T}^{(1)-1} \Sigma_{T N}^{(1)}\right) \Lambda_{N}^{(1)-1 / 2} \quad 0_{\left(p_{\mathrm{n}}-q_{\mathrm{n}}\right) s_{\mathrm{n}} \times q_{\mathrm{n}} s_{\mathrm{n}}} \quad! \\
& \mathrm{nn}_{1}^{-1} \mathrm{n}_{2}^{-1} \\
& 0_{q_{n} s_{n} \times\left(p_{n}-q_{n}\right) s_{n}} \\
& \Lambda_{T}^{(1)-1 / 2} \Sigma_{T T}^{(1)} \Lambda_{T}^{(1)-1 / 2}
\end{aligned}
$$

which further entails that conditional on any nonempty set $\left\{\mathrm{Y}_{i}=\mathrm{y}_{i}\right\}_{i=1}^{n} \cap \mathrm{M}_{n}$,

$$
\begin{equation*}
\hat{\nu}_{T}^{(1)} \quad \perp \hat{\nu}_{N}^{(1)}-\Sigma_{N T}^{(1)} \Sigma_{T T}^{(1)-1} \hat{\nu}_{T}^{(1)} . \tag{27}
\end{equation*}
$$

Based on (18), it is seen that conditional on any nonempty set $\left\{\mathrm{Y}_{i}=\mathrm{y}_{i}\right\}_{i=1}^{n} \cap \mathrm{M}_{n}$,

$$
\begin{align*}
& \mathbf{Z}_{T} \quad \perp\left\{\left\{\boldsymbol{\nu}_{T}^{(1)}, \hat{\nu}_{N}^{(1)}-\Sigma_{N T}^{(1)} \Sigma_{T T}^{(1)-1} \hat{\nu}_{T}^{(1)}\right\}\right. \\
& \mathbf{Z}_{T} \quad \perp \hat{\boldsymbol{v}}_{N}^{(1)}-\Sigma_{N T}^{(1)} \Sigma_{T T}^{(1)-1} \hat{\boldsymbol{v}}_{T}^{(1)} \tag{28}\\
& \mathbf{Z}_{T} \\
& \perp \boldsymbol{\nu}_{T}^{(1)}
\end{align*}
$$

Together with (27) yields that conditional on any nonempty set $\left\{\mathrm{Y}_{i}=\mathrm{y}_{i}\right\}_{i=1}^{n} \cap \mathrm{M}_{n}$,

$$
\begin{equation*}
\left\{\hat{\nu}_{T}^{(1)}, \mathbf{Z}_{T}\right\} \perp{\nu_{N}^{(1)}-\Sigma_{N T}^{(1)} \Sigma_{T T}^{(1)-1} \boldsymbol{\nu}_{T}^{(1)}} \tag{29}
\end{equation*}
$$

Moreover, using (19) and (25), elementary algebra yields that

$$
\begin{equation*}
\Psi=\Pi_{1}-\Pi_{2}-\Pi_{3}-\Pi_{4}, \tag{30}
\end{equation*}
$$

with

$$
\begin{aligned}
& \Pi_{1}=(\mathbf{n}-2)^{-1}\left(\mathbf{Z}_{N}-\Lambda_{N}^{(1)-1 / 2} \Sigma_{N T}^{(1)} \Sigma_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2} \mathbf{Z}_{T}\right) \mathbf{Z}_{T}^{\prime} \Lambda_{T}^{(1) 1 / 2} \widetilde{\mathbf{V}}_{T} \\
& \Pi_{2}=\hat{\vartheta} \Lambda_{N}^{(1)-1 / 2}\left(\hat{\nu}_{N}^{(1)}-\Sigma_{N T}^{(1)} \Sigma_{T T}^{(1)-1} \hat{\nu}_{T}^{(1)}\right), \\
& \Pi_{3}=\lambda_{n} \Lambda_{N}^{(1)-1 / 2} \Sigma_{N T}^{(1)} \Sigma_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2}\left(\Lambda_{T}^{(1)-1 / 2} \hat{\Lambda}_{T}^{(1) 1 / 2}-\mathbf{I}_{q_{n} s_{n}}\right) \operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right), \\
& \Pi_{4}=\lambda_{n} \Lambda_{N}^{(1)-1 / 2} \Sigma_{N T}^{(1)} \Sigma_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2} \operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right),
\end{aligned}
$$

where

$$
\begin{aligned}
\hat{\vartheta}= & \left\{\mathrm{n}_{1} \mathrm{n}_{2} \mathrm{n}^{-1}(\mathrm{n}-2)^{-1}\right\}\left\{1+\lambda_{n} \hat{\nu}_{T}^{(1)^{\prime}} \mathrm{S}_{T T}^{(1)-1} \hat{\Lambda}_{T}^{(1) 1 / 2} \operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right)\right\} \\
& 1+\left\{\mathrm{n}_{1} \mathrm{n}_{2} \mathrm{n}^{-1}(\mathrm{n}-2)^{-1}\right\} \hat{\nu}_{T}^{(1)^{\prime}} \mathrm{S}_{T T}^{(1)-1} \hat{\nu}_{T}^{(1)-1} .
\end{aligned}
$$

Similar arguments as in the proof of Lemma 11 indicates that there exist universal constants $\mathrm{C}_{7}>0$ and $\mathrm{C}_{9}>\mathrm{C}_{8}>0$ such that with probability at least $1-\mathrm{C}_{7}\left[\left(\mathrm{a}_{n} \mathbf{s}_{n}\right)^{-1}+\{\log (\mathrm{n})\}^{-1}+\right.$ $\left.\exp \left(-\mathrm{n} \pi_{1} / 12\right)+\exp \left(-\mathrm{n} \pi_{2} / 12\right)\right]$,

$$
\begin{equation*}
\mathrm{c}_{8}\left\{\nu_{T}^{(1)^{\prime}} \Sigma_{T T}^{(1)-1} \nu_{T}^{(1)}\right\}^{-1} \leq \hat{\vartheta} \leq \mathrm{c}_{9}\left\{\nu_{T}^{(1)^{\prime}} \Sigma_{T T}^{(1)-1} \nu_{T}^{(1)}\right\}^{-1} \tag{31}
\end{equation*}
$$

For the term Π_{1}, it can be decomposed into

$$
\begin{equation*}
\Pi_{1}=\Upsilon_{1}-\Upsilon_{2} \tag{32}
\end{equation*}
$$

where

$$
\begin{aligned}
& \Upsilon_{1}=\hat{\vartheta}(\mathbf{n}-2)^{-1}\left(\mathbf{Z}_{N}-\Lambda_{N}^{(1)-1 / 2} \Sigma_{N T}^{(1)} \Sigma_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2} \mathbf{Z}_{T}\right) \mathbf{Z}_{T}^{\prime} \Lambda_{T}^{(1) 1 / 2} \mathbf{S}_{T T}^{(1)-1} \hat{\boldsymbol{\nu}}_{T}^{(1)}, \\
& \Upsilon_{2}=\lambda_{n}(\mathbf{n}-2)^{-1}\left(\mathbf{Z}_{N}-\Lambda_{N}^{(1)-1 / 2} \Sigma_{N T}^{(1)} \Sigma_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2} \mathbf{Z}_{T}\right) \mathbf{Z}_{T}^{\prime} \Lambda_{T}^{(1) 1 / 2} \mathbf{S}_{T T}^{(1)-1} \hat{\Lambda}_{T}^{(1) 1 / 2} \operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right) .
\end{aligned}
$$

At this point, we denote $\left\{\mathrm{e}_{j}\right\}_{j=1}^{\left(p_{n}-q_{\mathrm{n}}\right) s_{n}}$ as the standard basis in $\mathbb{R}^{\left(p_{n}-q_{\mathrm{n}}\right) s_{\mathrm{n}}}$. Moreover, according to (20), (21) and (24), it can be deduced that conditional on any nonempty set $\left\{\mathrm{Y}_{i}=\mathrm{y}_{i}\right\}_{i=1}^{n} \cap \mathrm{M}_{n} \cap\left\{\hat{\nu}_{T}^{(1)}, \mathrm{Z}_{T}\right\}$ and for any $\mathrm{j} \leq\left(\mathrm{p}_{n}-\mathbf{q}_{n}\right) \mathrm{S}_{n}$,

$$
\begin{aligned}
\left(\mathbf{Z}_{N}\right. & \left.-\Lambda_{N}^{(1)-1 / 2} \Sigma_{N T}^{(1)} \Sigma_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2} \mathbf{Z}_{T}\right)^{\prime} \mathbf{e}_{j}\left\{\mathbf{Y}_{i}=\mathrm{y}_{i}\right\}_{i=1}^{n} \cap \mathbf{M}_{n} \cap\left\{\hat{\nu}_{T}^{(1)}, \mathbf{Z}_{T}\right\} \\
& \sim \mathrm{N} 0_{(n-2) \times 1},\left\{\mathrm{e}_{j} \Lambda_{N}^{(1)-1 / 2}\left(\Sigma_{N N}^{(1)}-\Sigma_{N T}^{(1)} \Sigma_{T T}^{(1)-1} \Sigma_{T N}^{(1)}\right) \Lambda_{N}^{(1)-1 / 2} \mathrm{e}_{j}\right\} \mathbf{l}_{n-2}
\end{aligned}
$$

which implies that conditional on any nonempty set $\left\{\mathrm{Y}_{i}=\mathrm{y}_{i}\right\}_{i=1}^{n} \cap \mathrm{M}_{n} \cap\left\{\hat{\nu}_{T}^{(1)}, \mathrm{Z}_{T}\right\}$ and for any $\mathrm{j} \leq\left(\mathrm{p}_{n}-\mathrm{q}_{n}\right) \mathrm{S}_{n}$,

$$
\mathrm{e}_{j}^{\prime} \Upsilon_{1}\left\{\mathrm{Y}_{i}=\mathrm{y}_{i}\right\}_{i=1}^{n} \cap \mathrm{M}_{n} \cap\left\{\hat{\nu}_{T}^{(1)}, \mathbf{Z}_{T}\right\} \sim \mathrm{N}\left(0, \Gamma_{j}\right),
$$

with each

$$
\begin{aligned}
\Gamma_{j} & =\hat{\vartheta}^{2}(\mathrm{n}-2)^{-1}\left\{\mathrm{e}_{j}^{\prime} \Lambda_{N}^{(1)-1 / 2}\left(\Sigma_{N N}^{(1)}-\Sigma_{N T}^{(1)} \Sigma_{T T}^{(1)-1} \Sigma_{T N}^{(1)}\right) \Lambda_{N}^{(1)-1 / 2} \mathrm{e}_{j}\right\} \hat{\nu}_{T}^{(1)^{\prime}} \mathrm{S}_{T T}^{(1)-1} \hat{\nu}_{T}^{(1)} \\
& \leq \hat{\vartheta}^{2}(\mathrm{n}-2)^{-1} \hat{\nu}_{T}^{(1)^{\prime}} \mathrm{S}_{T T}^{(1)-1} \hat{\nu}_{T}^{(1)} .
\end{aligned}
$$

Together with the maximal inequality, we have that for any $\mathrm{t} \geq 0$,

$$
\begin{gathered}
\mathrm{P} \mathrm{~K} \Upsilon_{1} \mathrm{k}_{\infty} \geq \mathrm{t}\left\{\mathrm{Y}_{i}=\mathrm{y}_{i}\right\}_{i=1}^{n} \cap \mathrm{M}_{n} \cap\left\{\hat{\nu}_{T}^{(1)}, \mathrm{Z}_{T}\right\} \\
\leq 2\left(\mathrm{p}_{n}-\mathrm{q}_{n}\right) \mathrm{s}_{n} \exp -4^{-1} \hat{\vartheta}^{-2}\left\{\hat{\nu}_{T}^{(1)^{\prime}} \mathrm{S}_{T T}^{(1)-1} \hat{\nu}_{T}^{(1)}\right\}^{-1} \mathrm{nt}^{2}
\end{gathered}
$$

with each

$$
\begin{aligned}
\Xi_{j}= & \lambda_{n}^{2}(\mathrm{n}-2)^{-1}\left\{\mathrm{e}_{j}^{\prime} \Lambda_{N}^{(1)-1 / 2}\left(\Sigma_{N N}^{(1)}-\Sigma_{N T}^{(1)} \Sigma_{T T}^{(1)-1} \Sigma_{T N}^{(1)}\right) \Lambda_{N}^{(1)-1 / 2} \mathrm{e}_{j}\right\}\left\{\operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right)^{\prime}\right. \\
& \left.\hat{\Lambda}_{T}^{(1) 1 / 2} \mathrm{~S}_{T T}^{(1)-1} \hat{\Lambda}_{T}^{(1) 1 / 2} \operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right)\right\} \\
\leq & \lambda_{n}^{2}(\mathrm{n}-2)^{-1}\left\{\operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right)^{\prime} \hat{\Lambda}_{T}^{(1) 1 / 2} \mathbf{S}_{T T}^{(1)-1} \hat{\Lambda}_{T}^{(1) 1 / 2} \operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right)\right\} .
\end{aligned}
$$

Together with maximal inequality, we have that for any $\mathrm{t} \geq 0$,

$$
\begin{aligned}
& \mathrm{P} \quad \mathrm{k} \Upsilon_{2} \mathrm{k}_{\infty} \geq \mathrm{t}\left\{\mathrm{Y}_{i}=\mathrm{y}_{i}\right\}_{i=1}^{n} \cap \mathrm{M}_{n} \cap\left\{\hat{v}_{T}^{(1)}, \mathrm{Z}_{T}\right\} \\
\leq & 2\left(\mathbf{p}_{n}-\mathbf{q}_{n}\right) \mathrm{S}_{n} \exp -4^{-1} \lambda_{n}^{-2}\left\{\operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right)^{\prime} \hat{\Lambda}_{T}^{(1) 1 / 2} \mathrm{~S}_{T T}^{(1)-1} \hat{\Lambda}_{T}^{(1) 1 / 2} \operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right)\right\}^{-1} \mathrm{nt}^{2}
\end{aligned}
$$

Setting $\mathrm{t}=\left[8 \boldsymbol{\lambda}_{n}^{2}\left\{\operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right)^{\prime} \hat{\Lambda}_{T}^{(1) 1 / 2} \mathbf{S}_{T T}^{(1)-1} \hat{\Lambda}_{T}^{(1) 1 / 2} \operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right)\right\} \log \left\{\left(\mathbf{p}_{n}-\mathbf{q}_{n}\right) \mathbf{S}_{n}\right\} / \mathrm{n}\right]^{1 / 2}$ in the above inequality yields

$$
\begin{aligned}
& \mathrm{P} \quad \mathrm{~K} \mathrm{\Upsilon}_{2} \mathrm{k}_{\infty} \leq\left[8 \boldsymbol{\lambda}_{n}^{2}\left\{\operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right)^{\prime} \hat{\Lambda}_{T}^{(1) 1 / 2} \mathrm{~S}_{T T}^{(1)-1} \hat{\Lambda}_{T}^{(1) 1 / 2} \operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right)\right\}\right]^{1 / 2} \\
& \\
& \quad\left[\log \left\{\left(\mathrm{p}_{n}-\mathbf{q}_{n}\right) \mathrm{S}_{n}\right\} / \mathrm{n}\right]^{1 / 2}\left\{\mathrm{Y}_{i}=\mathrm{y}_{i}\right\}_{i=1}^{n} \cap \mathrm{M}_{n} \cap\left\{\hat{v}_{T}^{(1)}, \mathbf{Z}_{T}\right\} \\
& \quad \geq 1-2\left\{\left(\mathbf{p}_{n}-\mathbf{q}_{n}\right) \mathbf{S}_{n}\right\}^{-1} .
\end{aligned}
$$

Together with similar reasoning as in (34), one has

$$
\begin{aligned}
\mathrm{P} \quad & \mathrm{k} \Upsilon_{2} \mathrm{k}_{\infty} \leq\left[8 \boldsymbol{\lambda}_{n}^{2}\left\{\operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right)^{\prime} \hat{\Lambda}_{T}^{(1) 1 / 2} \mathrm{~S}_{T T}^{(1)-1} \hat{\Lambda}_{T}^{(1) 1 / 2} \operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right)\right\}\right]^{1 / 2} \\
& {\left[\log \left\{\left(\mathrm{p}_{n}-\mathrm{q}_{n}\right) \mathrm{S}_{n}\right\} / \mathrm{n}\right]^{1 / 2} } \\
\geq & 1-\mathrm{c}_{13}\left[\left\{\left(\mathrm{p}_{n}-\mathrm{q}_{n}\right) \mathrm{S}_{n}\right\}^{-1}+\exp \left(-\mathrm{n} \pi_{1} / 12\right)+\exp \left(-\mathrm{n} \pi_{2} / 12\right)\right]
\end{aligned}
$$

for some universal constant $\mathrm{C}_{13}>0$. Then, it follows from the above inequality and Lemma 9 that there exist universal constants $\mathrm{C}_{14}, \mathrm{C}_{15}>0$ such that with probability at least $1-\mathbf{c}_{14}\left[\left\{\left(\mathbf{p}_{n}-\mathbf{q}_{n}\right) \mathbf{s}_{n}\right\}^{-1}+\left(\mathbf{q}_{n} \mathbf{s}_{n}\right)^{-1}+\{\log (\mathbf{n})\}^{-1}+\exp \left(-\mathrm{n} \pi_{1} / 12\right)+\exp \left(-\mathrm{n} \pi_{2} / 12\right)\right]$,

$$
\mathrm{K} \Upsilon_{2} \mathrm{~K}_{\infty} \leq \mathrm{c}_{15}\left[\mathrm{q}_{n} \mathrm{~s}_{n} \log \left\{\left(\mathrm{p}_{n}-\mathrm{q}_{n}\right) \mathrm{s}_{n}\right\} / \mathrm{n}\right]^{1 / 2} \lambda_{n}
$$

For the term Π_{3}, it follows from condition (C2) and Lemma 5 that there exist universal constants $\mathrm{C}_{21}, \mathrm{C}_{22}>0$ such that with probability at least $1-\mathrm{C}_{21}\left\{\left(\mathrm{q}_{n} \mathbf{S}_{n}\right)^{-1}+\exp \left(-\mathrm{n} \pi_{1} / 12\right)+\right.$ $\left.\exp \left(-\mathrm{n} \boldsymbol{\pi}_{2} / 12\right)\right\}$, we have $k \Pi_{3} \mathrm{k}_{\infty} \leq \mathrm{c}_{22}\left\{\mathbf{q}_{n} \mathbf{s}_{n} \log \left(\mathbf{q}_{n} \mathbf{s}_{n}\right) / \mathrm{n}\right\}^{1 / 2} \boldsymbol{\lambda}_{n}$. Together with (37), (36) and (30), there exists a universal constant $\mathrm{C}_{23}>0$ such that with probability at least $1-c_{23}\left[\left\{\left(p_{n}-\mathbf{q}_{n}\right) \mathbf{s}_{n}\right\}^{-1}+\left(\mathbf{q}_{n} \mathbf{s}_{n}\right)^{-1}+\{\log (\mathbf{n})\}^{-1}+\exp \left(-\mathrm{n} \boldsymbol{\pi}_{1} / 12\right)+\exp \left(-\mathrm{n} \boldsymbol{\pi}_{2} / 12\right)\right]$, we have $\mathrm{k} \Psi \mathrm{k}_{\infty} \leq(1-\mathrm{\gamma} / 2) \boldsymbol{\lambda}_{n}$. Together with (12) and Lemma 6, the assertion (11) holds trivially, which completes the proof of property (i). To show property (iii), we recall that $\tilde{\mathrm{V}}=$ $\left(\widetilde{\mathbf{v}}_{T}^{\prime}, 0^{\prime}\right)^{\prime} \in \mathbb{R}^{p_{n} s_{n}}$, where $\tilde{\mathbf{v}}_{T}$ is defined in Lemma 2. Together with (9), we have that there exists a universal constants $\mathbf{C}_{24}>0$ such that with probability at least $1-\mathbf{C}_{24}\left\{\left(\mathbf{q}_{n} \mathbf{s}_{n}\right)^{-1}+\right.$ $\left.\{\log (\mathrm{n})\}^{-1}+\exp \left(-\mathrm{n} \boldsymbol{\pi}_{1} / 12\right)+\exp \left(-\mathrm{n} \pi_{2} / 12\right)\right\}$,

$$
\begin{equation*}
\mathrm{R}^{\diamond}(\hat{\mathrm{V}})=\mathrm{R}^{\diamond}(\tilde{\mathrm{V}})=\Pi_{1} \Omega_{1}+\Pi_{2} \Omega_{2} \tag{38}
\end{equation*}
$$

where

$$
\begin{array}{ll}
\Omega_{1}=\Phi & -\tilde{\mathbf{v}}_{T}^{\prime}\left(\hat{\mu}_{1, T}^{(1)}-\mu_{1, T}^{(1)}\right)-2^{-1} \tilde{\mathbf{V}}_{T} \hat{\boldsymbol{v}}_{T}^{(1)}+\left\{\tilde{\mathrm{V}}_{T}^{\prime} \mathbf{S}_{T T}^{(1)} \tilde{\mathbf{v}}_{T}\right\}\left\{\tilde{\mathrm{V}}_{T} \hat{\boldsymbol{v}}_{T}^{(1)}\right\}^{-1}\left\{\log \left(\mathrm{n}_{2} / \mathrm{n}_{1}\right)\right\} \\
& \left\{\tilde{\mathrm{V}}_{T}^{\prime} \Sigma_{T T}^{(1)} \tilde{\mathbf{v}}_{T}\right\}^{-1 / 2}, \\
\Omega_{2}=\Phi & -\tilde{\mathbf{v}}_{T}^{\prime}\left(\mu_{2, T}^{(1)}-\hat{\mu}_{2, T}^{(1)}\right)-2^{-1} \tilde{\mathbf{v}}_{T} \hat{\boldsymbol{v}}_{T}^{(1)}-\left\{\tilde{\mathbf{v}}_{T} \mathbf{S}_{T T}^{(1)} \tilde{\mathbf{v}}_{T}\right\}\left\{\tilde{\mathbf{v}}_{T}^{\prime} \hat{\boldsymbol{v}}_{T}^{(1)}\right\}^{-1}\left\{\log \left(\mathrm{n}_{2} / \mathrm{n}_{1}\right)\right\} \\
& \left\{\tilde{\mathbf{v}}_{T}^{\prime} \Sigma_{T T}^{(1)} \tilde{\mathbf{v}}_{T}\right\}^{-1 / 2} .
\end{array}
$$

Also recalling from (11) of the main paper that

$$
\begin{equation*}
\mathrm{R}^{\circ}\left(\boldsymbol{\beta}^{(1)}\right)=\Pi_{1} \Omega_{1}^{*}+\pi_{2} \Omega_{2}^{*}, \tag{39}
\end{equation*}
$$

with

$$
\begin{aligned}
& \Omega_{1}^{*}=\Phi-2^{-1}\left\{\nu_{T}^{(1)^{\prime}} \Sigma_{T T}^{(1)-1} \nu_{T}^{(1)}\right\}^{1 / 2}+\log \left(\boldsymbol{\pi}_{2} / \pi_{1}\right)\left\{\nu_{T}^{(1)^{\prime}} \Sigma_{T T}^{(1)-1} \nu_{T}^{(1)}\right\}^{-1 / 2}, \\
& \Omega_{2}^{*}=\Phi-2^{-1}\left\{\nu_{T}^{(1)^{\prime}} \Sigma_{T T}^{(1)-1} \nu_{T}^{(1)}\right\}^{1 / 2}-\log \left(\boldsymbol{\pi}_{2} / \pi_{1}\right)\left\{\nu_{T}^{(1)^{\prime}} \Sigma_{T T}^{(1)-1} \nu_{T}^{(1)}\right\}^{-1 / 2} .
\end{aligned}
$$

We denote $\mathbf{a}_{n}, \mathrm{~b}_{n}, \mathrm{X}_{n}$ and U_{n} as

$$
\begin{aligned}
& \mathrm{a}_{n}=4^{-1} \nu_{T}^{(1)^{\prime}} \Sigma_{T T}^{(1)-1} \nu_{T}^{(1)}, \quad \mathrm{b}_{n}=\log \left(\boldsymbol{\pi}_{2} / \boldsymbol{\pi}_{1}\right)\left\{\nu_{T}^{(1)^{\prime}} \Sigma_{T T}^{(1)-1} \nu_{T}^{(1)}\right\}^{-1 / 2}, \\
& \mathbf{X}_{n}=\left\{2 \tilde{\mathbf{v}}_{T}^{\prime}\left(\hat{\mu}_{1, T}^{(1)}-\mu_{1, T}^{(1)}\right)+\tilde{\mathbf{v}}_{T}^{\prime} \nu_{T}^{(1)}\right\}\left\{\tilde{\mathrm{V}}_{T}^{\prime} \Sigma_{T T}^{(1)} \tilde{\mathbf{v}}_{T}\right\}^{-1 / 2}\left\{\nu_{T}^{(1)^{\prime}} \Sigma_{T}^{(1) _(1)}{ }_{T T}^{(1)}\right\}\left\{\ddot{\mathrm{v}}_{T} \Sigma_{T T T}^{(1)}\right\}^{-}
\end{aligned}
$$

For the term $\widetilde{\mathbf{v}}_{T}^{\prime} \mathbf{S}_{T T}^{(1)} \tilde{\mathbf{V}}_{T}$, using (42), we have

$$
\begin{equation*}
\tilde{\mathbf{v}}_{T}^{\prime} \mathbf{S}_{T T}^{(1)} \tilde{\mathbf{v}}_{T}=\tilde{\vartheta}^{2} \boldsymbol{v}_{T}^{(1)^{\prime}} \Sigma_{T T}^{(1)-1} \boldsymbol{v}_{T}^{(1)}+\mathbf{I}_{1}+\mathbf{I}_{2}+\mathbf{I}_{3} \tag{44}
\end{equation*}
$$

where $\mathbf{I}_{1}=\hat{\vartheta}^{2} \hat{\nu}_{T}^{(1)} \mathbf{S}_{T T}^{(1)-1} \hat{\nu}_{T}^{(1)}-\tilde{\vartheta}^{2} \nu_{T}^{(1)} \Sigma_{T T}^{(1)-1} \boldsymbol{\nu}_{T}^{(1)}, \mathbf{I}_{2}=\lambda_{n}^{2} \operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right)^{\prime} \hat{\Lambda}_{T}^{(1) 1 / 2} \mathbf{S}_{T T}^{(1)-1}$
$\hat{\Lambda}_{T}^{(1) 1 / 2} \operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right), \mathbf{I}_{3}=-2 \hat{\boldsymbol{\vartheta}} \boldsymbol{\lambda}_{n} \boldsymbol{\nu}_{T}^{(1)^{\prime}} \mathbf{S}_{T T}^{(1)-1} \hat{\Lambda}_{T}^{(1) 1 / 2}{ }_{\operatorname{sgn}}\left(\boldsymbol{\beta}_{T}^{(1)}\right)$. For the term \mathbf{I}_{1}, since $\left|\boldsymbol{I}_{1}\right| \leq$ $\hat{\vartheta}^{2}\left|\hat{\nu}_{T}^{(1)^{\prime}} \mathrm{S}_{T T}^{(1)-1} \hat{\nu}_{T}^{(1)}-\mathbf{v}_{T}^{(1)^{\prime}} \Sigma_{T T}^{(1)-1} \mathbf{v}_{T}^{(1)}\right|+|\hat{\vartheta}-\tilde{\vartheta}| \cdot(2|\hat{\vartheta}|+|\hat{\vartheta}-\tilde{\vartheta}|) \cdot v_{T}^{(1)^{\prime}} \Sigma_{T T}^{(1)-1} \mathbf{v}_{T}^{(1)}$, it follows from Lemma 4, (31), (41), and (43) that there exist constants $\mathrm{C}_{27}, \mathrm{C}_{28}>0$ such that with probability at least $1-\mathrm{c}_{27}\left[\left(\mathbf{q}_{\mathbf{n}} \mathbf{s}_{n}\right)^{-1}+\{\log (\mathrm{n})\}^{-1}+\exp \left(-\mathrm{n} \boldsymbol{m}_{1} / 12\right)+\exp \left(-\mathrm{n} \boldsymbol{m}_{2} / 12\right)\right]$,

$$
\begin{aligned}
\left|I_{1}\right| \leq & \mathrm{c}_{28}\left\{\mathbf{v}_{T}^{(1)^{\prime}} \Sigma_{T T}^{(1)-1} \boldsymbol{v}_{T}^{(1)}\right\}^{-1}\left[\mathbf{q}_{n} \mathbf{s}_{n} / \mathrm{n}+\{\log \log (\mathrm{n}) / \mathrm{n}\}^{1 / 2}\right]+\mathrm{c}_{28} \lambda_{n}\left\{\mathbf{v}_{T}^{(1)^{\prime}} \Sigma_{T T}^{(1)-1} \mathbf{v}_{T}^{(1)}\right\}^{-1 / 2} . \\
& {\left[\left(\mathbf{q}_{n} \mathbf{s}_{n}\right)^{3 / 2} / \mathrm{n}+\left\{\mathbf{q}_{\mathbf{n}} \mathbf{s}_{n} \log \left(\mathbf{q}_{\mathbf{n}} \mathbf{s}_{n}\right) / \mathrm{n}\right\}^{1 / 2}+\left\{\mathbf{q}_{n} \mathbf{s}_{n} \log \log (\mathrm{n}) / \mathrm{n}\right\}^{1 / 2}\right] . }
\end{aligned}
$$

To bound the term \mathbf{I}_{2}, since $\left|\boldsymbol{I}_{2}\right| \lesssim \boldsymbol{\lambda}_{n}^{2} \mathbf{q}_{n} \mathbf{S}_{n} 1+\left\{\operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right)^{\prime} \hat{\Lambda}_{T}^{(1) 1 / 2} \mathbf{S}_{T T}^{(1)-1} \hat{\Lambda}_{T}^{(1) 1 / 2}\right.$
$\left.\operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right)\right\} \cdot\left\{\operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right)^{\prime} \Lambda_{T}^{(1) 1 / 2} \Sigma_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2} \operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right)\right\}^{-1}-1 \quad$, it follows from Lemma 9 that there exist universal constants $\mathrm{C}_{29}, \mathrm{C}_{30}>0$ such that with probability at least $1-\mathrm{C}_{29}\left[\left(\mathbf{q}_{n} \mathbf{s}_{n}\right)^{-1}+\right.$ $\left.\{\log (\mathbf{n})\}^{-1}+\exp \left(-\mathrm{n} \pi_{1} / 12\right)+\exp \left(-\mathrm{n} \boldsymbol{\pi}_{2} / 12\right)\right]$,

$$
\left|I_{2}\right| \leq c_{30} \lambda_{n}^{2} q_{n} S_{n} .
$$

For the term \mathbf{I}_{3}, since $\left|\mathbf{I}_{3}\right| \leq 2 \boldsymbol{\lambda}_{n}|\hat{\vartheta}| \cdot \mid \hat{\nu}_{T}^{(1)^{\prime}} S_{T T}^{(1)-1} \hat{\Lambda}_{T}^{(1) 1 / 2} \operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right)-\boldsymbol{v}_{T}^{(1)^{\prime}} \Sigma_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2}$ $\operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right)|+2| \hat{\Theta} \mid \cdot\left\{\boldsymbol{\lambda}_{n} \boldsymbol{\nu}_{T}^{(1)^{\prime}} \Sigma_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2} \operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right)\right\}$, it follows from Lemma 10, (93) and (31) that there exist constants $\mathrm{C}_{31}, \mathrm{C}_{32}>0$ such that with probability at least $1-\mathrm{C}_{31}\left[\left(\mathbf{q}_{n} \mathbf{s}_{n}\right)^{-1}+\right.$ $\left.\{\log (\mathrm{n})\}^{-1}+\exp \left(-\mathrm{n} \pi_{1} / 12\right)+\exp \left(-\mathrm{n} \boldsymbol{\pi}_{2} / 12\right)\right]$,

$$
\left|\boldsymbol{I}_{3}\right| \leq \mathrm{c}_{32}\left(\lambda_{n}^{2} \mathbf{q}_{n} \mathbf{s}_{n}\right)^{1 / 2}\left\{\nu_{T}^{(1)^{\prime}} \Sigma_{T T}^{(1)-1} \mathbf{v}_{T}^{(1)}\right\}^{-1 / 2} .
$$

By combining the above three inequalities with (44), we have that there exist universal constants $\mathrm{C}_{33}, \mathrm{C}_{34}>0$ such that with probability at least $1-\mathrm{C}_{33}\left[\left(\mathrm{q}_{n} \mathbf{s}_{n}\right)^{-1}+\{\log (\mathrm{n})\}^{-1}+\right.$
$\left.\exp \left(-\mathrm{n} \pi_{1} / 12\right)+\exp \left(-\mathrm{n} \pi_{2} / 12\right)\right]$,

$$
\begin{equation*}
\left|\tilde{v}_{T}^{\prime} \mathbf{S}_{T T}^{(1)} \tilde{\mathbf{v}}_{T}-\tilde{\vartheta}^{2} \nu_{T}^{(1)^{\prime}} \Sigma_{T T}^{(1)-1} \boldsymbol{v}_{T}^{(1)}\right| \leq \mathrm{c}_{34}\left(\lambda_{n}^{2} \mathbf{q}_{\mathbf{s}} \mathbf{s}_{n}\right)^{1 / 2}\left\{\mathbf{v}_{T}^{(1)^{\prime}} \Sigma_{T T}^{(1)-1} \mathbf{v}_{T}^{(1)}\right\}^{-1 / 2} \tag{45}
\end{equation*}
$$

Since $\left|\widetilde{\mathbf{V}}_{T}^{\prime} \mathbf{S}_{T T}^{(1)} \tilde{\mathbf{V}}_{T}-\widetilde{\mathbf{V}}_{T}^{\prime} \Sigma_{T T}^{(1)} \tilde{\mathbf{v}}_{T}\right| \leq \lambda_{\max }\left(\Lambda_{T}^{(1) 1 / 2} \mathrm{~S}_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2}\right) \mathbf{k} \Lambda_{T}^{(1)-1 / 2}\left(\Sigma_{T T}^{(1)}-\mathrm{S}_{T T}^{(1)}\right) \Lambda_{T}^{(1)-1 / 2} \mathrm{k}_{2} \widetilde{\mathbf{v}}_{T}^{\prime} \mathrm{S}_{T T}^{(1)} \tilde{\mathbf{V}}_{T}$, it follows from Lemma 7 and Lemma 8 that there exist constants $\mathrm{C}_{35}, \mathrm{C}_{36}>0$ such that with probability at least $1-\mathrm{c}_{35}\left\{\left(\mathbf{q}_{n} \mathbf{s}_{n}\right)^{-1}+\exp \left(-\mathrm{n} \boldsymbol{\pi}_{1} / 12\right)+\exp \left(-\mathrm{n} \boldsymbol{\pi}_{2} / 12\right)\right\}$,

$$
\begin{equation*}
\left|\widetilde{\mathbf{v}}_{T}^{\prime} \mathbf{S}_{T T}^{(1)} \check{\mathbf{v}}_{T}-\widetilde{\mathbf{v}}_{T} \Sigma_{T T}^{(1)} \check{\mathbf{V}}_{T}\right| \leq \mathrm{c}_{36}\left\{\mathbf{q}_{n}^{2} \mathbf{s}_{n}^{2} \log \left(\mathbf{q}_{n} \mathbf{s}_{n}\right) / \mathrm{n}\right\}^{1 / 2} \widetilde{\mathbf{v}}_{T}^{\prime} \mathbf{S}_{T T}^{(1)} \widetilde{\mathbf{v}}_{T} \tag{46}
\end{equation*}
$$

For the term $\check{\mathbf{V}}_{T}^{\prime} \hat{\boldsymbol{v}}_{T}^{(1)}$, using (42) again, it has the form

$$
\begin{equation*}
\widetilde{\mathbf{v}}_{T}^{\prime} \hat{\nu}_{T}^{(1)}=\tilde{\vartheta} \boldsymbol{\nu}_{T}^{(1)^{\prime}} \Sigma_{T T}^{(1)-1} \mathbf{v}_{T}^{(1)}+\mathrm{V}_{1}+\mathrm{V}_{2}, \tag{47}
\end{equation*}
$$

where $\mathrm{V}_{1}=\hat{\boldsymbol{\vartheta}} \hat{\nu}_{T}^{(1)^{\prime}} \mathbf{S}_{T T}^{(1)-1} \hat{\nu}_{T}^{(1)}-\tilde{\vartheta} \nu_{T}^{(1)^{\prime}} \Sigma_{T T}^{(1)-1} \mathbf{v}_{T}^{(1)}$ and $\mathrm{V}_{2}=-\boldsymbol{\lambda}_{n} \hat{\nu}_{T}^{(1)^{\prime}} \mathbf{S}_{T T}^{(1)-1} \hat{\Lambda}_{T}^{(1) 1 / 2} \operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right)$. Since $\left|\mathrm{V}_{1}\right| \leq|\hat{\vartheta}| \cdot\left|\hat{\nu}_{T}^{(1)^{\prime}} \mathrm{S}_{T T}^{(1)-1} \hat{\nu}_{T}^{(1)}-\mathbf{v}_{T}^{(1)^{\prime}} \Sigma_{T T}^{(1)-1} \mathbf{\nu}_{T}^{(1)}\right|+|\hat{\vartheta}-\tilde{\vartheta}| \cdot \boldsymbol{\nu}_{T}^{(1)^{\prime}} \Sigma_{T T}^{(1)-1} \mathbf{v}_{T}^{(1)}$, it follows from Lemma 4, (31), (43) and (41) that there exist universal constants $\mathrm{C}_{37}, \mathrm{C}_{38}>0$ such that with probability at least $1-\mathrm{c}_{37}\left[\left(\mathbf{q}_{n} \mathbf{s}_{n}\right)^{-1}+\{\log (\mathrm{n})\}^{-1}+\exp \left(-\mathrm{n} \boldsymbol{\pi}_{1} / 12\right)+\exp \left(-\mathrm{n} \pi_{2} / 12\right)\right]$,

$$
\begin{aligned}
\left|\mathbf{V}_{1}\right| \leq & \mathrm{c}_{38}\left[\mathbf{q}_{n} \mathbf{s}_{n} / \mathrm{n}+\{\log \log (\mathrm{n}) / \mathrm{n}\}^{1 / 2}\right]+\mathrm{c}_{38} \lambda_{n}\left\{\mathbf{v}_{T}^{(1)^{\prime}} \Sigma_{T T}^{(1)-1} \mathbf{v}_{T}^{(1)}\right\}^{1 / 2} \\
& \cdot\left[\left(\mathbf{q}_{n} \mathbf{s}_{n}\right)^{3 / 2} / \mathrm{n}+\left\{\mathbf{q}_{\mathbf{n}} \mathbf{s}_{n} \log \left(\mathbf{q}_{\mathbf{n}} \mathbf{s}_{n}\right) / \mathrm{n}\right\}^{1 / 2}+\left\{\mathbf{q}_{n} \mathbf{s}_{n} \log \log (\mathrm{n}) / \mathrm{n}\right\}^{1 / 2}\right]
\end{aligned}
$$

Since $\left|\mathbf{V}_{2}\right| \leq \boldsymbol{\lambda}_{n}\left|\nu_{T}^{(1)^{\prime}} \mathbf{S}_{T T}^{(1)-1} \hat{\Lambda}_{T}^{(1) 1 / 2} \operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right)-\boldsymbol{\nu}_{T}^{(1)^{\prime}} \Sigma_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2} \operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right)\right|+\boldsymbol{\lambda}_{n} \boldsymbol{\nu}_{T}^{(1)^{\prime}} \Sigma_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2} \operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right)$, it holds from Lemma 10, (93), and (41) that there exist constants $\boldsymbol{C}_{39}, \boldsymbol{C}_{40}>0$ such that with probability at least $1-\mathrm{c}_{39}\left[\left(\mathbf{q}_{\mathbf{n}} \mathbf{s}_{n}\right)^{-1}+\{\log (\mathrm{n})\}^{-1}+\exp \left(-\mathrm{n} \boldsymbol{\pi}_{1} / 12\right)+\exp \left(-\mathrm{n} \pi_{2} / 12\right)\right]$,

$$
\left|\mathrm{V}_{2}\right| \leq \mathrm{c}_{40}\left(\lambda_{n}^{2} \mathbf{q}_{n} \mathbf{s}_{n}\right)^{1 / 2}\left\{\mathbf{v}_{T}^{(1)^{\prime}} \Sigma_{T T}^{(1)-1} \mathbf{v}_{T}^{(1)}\right\}^{1 / 2}
$$

By combining the above two inequalities with (47), we conclude that there exist universal constants $\mathrm{C}_{41}, \mathrm{C}_{42}>0$ such that with probability at least $1-\mathrm{C}_{41}\left[\left(\mathrm{q}_{n} \mathbf{S}_{n}\right)^{-1}+\{\log (\mathrm{n})\}^{-1}+\right.$ $\left.\exp \left(-\mathrm{n} \pi_{1} / 12\right)+\exp \left(-\mathrm{n} \pi_{2} / 12\right)\right]$,

$$
\begin{equation*}
\left|\widetilde{v}_{T}^{\prime} \nu_{T}^{(1)}-\tilde{\vartheta} \nu_{T}^{(1)^{\prime}} \Sigma_{T T}^{(1)-1} \nu_{T}^{(1)}\right| \leq c_{42}\left(\lambda_{n}^{2} \mathbf{q}_{\mathbf{n}} \mathbf{s}_{n}\right)^{1 / 2}\left\{\nu_{T}^{(1)^{\prime}} \Sigma_{T T}^{(1)-1} v_{T}^{(1)}\right\}^{1 / 2} \tag{48}
\end{equation*}
$$

Moreover, using (31), (45), (46), (48), and the fact that $\lambda_{n}^{2} \mathbf{q}_{n} \mathbf{s}_{n} \boldsymbol{\nu}_{T}^{(1)^{\prime}} \Sigma_{T T}^{(1)-1} \boldsymbol{\nu}_{T}^{(1)}=\mathbf{o}(1)$, elementary calculation indicates that

$$
\begin{equation*}
2 \mathrm{a}_{n}^{1 / 2}\left(\mathrm{U}_{n}-\mathrm{b}_{n}\right)=\mathrm{o}_{p}(1) . \tag{49}
\end{equation*}
$$

For the term $\tilde{\mathbf{v}}_{T}^{\prime}\left(\hat{\boldsymbol{\mu}}_{1, T}^{(1)}-\mu_{1, T}^{(1)}\right)$, it follows from (42) and Holder's inequality that

$$
\begin{aligned}
& \left|\tilde{\mathbf{V}}_{T}^{\prime}\left(\hat{\mu}_{1, T}^{(1)}-\mu_{1, T}^{(1)}\right)\right| \leq \mathrm{k} \Lambda_{T}^{(1)-1 / 2}\left(\hat{\mu}_{1, T}^{(1)}-\mu_{1, T}^{(1)}\right) \mathbf{k}_{\infty} \quad \mathbf{q}_{n} \mathbf{s}_{n} \lambda_{\max }\left(\Lambda_{T}^{(1) 1 / 2} \mathbf{S}_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2}\right)^{1 / 2} \\
& |\hat{\vartheta}| \cdot\left\{\hat{\nu}_{T}^{(1)^{\prime}} \mathrm{S}_{T T}^{(1)-1} \hat{\nu}_{T}^{(1)}\right\}^{1 / 2}+\lambda_{n}\left\{\operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right)^{\prime} \hat{\Lambda}_{T}^{(1) 1 / 2} \mathrm{~S}_{T T}^{(1)-1} \hat{\Lambda}_{T}^{(1) 1 / 2} \operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right)\right\}^{1 / 2}
\end{aligned}
$$

Together with Lemma 4, Lemma 8, Lemma 9 and (31), it can be deduced that there exist universal constants $\mathbf{C}_{43}, \mathbf{C}_{44}>0$ such that with probability at least $1-\mathbf{C}_{43}\left[\left(\mathbf{q}_{n} \mathbf{s}_{n}\right)^{-1}+\right.$ $\left.\{\log (\mathbf{n})\}^{-1}+\exp \left(-\mathrm{n} \pi_{1} / 12\right)+\exp \left(-\mathrm{n} \boldsymbol{\pi}_{2} / 12\right)\right]$,

$$
\begin{equation*}
\left|\widetilde{v}_{T}^{\prime}\left(\hat{\mu}_{1, T}^{(1)}-\mu_{1, T}^{(1)}\right)\right| \leq c_{44}\left(\mathbf{q}_{\mathbf{n}} \mathbf{s}_{n}\right)^{1 / 2}\left\{\nu_{T}^{(1)^{\prime}} \Sigma_{T T}^{(1)-1} v_{T}^{(1)}\right\}^{-1 / 2} \mathbf{k} \Lambda_{T}^{(1)-1 / 2}\left(\hat{\mu}_{1, T}^{(1)}-\mu_{1, T}^{(1)}\right) \mathbf{k}_{\infty} \tag{50}
\end{equation*}
$$

To bound the term $\mathrm{k} \Lambda_{T}^{(1)-1 / 2}\left(\hat{\mu}_{1, T}^{(1)}-\mu_{1, T}^{(1)}\right) \mathrm{k}_{\infty}$, note that

$$
\Lambda_{T}^{(1)-1 / 2}\left(\hat{\mu}_{1, T}^{(1)}-\mu_{1, T}^{(1)}\right)\left\{\mathrm{Y}_{i}=\mathrm{y}_{i}\right\}_{i=1}^{n} \cap \mathrm{M}_{n} \sim \mathrm{~N}\left(0, \mathrm{n}_{1}^{-1} \Lambda_{T}^{(1)-1 / 2} \Sigma_{T T}^{(1)} \Lambda_{T}^{(1)-1 / 2}\right)
$$

Union bound inequality and the concentration inequality imply that for any $t \geq 0$,

$$
\text { P } \mathrm{k} \Lambda_{T}^{(1)-1 / 2}\left(\tilde{\mu}_{1, T}^{(1)}-\mu_{1, T}^{(1)}\right) \mathrm{k}_{\infty} \geq \mathrm{t}\left\{\mathrm{Y}_{i}=\mathrm{y}_{i}\right\}_{i=1}^{n} \cap \mathrm{M}_{n} \leq 2 \mathrm{q}_{n} \mathrm{~s}_{n} \exp \left\{-\left(\boldsymbol{\Pi}_{1} / 4\right) \mathrm{nt}^{2}\right\} .
$$

Plugging $\mathbf{t}=\mathbf{C}_{45}\left\{\log \left(\mathbf{q}_{\mathbf{n}} \mathbf{s}_{n}\right) / \mathbf{n}\right\}^{1 / 2}$ with $\mathbf{C}_{45}=\left(8 / \boldsymbol{\pi}_{1}\right)^{1 / 2}$ into the above yields $\mathrm{P} \mathrm{k} \Lambda_{T}^{(1)-1 / 2}\left(\hat{\boldsymbol{\mu}}_{1, T}^{(1)}-\right.$ $\left.\mu_{1, T}^{(1)}\right) \mathrm{k}_{\infty} \leq \mathrm{c}_{45}\left\{\log \left(\mathbf{q}_{n} \mathbf{s}_{n}\right) / \mathrm{n}\right\}^{1 / 2}\left\{\mathbf{Y}_{i}=\mathbf{y}_{i}\right\}_{i=1}^{n} \cap \mathrm{M}_{n} \geq 1-2\left(\mathbf{q}_{n} \mathbf{s}_{n}\right)^{-1}$. Together with Lemma 3, it can be deduced that $\mathrm{P} \mathrm{k} \Lambda_{T}^{(1)-1 / 2}\left(\hat{\mu}_{1, T}^{(1)}-\mu_{1, T}^{(1)}\right) \mathrm{k}_{\infty} \leq \mathrm{c}_{45}\left\{\log \left(\mathbf{q}_{\mathbf{n}} \mathbf{s}_{n}\right) / \mathrm{n}\right\}^{1 / 2} \geq$ $1-2\left\{\left(\mathrm{q}_{n} \mathbf{s}_{n}\right)^{-1}+\exp \left(-\mathrm{n} \boldsymbol{\pi}_{1} / 12\right)+\exp \left(-\mathrm{n} \boldsymbol{\pi}_{2} / 12\right)\right\}$. Together with (50), there exist universal constants $\mathrm{C}_{46}, \mathrm{C}_{47}>0$ such that with probability at least $1-\mathrm{C}_{46}\left[\left(\mathrm{q}_{n} \mathbf{s}_{n}\right)^{-1}+\{\log (\mathrm{n})\}^{-1}+\right.$ $\left.\exp \left(-\mathrm{n} \pi_{1} / 12\right)+\exp \left(-\mathrm{n} \pi_{2} / 12\right)\right]$,

$$
\left|\check{v}_{T}^{\prime}\left(\hat{\mu}_{1, T}^{(1)}-\mu_{1, T}^{(1)}\right)\right| \leq c_{47}\left\{v_{T}^{(1)^{\prime}} \Sigma_{T T}^{(1)-1} v_{T}^{(1)}\right\}^{-1 / 2}\left\{\mathrm{q}_{\mathbf{n}} \mathrm{s}_{n} \log \left(\mathrm{q}_{\mathbf{n}} \mathrm{s}_{n}\right) / \mathrm{n}\right\}^{1 / 2}
$$

Together with (31), (45), (46), (48), and conditions (C2)-(C5), it is seen that $4 \mathrm{a}_{n} \mathrm{X}_{n}=$ $\mathbf{o}_{p}(1)$. Together with (49), (41), (40), and Lemma 12, it can be concluded that

$$
\begin{equation*}
\Omega_{1} / \Omega_{1}^{*} \xrightarrow{p} 1, \quad \Omega_{1}^{*} \rightarrow 0 . \tag{51}
\end{equation*}
$$

Similar argument leads to $\Omega_{2} / \Omega_{2}^{*} \xrightarrow{p} 1, \Omega_{2}^{*} \rightarrow 0$. Together with (38), (39), and (51), it holds that $\mathrm{R}^{\diamond}(\hat{\mathbf{V}}) / \mathrm{R}^{\circ}\left(\boldsymbol{\beta}^{(1)}\right) \xrightarrow{p} 1, \mathrm{R}^{\circ}\left(\boldsymbol{\beta}^{(1)}\right) \rightarrow 0$, which completes the proof.

Proof of Corollary 1: It follows directly from Theorems 1 and 2.
In the next section, we present all the auxiliary lemmas with their proofs.

3 Auxiliary lemmas with their proofs

Lemma 1. Assume the following conditions (a)-(b):
(a) $\mathrm{C}_{1} \leq \lambda_{\min }\left(\Lambda^{\dagger 1 / 2} \Sigma \Lambda^{\dagger 1 / 2}\right) \leq \lambda_{\max }\left(\Lambda^{\dagger 1 / 2} \Sigma \Lambda^{\dagger 1 / 2}\right) \leq \mathrm{C}_{2}$, $\mathrm{C}_{1} \leq \lambda_{\min }\left(\Lambda^{(1)-1 / 2} \Sigma^{(1)} \Lambda^{(1)-1 / 2}\right) \leq \lambda_{\max }\left(\Lambda^{(1)-1 / 2} \Sigma^{(1)} \Lambda^{(1)-1 / 2}\right) \leq \mathrm{C}_{2}$, for some universal constants $0<\mathrm{c}_{1}<\mathrm{c}_{2}$.
(b) $\mathrm{P} \underset{j \in T^{*}}{\mathrm{P}} \underset{k=s_{\mathrm{n}}+1}{\infty} \omega_{j k} \beta_{j k}^{* 2}=\mathrm{o}\left(\min _{j \in T^{*}} \mathrm{P}_{\substack{s_{n} \\ k=1}} \omega_{j k} \beta_{j k}^{* 2}\right)$.

Then we have the following properties:

1) $\mathrm{N} \subseteq \mathrm{N}^{*}$ and $\mathrm{T}^{*} \subseteq \mathrm{~T}$.
2) $\Delta^{(1) 2}=\left\{1+\mathrm{o}\left(\mathrm{r}_{n}^{-1}\right)+\mathrm{o}\left(\mathrm{r}_{n}^{-1 / 2} \boldsymbol{\alpha}_{n}^{1 / 2}\right)\right\} \Delta^{2}$,
where the parameter $\boldsymbol{\alpha}_{n}=\left(\boldsymbol{\beta}_{T}^{*(1)^{\prime}} \Sigma_{T T}^{(1,2)} \Sigma_{T T}^{(2) \dagger} \Sigma_{T T}^{(2,1)} \boldsymbol{\beta}_{T}^{*(1)}\right) /\left(\boldsymbol{\beta}_{T}^{*(1)^{\prime}} \Sigma_{T T}^{(1)} \boldsymbol{\beta}_{T}^{*(1)}\right) \leq 1$.

Proof of Lemma 1: First of all, we note that the equation $\Sigma \beta^{*}=\nu$ is equivalent to

$$
\Sigma_{T T}^{(1)} \quad \Sigma_{T N}^{(1)} \quad \mathbb{\Sigma}_{T T}^{(1,2)} \quad \Sigma_{T N}^{(1,2)}
$$

Together with the triangle inequality, we have

$$
\begin{aligned}
& \mathrm{k} \Lambda_{N}^{(1)-1 / 2}\left(\Sigma_{N N}^{(1)}-\Sigma_{N T}^{(1)} \Sigma_{T T}^{(1)-1} \Sigma_{T N}^{(1)}\right) \beta_{N}^{*(1)} \mathrm{k}_{2} \\
& \leq \mathrm{k} \Lambda_{N}^{(1)-1 / 2} \Sigma_{N T}^{(1)} \Sigma_{T T}^{(1)-1} \Sigma_{T T}^{(1,2)} \beta_{T}^{*(2)} \mathrm{k}_{2}+\mathrm{k} \Lambda_{N}^{(1)-1 / 2} \Sigma_{N T}^{(1,2)} \beta_{T}^{*(2)} \mathrm{k}_{2}+ \\
& \mathrm{k} \Lambda_{N}^{(1)-1 / 2} \Sigma_{N T}^{(1)} \Sigma_{T T}^{(1)-1} \Sigma_{T N}^{(1,2)} \beta_{N}^{*(2)} \mathrm{k}_{2}+\mathrm{k} \Lambda_{N}^{(1)-1 / 2} \Sigma_{N N}^{(1,2)} \beta_{N}^{*(2)} \mathrm{k}_{2},
\end{aligned}
$$

which further implies that

$$
\begin{aligned}
& \mathrm{k} \Lambda_{N}^{(1)-1 / 2}\left(\Sigma_{N N}^{(1)}-\Sigma_{N T}^{(1)} \Sigma_{T T}^{(1)-1} \Sigma_{T N}^{(1)}\right) \mathrm{\beta}_{N}^{*(1)} \mathbf{k}_{2}^{2}
\end{aligned}
$$

$$
\begin{align*}
& \mathrm{k} \Lambda_{N}^{(1)-1 / 2} \Sigma_{N T}^{(1)} \Sigma_{T T}^{(1)-1} \Sigma_{T N}^{(1,2)} \beta_{N}^{*(2)} \mathrm{k}_{2}^{2}+\mathrm{k} \Lambda_{N}^{(1)-1 / 2} \Sigma_{N N}^{(1,2)} \beta_{N}^{*(2)} \mathrm{k}_{2}^{2} . \tag{54}
\end{align*}
$$

Based on condition (a) and Lemma 14, it is trivial to show that

$$
\begin{align*}
& \lambda_{\min } \Lambda_{N}^{(1)-1 / 2}\left(\Sigma_{N N}^{(1)}-\Sigma_{N T}^{(1)} \Sigma_{T T}^{(1)-1} \Sigma_{T N}^{(1)}\right) \Lambda_{N}^{(1)-1 / 2} \\
= & \lambda_{\max }^{-1} \Lambda_{N}^{(1) 1 / 2}\left(\Sigma_{N N}^{(1)}-\Sigma_{N T}^{(1)} \Sigma_{T T}^{(1)-1} \Sigma_{T N}^{(1)}\right)^{-1} \Lambda_{N}^{(1) 1 / 2} \geq \mathrm{c}_{1} . \tag{55}
\end{align*}
$$

for the universal constant $\mathrm{C}_{1}>0$ defined in condition (a). Hence, for the term $\mathrm{k} \Lambda_{N}^{(1)-1 / 2}\left(\Sigma_{N N}^{(1)}-\right.$ $\left.\Sigma_{N T}^{(1)} \Sigma_{T T}^{(1)-1} \Sigma_{T N}^{(1)}\right) \beta_{N}^{*(1)} \mathrm{k}_{2}^{2}$, we have

$$
\begin{align*}
& \mathrm{k} \Lambda_{N}^{(1)-1 / 2}\left(\Sigma_{N N}^{(1)}-\Sigma_{N T}^{(1)} \Sigma_{T T}^{(1)-1} \Sigma_{T N}^{(1)}\right) \mathrm{\beta}_{N}^{*(1)} \mathrm{k}_{2}^{2} \\
\geq & \mathrm{c}_{1} \lambda_{\max } \Lambda_{N}^{(1) 1 / 2}\left(\Sigma_{N N}^{(1)}-\Sigma_{N T}^{(1)} \Sigma_{T T}^{(1)-1} \Sigma_{T N}^{(1)}\right)^{-1} \Lambda_{N}^{(1) 1 / 2} \cdot\left\{\left(\Sigma_{N N}^{(1)}-\Sigma_{N T}^{(1)} \Sigma_{T T}^{(1)-1} \Sigma_{T N}^{(1)}\right) \beta_{N}^{*(1)}\right\}^{\prime} \\
& \cdot \Lambda_{N}^{(1)-1 / 2} \Lambda_{N}^{(1)-1 / 2}\left\{\left(\Sigma_{N N}^{(1)}-\Sigma_{N T}^{(1)} \Sigma_{T T}^{(1)-1} \Sigma_{T N}^{(1)}\right) \boldsymbol{\beta}_{N}^{*(1)}\right\} \\
\geq & \mathrm{c}_{1}\left(\Lambda_{N}^{(1) 1 / 2} \boldsymbol{\beta}_{N}^{*(1)}\right)^{\prime}\left\{\Lambda_{N}^{(1)-1 / 2}\left(\Sigma_{N N}^{(1)}-\Sigma_{N T}^{(1)} \Sigma_{T T}^{(1)-1} \Sigma_{T N}^{(1)}\right) \Lambda_{N}^{(1)-1 / 2}\right\}\left(\Lambda_{N}^{(1) 1 / 2} \beta_{N}^{*(1)}\right) \\
\geq & \mathrm{C}_{1}^{2} \mathrm{k} \Lambda_{N}^{(1) 1 / 2} \boldsymbol{\beta}_{N}^{*(1)} \mathrm{k}_{2}^{2}, \tag{56}
\end{align*}
$$

where the first inequality is by (55), and the last inequality is also based on (55). According
to condition (a) and Lemma 14 again, we have

$$
\begin{align*}
& \lambda_{\min } \Lambda_{N}^{(1) 1 / 2} \Sigma_{N N}^{(1)-1} \Lambda_{N}^{(1) 1 / 2}=\lambda_{\max }^{-1} \Lambda_{N}^{(1)-1 / 2} \Sigma_{N N}^{(1)} \Lambda_{N}^{(1)-1 / 2} \geq \mathrm{c}_{2}^{-1}, \tag{57}\\
& \lambda_{\min } \Lambda_{T}^{(1)-1 / 2} \Sigma_{T T}^{(1)} \Lambda_{T}^{(1)-1 / 2} \geq \mathrm{c}_{1}, \tag{58}\\
& \lambda_{\max } \Lambda_{T}^{(1)-1 / 2} \Sigma_{T N}^{(1)} \Sigma_{N N}^{(1)-1} \Sigma_{N T}^{(1)} \Lambda_{T}^{(1)-1 / 2} \leq \lambda_{\max } \Lambda_{T}^{(1)-1 / 2} \Sigma_{T T}^{(1)} \Lambda_{T}^{(1)-1 / 2} \leq \mathrm{c}_{2}, \tag{59}\\
& \lambda_{\max } \Lambda_{T}^{(2) \dagger 1 / 2} \Sigma_{T T}^{(2,1)} \Sigma_{T T}^{(1)-1} \Sigma_{T T}^{(1,2)} \Lambda_{T}^{(2) \dagger 1 / 2} \leq \lambda_{\max } \Lambda_{T}^{(2) \dagger 1 / 2} \Sigma_{T T}^{(2)} \Lambda_{T}^{(2) \dagger 1 / 2} \leq \mathrm{c}_{2}, \tag{60}
\end{align*}
$$

for the universal constants C_{1} and C_{2} defined in condition (a). Thus, for the term $\mathrm{k} \Lambda_{N}^{(1)-1 / 2} \Sigma_{N T}^{(1)} \Sigma_{T T}^{(1)-1} \Sigma_{T T}^{(1,2)} \beta_{T}^{*(2)} \mathrm{k}_{2}^{2}$, we have

$$
\begin{aligned}
& \mathrm{k} \Lambda_{N}^{(1)-1 / 2} \Sigma_{N T}^{(1)} \Sigma_{T T}^{(1)-1} \Sigma_{T T}^{(1,2)} \beta_{T}^{*(2)} \mathrm{k}_{2}^{2} \\
\leq & \mathrm{c}_{2} \lambda_{\min } \Lambda_{N}^{(1) 1 / 2} \Sigma_{N N}^{(1)-1} \Lambda_{N}^{(1) 1 / 2}\left(\Sigma_{N T}^{(1)} \Sigma_{T T}^{(1)-1} \Sigma_{T T}^{(1,2)} \beta_{T}^{*(2)}\right)^{\prime}\left(\Lambda_{N}^{(1)-1 / 2} \Lambda_{N}^{(1)-1 / 2}\right)\left(\Sigma_{N T}^{(1)} \Sigma_{T T}^{(1)-1} \Sigma_{T T}^{(1,2)} \beta_{T}^{*(2)}\right) \\
\leq & \mathrm{c}_{2}\left(\Sigma_{N T}^{(1)} \Sigma_{T T}^{(1)-1} \Sigma_{T T}^{(1,2)} \beta_{T}^{*(2)}\right)^{\prime} \Sigma_{N N}^{(1)-1}\left(\Sigma_{N T}^{(1)} \Sigma_{T T}^{(1)-1} \Sigma_{T T}^{(1,2)} \beta_{T}^{*(2)}\right) \\
\leq & \mathrm{c}_{2} \lambda_{\max } \Lambda_{T}^{(1)-1 / 2} \Sigma_{T N}^{(1)} \Sigma_{N N}^{(1)-1} \Sigma_{N T}^{(1)} \Lambda_{T}^{(1)-1 / 2} \mathrm{k} \Lambda_{T}^{(1) 1 / 2} \Sigma_{T T}^{(1)-1} \Sigma_{T T}^{(1,2)} \beta_{T}^{*(2)} \mathrm{k}_{2}^{2} \\
\leq & \mathrm{C}_{2}^{2}\left(\Sigma_{T T}^{(1)-1} \Sigma_{T T}^{(1,2)} \beta_{T}^{*(2)}\right)^{\prime}\left(\Lambda_{T}^{(1) 1 / 2} \Lambda_{T}^{(1) 1 / 2}\right)\left(\Sigma_{T T}^{(1)-1} \Sigma_{T T}^{(1,2)} \beta_{T}^{*(2)}\right) \\
\leq & \mathrm{C}_{2}^{2} \mathrm{C}_{1}^{-1} \lambda_{\min } \Lambda_{T}^{(1)-1 / 2} \Sigma_{T T}^{(1)} \Lambda_{T}^{(1)-1 / 2}\left(\Sigma_{T T}^{(1)-1} \Sigma_{T T}^{(1,2)} \beta_{T}^{*(2)}\right)^{\prime}\left(\Lambda_{T}^{(1) 1 / 2} \Lambda_{T}^{(1) 1 / 2}\right)\left(\Sigma_{T T}^{(1)-1} \Sigma_{T T}^{(1,2)} \beta_{T}^{*(2)}\right) \\
\leq & \mathrm{C}_{2}^{2} \mathrm{c}_{1}^{-1} \lambda_{\max } \Lambda_{T}^{(2)+1 / 2} \Sigma_{T T}^{(2,1)} \Sigma_{T T}^{(1)-1} \Sigma_{T T}^{(1,2)} \Lambda_{T}^{(2)+1 / 2} \mathrm{k} \Lambda_{T}^{(2) 1 / 2} \beta_{T}^{*(2)} \mathrm{k}_{2}^{2} \\
\leq & \mathrm{C}_{2}^{3} \mathrm{C}_{1}^{-1} \mathrm{k} \Lambda_{T}^{(2) 1 / 2} \beta_{T}^{*(2)} \mathrm{k}_{2}^{2}
\end{aligned}
$$

where the first inequality is by (57), the fourth inequality follows from (59), the fifth inequality is based on (58), and the last inequality is according to (60). Likewise, for the term $\mathrm{k} \Lambda_{N}^{(1)-1 / 2} \Sigma_{N T}^{(1,2)} \boldsymbol{\beta}_{T}^{*(2)} \mathbf{k}_{2}^{2}$, we have

$$
\mathrm{k} \Lambda_{N}^{(1)-1 / 2} \Sigma_{N T}^{(1,2)} \mathrm{\beta}_{T}^{*(2)} \mathrm{k}_{2}^{2} \leq \mathrm{c}_{2}^{2} \mathrm{k} \Lambda_{T}^{(2) 1 / 2} \mathbf{\beta}_{T}^{*(2)} \mathrm{k}_{2}^{2} .
$$

In a similar fashion, for the term $\mathrm{k} \Lambda_{N}^{(1)-1 / 2} \Sigma_{N T}^{(1)} \Sigma_{T T}^{(1)-1} \Sigma_{T N}^{(1,2)} \beta_{N}^{*(2)} \mathrm{k}_{2}^{2}$, we have

$$
\mathrm{k} \Lambda_{N}^{(1)-1 / 2} \Sigma_{N T}^{(1)} \Sigma_{T T}^{(1)-1} \Sigma_{T N}^{(1,2)} \beta_{N}^{*(2)} \mathrm{k}_{2}^{2} \leq \mathrm{c}_{2}^{3} \mathrm{c}_{1}^{-1} \mathrm{k} \Lambda_{N}^{(2) 1 / 2} \beta_{N}^{*(2)} \mathrm{k}_{2}^{2} .
$$

In addition, for the term $\mathrm{k} \Lambda_{N}^{(1)-1 / 2} \Sigma_{N N}^{(1,2)} \beta_{N}^{*(2)} \mathbf{k}_{2}^{2}$, one has

$$
\begin{aligned}
& \mathrm{k} \Lambda_{N}^{(1)-1 / 2} \Sigma_{N N}^{(1,2)} \boldsymbol{\beta}_{N}^{*(2)} \mathrm{k}_{2}^{2}=\left(\Sigma_{N N}^{(1,2)} \boldsymbol{\beta}_{N}^{*(2)}\right)^{\prime}\left(\Lambda_{N}^{(1)-1 / 2} \Lambda_{N}^{(1)-1 / 2}\right)\left(\Sigma_{N N}^{(1,2)} \boldsymbol{\beta}_{N}^{*(2)}\right) \\
& \leq \mathrm{c}_{2} \lambda_{\min } \Lambda_{N}^{(1) 1 / 2} \Sigma_{N N}^{(1)-1} \Lambda_{N}^{(1) 1 / 2}\left(\Sigma_{N N}^{(1,2)} \boldsymbol{\beta}_{N}^{*(2)}\right)^{\prime}\left(\Lambda_{N}^{(1)-1 / 2} \Lambda_{N}^{(1)-1 / 2}\right)\left(\Sigma_{N N}^{(1,2)} \boldsymbol{\beta}_{N}^{*(2)}\right) \\
& \leq \mathrm{C}_{2}\left(\Lambda_{N}^{(2) 1 / 2} \beta_{N}^{*(2)}\right)^{\prime}\left(\Lambda_{N}^{(2) \dagger 1 / 2} \Sigma_{N N}^{(2,1)} \Sigma_{N N}^{(1)-1} \Sigma_{N N}^{(1,2)} \Lambda_{N}^{(2) \dagger 1 / 2}\right)\left(\Lambda_{N}^{(2) 1 / 2} \beta_{N}^{*(2)}\right) \\
& \leq \mathrm{c}_{2} \lambda_{\max } \Lambda_{N}^{(2) \dagger 1 / 2} \Sigma_{N N}^{(2,1)} \Sigma_{N N}^{(1)-1} \Sigma_{N N}^{(1,2)} \Lambda_{N}^{(2) \dagger 1 / 2} \mathrm{k} \Lambda_{N}^{(2) 1 / 2} \beta_{N}^{*(2)} \mathrm{k}_{2}^{2} \\
& \leq \mathrm{C}_{2} \lambda_{\max } \Lambda_{N}^{(2) \dagger 1 / 2} \Sigma_{N N}^{(2)} \Lambda_{N}^{(2) \dagger 1 / 2} \mathrm{k} \Lambda_{N}^{(2) 1 / 2} \boldsymbol{\beta}_{N}^{*(2)} \mathrm{k}_{2}^{2} \\
& \text { (} 1 \text { 咅) }
\end{aligned}
$$

where the third equality follows from $\mathbf{T}^{*} \subseteq \mathbf{T}$. For the term $\beta_{T}^{*(2)^{\prime}} \Sigma_{T T}^{(2)} \beta_{T}^{*(2)}$, we have

$$
\begin{aligned}
& \boldsymbol{\beta}_{T}^{*(2)^{\prime}} \Sigma_{T T}^{(2)} \boldsymbol{\beta}_{T}^{*(2)} \leq \lambda_{\max } \Lambda_{T}^{(2)+1 / 2} \Sigma_{T T}^{(2)} \Lambda_{T}^{(2)+1 / 2} \mathrm{k} \Lambda_{T}^{(2) 1 / 2} \boldsymbol{\beta}_{T}^{*(2)} \mathbf{k}_{2}^{2}
\end{aligned}
$$

$$
\begin{align*}
& \leq \mathrm{c}_{2} \mathrm{r}_{n}^{-1} \mathrm{O}\left({ }_{j \in T^{*}} \mathrm{X}^{\times} \omega_{j k} \beta_{j k}^{* 2}\right) \leq \lambda_{\min } \Lambda_{T^{*}}^{\dagger 1 / 2} \Sigma_{T^{*} T^{*}} \Lambda_{T^{*}}^{\dagger 1 / 2}\left(\beta_{T^{*}}^{*} \Lambda_{T^{*}}^{1 / 2} \Lambda_{T^{*}}^{1 / 2} \beta_{T^{*}}^{*}\right) \mathbf{O}\left(\mathrm{r}_{n}^{-1}\right) \\
& \leq\left(\beta_{T^{*}}^{*^{\prime}} \Sigma_{T^{*} T^{*}} \beta_{T^{*}}^{*}\right) \mathrm{O}\left(\mathrm{r}_{n}^{-1}\right) \leq \Delta^{2} \mathrm{O}\left(\mathrm{r}_{n}^{-1}\right), \tag{63}
\end{align*}
$$

where the last inequality is by (62). Regarding the term $\beta_{T}^{*(1)^{\prime}} \Sigma_{T T}^{(1,2)} \beta_{T}^{*(2)}$, one has

$$
\left|\mathrm{\beta}_{T}^{*(1)^{\prime}} \Sigma_{T T}^{(1,2)} \boldsymbol{\beta}_{T}^{*(2)}\right| \leq \mathrm{k} \Lambda_{T}^{(2) \dagger 1 / 2} \Sigma_{T T}^{(2,1)} \boldsymbol{\beta}_{T}^{*(1)} \mathrm{k}_{2} \mathrm{k} \Lambda_{T}^{(2) 1 / 2} \beta_{T}^{*(2)} \mathrm{k}_{2}
$$

For the term $\mathrm{k} \Lambda_{T}^{(2) \dagger 1 / 2} \Sigma_{T T}^{(2,1)} \beta_{T}^{*(1)} \mathrm{k}_{2}$, we have

$$
\begin{aligned}
& \mathrm{k} \Lambda_{T}^{(2) \dagger 1 / 2} \Sigma_{T T}^{(2,1)} \boldsymbol{\beta}_{T}^{*(1)} \mathrm{k}_{2}^{2} \lesssim \beta_{T}^{*(1)^{\prime}}\left(\Sigma_{T T}^{(1,2)} \Sigma_{T T}^{(2) \dagger} \Sigma_{T T}^{(2,1)}\right) \boldsymbol{\beta}_{T}^{*(1)} \lesssim \boldsymbol{\alpha}_{n} \beta_{T}^{*(1)^{\prime}} \Sigma_{T T}^{(1)} \boldsymbol{\beta}_{T}^{*(1)} \\
\lesssim & \boldsymbol{\alpha}_{n} \mathrm{k} \Lambda_{T^{*}}^{1 / 2} \boldsymbol{\beta}_{T^{*}}^{*} \mathrm{k}_{2}^{2} \lesssim \boldsymbol{\alpha}_{n} \boldsymbol{\beta}_{T^{*}}^{*^{\prime}} \Sigma_{T^{*} T^{*}} \beta_{T^{*}}^{*} \lesssim \boldsymbol{\alpha}_{n} \Delta^{2},
\end{aligned}
$$

where the last inequality is by (62). For the term $\mathrm{k} \Lambda_{T}^{(2) 1 / 2} \beta_{T}^{*(2)} \mathrm{k}_{2}$, one has

$$
\mathrm{k} \Lambda_{T}^{(2) 1 / 2} \beta_{T}^{*(2)} \mathrm{k}_{2}^{2} \lesssim \mathrm{k} \Lambda_{T^{*}}^{(2) 1 / 2} \beta_{T^{*}}^{*(2)} \mathrm{k}_{2}^{2} \lesssim \mathrm{O}\left(\min _{j \in T^{*}} \mathrm{X}_{k=1}^{\mathrm{n}^{n}} \omega_{j k} \beta_{j k}^{* 2}\right) \lesssim{ }_{j \in T^{*} k=1}^{\mathrm{X}} \omega_{j k} \beta_{j k}^{* 2} \mathrm{o}\left(\mathrm{r}_{n}^{-1}\right) \lesssim \Delta^{2} \mathrm{o}\left(\mathrm{r}_{n}^{-1}\right)
$$

To this end, based on the above three inequalities, we have

$$
\begin{equation*}
\left|\boldsymbol{\beta}_{T}^{*(1)^{\prime}} \Sigma_{T T}^{(1,2)} \boldsymbol{\beta}_{T}^{*(2)}\right| \lesssim \Delta^{2} \mathbf{o}\left(\mathbf{r}_{n}^{-1 / 2} \boldsymbol{\alpha}_{n}^{1 / 2}\right) \tag{64}
\end{equation*}
$$

For the term $\beta_{T}^{*(1)^{\prime}} \Sigma_{T T}^{(1)} \beta_{T}^{*(1)}$, we have

$$
\begin{aligned}
\boldsymbol{\beta}_{T}^{*(1)^{\prime}} \Sigma_{T T}^{(1)} \boldsymbol{\beta}_{T}^{*(1)} & =\boldsymbol{\beta}_{T}^{(1)^{\prime}} \Sigma_{T T}^{(1)} \boldsymbol{\beta}_{T}^{(1)}-\left(\boldsymbol{\beta}_{T}^{*(1)}-\boldsymbol{\beta}_{T}^{(1)}\right)^{\prime} \Sigma_{T T}^{(1)}\left(\boldsymbol{\beta}_{T}^{*(1)}-\boldsymbol{\beta}_{T}^{(1)}\right)+2 \boldsymbol{\beta}_{T}^{*(1)^{\prime}} \Sigma_{T T}^{(1)}\left(\boldsymbol{\beta}_{T}^{*(1)}-\boldsymbol{\beta}_{T}^{(1)}\right) \\
& =\boldsymbol{\beta}_{T}^{(1)^{\prime}} \Sigma_{T T}^{(1)} \boldsymbol{\beta}_{T}^{(1)}-\boldsymbol{\beta}_{T}^{*(2)^{\prime}} \Sigma_{T T}^{(2,1)} \Sigma_{T T}^{(1)-1} \Sigma_{T T}^{(1,2)} \boldsymbol{\beta}_{T}^{*(2)}-2 \boldsymbol{\beta}_{T}^{*(1)^{\prime}} \Sigma_{T T}^{(1,2)} \boldsymbol{\beta}_{T}^{*(2)} \\
& =\boldsymbol{\beta}_{T}^{(1)^{\prime}} \Sigma_{T T}^{(1)} \boldsymbol{\beta}_{T}^{(1)}+\mathbf{O}(1) \boldsymbol{\beta}_{T}^{*(2)^{\prime}} \Sigma_{T T}^{(2)} \boldsymbol{\beta}_{T}^{*(2)}-2 \boldsymbol{\beta}_{T}^{*()^{\prime} \Sigma^{\prime}} \Sigma_{T T}^{(1,2)} \boldsymbol{\beta}_{T}^{*(2)} \\
& =\boldsymbol{\beta}_{T}^{(1)^{\prime}} \Sigma_{T T}^{(1)} \boldsymbol{\beta}_{T}^{(1)}+\Delta^{2} \mathbf{o}\left(\mathbf{r}_{n}^{-1}+\mathbf{r}_{n}^{-1 / 2} \boldsymbol{\alpha}_{n}^{1 / 2}\right),
\end{aligned}
$$

where the second equality follows from (61), and the last equality is based on (63) and (64). Together with (64), (63) and (62), it can be concluded that $\Delta^{(1) 2}=\left\{1+\mathbf{o}\left(\mathrm{r}_{n}^{-1}\right)+\right.$ $\left.\mathrm{o}\left(\mathrm{r}_{n}^{-1 / 2} \boldsymbol{\alpha}_{n}^{1 / 2}\right)\right\} \Delta^{2}$, which completes the proof.

Lemma 2. Assume the invertibility of $\mathrm{S}_{T T}^{(1)}$ and consider the following optimization problem:

$$
\min _{v_{T} \in \mathbb{R}^{\text {an }} \mathrm{s}_{\mathrm{n}}} \frac{\mathrm{~h}_{1}}{2} \mathrm{v}_{T}^{\prime} \mathrm{S}_{T T}^{(1)}+\frac{\mathrm{n}_{1} \mathrm{n}_{2}}{\mathrm{n}(\mathrm{n}-2)} \hat{\boldsymbol{v}}_{T}^{(1)} \hat{\nu}_{T}^{(1)^{\prime}} \mathbf{v}_{T}-\frac{\mathrm{n}_{1} \mathrm{n}_{2}}{\mathrm{n}(\mathrm{n}-2)} \mathrm{v}_{T}^{\prime} \hat{\boldsymbol{v}}_{T}^{(1)}+\lambda_{n}\left(\hat{\Lambda}_{T}^{(1) 1 / 2} \mathbf{v}_{T}\right)^{\prime} \operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right)^{\mathbf{i}}
$$

where $\mathrm{v}_{T}=\left(\mathrm{v}_{1}^{\prime}, \ldots, \mathrm{v}_{q_{\mathrm{n}}}^{\prime}\right)^{\prime}$ with sub-vectors $\mathrm{v}_{j}=\left(\mathrm{v}_{j 1}, \ldots, \mathrm{v}_{j s_{\mathrm{n}}}\right)^{\prime} \in \mathbb{R}^{s_{\mathrm{n}}}$. Let $\tilde{\mathrm{v}}_{T}$ be the solution of this optimization problem where $\tilde{\mathbf{v}}_{T}=\left(\widetilde{\mathrm{V}}_{1}^{\prime}, \ldots, \widetilde{\mathrm{V}}_{q_{\mathrm{n}}}^{\prime}\right)^{\prime}$ with sub-vectors $\tilde{\mathrm{v}}_{j}=$ $\left(\tilde{\mathbf{v}}_{j 1}, \ldots, \tilde{\mathrm{v}}_{j s_{\mathrm{n}}}\right)^{\prime} \in \mathbb{R}^{s_{\mathrm{n}}}$, then we have:

$$
\begin{aligned}
\tilde{\mathrm{v}}_{T}= & \left\{\mathrm{n}_{1} \mathrm{n}_{2} \mathrm{n}^{-1}(\mathrm{n}-2)^{-1}\right\}\left\{1+\lambda_{n} \hat{\nu}_{T}^{(1)^{\prime}} \mathrm{S}_{T T}^{(1)-1} \hat{\Lambda}_{T}^{(1) 1 / 2} \operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right)\right\} \\
& \cdot 1+\left\{\mathrm{n}_{1} \mathrm{n}_{2} \mathrm{n}^{-1}(\mathrm{n}-2)^{-1}\right\} \hat{\nu}_{T}^{(1)^{\prime}} \mathrm{S}_{T T}^{(1)-1} \hat{\nu}_{T}^{(1)-1} \mathrm{~S}_{T T}^{(1)-1} \hat{\nu}_{T}^{(1)}-\lambda_{n} \mathrm{~S}_{T T}^{(1)-1} \hat{\Lambda}_{T}^{(1) 1 / 2} \operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right) .
\end{aligned}
$$

Proof of Lemma 2: The proof is analogous to that of Lemma 16.

Lemma 3. Define the events M_{n} and M_{n}^{*} as

$$
\begin{aligned}
& M_{n}=\left\{\pi_{1} / 2 \leq n_{1} / n \leq 3 \pi_{1} / 2\right\} \cap\left\{\pi_{2} / 2 \leq n_{2} / n \leq 3 \pi_{2} / 2\right\} \\
& M_{n}^{*}=\left\{\pi_{1} \Pi_{2} / 4 \leq n_{1} n_{2} / n^{2} \leq 9 \pi_{1} \Pi_{2} / 4\right\}
\end{aligned}
$$

Then we have the following properties:

1) $\mathbf{P}\left(\mathrm{M}_{n}\right) \geq 1-2 \exp \left(-\mathrm{n} \pi_{1} / 12\right)-2 \exp \left(-\mathrm{n} \pi_{2} / 12\right)$.
2) $\mathrm{P}\left(\mathrm{M}_{n}^{*}\right) \geq 1-2 \exp \left(-\mathrm{n} \pi_{1} / 12\right)-2 \exp \left(-\mathrm{n} \pi_{2} / 12\right)$.

Proof of Lemma 3: First of all, note that $n_{1} \sim \operatorname{Binomial}\left(\mathrm{n}, \mathrm{m}_{1}\right)$. Invoking the chernoff tail bounds for binomial random variables, we have that for any $\delta \in[0,1]$,

$$
\begin{aligned}
& P\left\{n_{1} \geq(1+\delta) n \pi_{1}\right\} \leq \exp \left(-n \pi_{1} \delta^{2} / 3\right), \\
& P\left\{n_{1} \leq(1-\delta) n \pi_{1}\right\} \leq \exp \left(-n \pi_{1} \delta^{2} / 3\right) .
\end{aligned}
$$

Then, we substitute $\delta=1 / 2$ into the above two inequalities to obtain

$$
\begin{align*}
& \mathrm{P}\left(\mathrm{n}_{1} / \mathrm{n} \geq 3 \pi_{1} / 2\right) \leq \exp \left(-\mathrm{n} \pi_{1} / 12\right), \\
& \mathrm{P}\left(\mathrm{n}_{1} / \mathrm{n} \leq \pi_{1} / 2\right) \leq \exp \left(-\mathrm{n} \pi_{1} / 12\right) \tag{65}
\end{align*}
$$

Accordingly, we have

$$
\begin{aligned}
\mathrm{P}\left(\pi_{1} / 2 \leq n_{1} / \mathrm{n} \leq 3 \pi_{1} / 2\right) & =1-P\left(n_{1} / n>3 \pi_{1} / 2\right)-P\left(n_{1} / n<\pi_{1} / 2\right) \\
& \geq 1-2 \exp \left(-\mathrm{n} \pi_{1} / 12\right),
\end{aligned}
$$

where the last inequality is by (65). By symmetry, one has

$$
\mathrm{P}\left(\boldsymbol{\pi}_{2} / 2 \leq \mathrm{n}_{2} / \mathrm{n} \leq 3 \Pi_{2} / 2\right) \geq 1-2 \exp \left(-\mathrm{n} \pi_{2} / 12\right)
$$

To this end, based on the above two inequalities, we can deduce that $\mathrm{P}\left(\mathrm{M}_{n}\right) \geq 1-$ $2 \exp \left(-\mathrm{n} \pi_{1} / 12\right)-2 \exp \left(-\mathrm{n} \pi_{2} / 12\right)$, which completes the proof of 1$)$. Property 2) follows from the fact that $\mathrm{M}_{n} \subseteq \mathrm{M}_{n}^{*}$.

Lemma 4. For any $\% \in\left(\mathrm{e}^{-n / 100}, 1 / 100\right)$, define the event $\mathrm{M}_{3 n}$ (\% as

$$
\begin{aligned}
\mathbf{M}_{3 n}(\%= & \hat{\nu}_{T}^{(1)^{\prime}} \mathbf{S}_{T T}^{(1)-1} \hat{\boldsymbol{v}}_{T}^{(1)}-\mathbf{v}_{T}^{(1)^{\prime}} \Sigma_{T T}^{(1)-1} \mathbf{v}_{T}^{(1)} \lesssim \mathbf{q}_{n} \mathbf{s}_{n} / \mathrm{n}+\log \left(\%^{1}\right) / \mathrm{n} \\
& +\mathbf{q}_{n} \mathbf{s}_{n} / \mathrm{n}+\left\{\log \left(\%^{1}\right) / \mathrm{n}\right\}^{1 / 2}\left\{\mathbf{v}_{T}^{(1)^{\prime}} \Sigma_{T T}^{(1)-1} \mathbf{v}_{T}^{(1)}\right.
\end{aligned}
$$

Proof of Lemma 4: First of all, note that

$$
\begin{aligned}
& \hat{\nu}_{T}^{(1)^{\prime}} \mathrm{S}_{T T}^{(1)-1} \hat{\nu}_{T}^{(1)}-\nu_{T}^{(1)^{\prime}} \Sigma_{T T}^{(1)-1} \mathbf{v}_{T}^{(1)} \\
= & \left(\hat{\nu}_{T}^{(1)^{\prime}} \Sigma_{T T}^{(1)-1} \hat{\nu}_{T}^{(1)}-v_{T}^{(1)^{\prime}} \Sigma_{T T}^{(1)-1} \nu_{T}^{(1)}\right)\left(\hat{\nu}_{T}^{(1)^{\prime}} S_{T T}^{(1)-1} \hat{\nu}_{T}^{(1)} / \hat{\nu}_{T}^{(1)^{\prime}} \Sigma_{T T}^{(1)-1} \nu_{T}^{(1)}-1\right) \\
& +v_{T}^{(1)^{\prime}} \Sigma_{T T}^{(1)-1} \nu_{T}^{(1)}\left(\hat{\nu}_{T}^{(1)^{\prime}} S_{T T}^{(1)-1} \hat{\nu}_{T}^{(1)} / \hat{\nu}_{T}^{(1)^{\prime}} \Sigma_{T T}^{(1)-1} \hat{\nu}_{T}^{(1)}-1\right)+\left(\hat{\nu}_{T}^{(1)^{\prime}} \Sigma_{T T}^{(1)-1} \hat{\nu}_{T}^{(1)}-\nu_{T}^{(1)^{\prime}} \Sigma_{T T}^{(1)-1} \nu_{T}^{(1)}\right)
\end{aligned}
$$

which implies that

$$
\begin{aligned}
& \left|\hat{\nu}_{T}^{(1)^{\prime}} S_{T T}^{(1)-1} \hat{\nu}_{T}^{(1)}-v_{T}^{(1)^{\prime}} \Sigma_{T T}^{(1)-1} \nu_{T}^{(1)}\right| \\
\leq & \left|\hat{\nu}_{T}^{(1)^{\prime}} \Sigma_{T T}^{(1)-1} \hat{\nu}_{T}^{(1)}-v_{T}^{(1)^{\prime}} \Sigma_{T T}^{(1)-1} \nu_{T}^{(1)}\right| \cdot\left|\hat{\nu}_{T}^{(1)^{\prime}} S_{T T}^{(1)-1} \hat{\nu}_{T}^{(1)} / \nu_{T}^{(1)^{\prime}} \Sigma_{T T}^{(1)-1} \hat{\nu}_{T}^{(1)}-1\right| \\
& +\mathbf{v}_{T}^{(1)^{\prime}} \Sigma_{T T}^{(1)-1} \nu_{T}^{(1)}\left|\hat{\nu}_{T}^{(1)^{\prime}} S_{T T}^{(1)-1} \hat{\nu}_{T}^{(1)} / \hat{\nu}_{T}^{(1)^{\prime}} \Sigma_{T T}^{(1)-1} \hat{\nu}_{T}^{(1)}-1\right|+\left|\hat{\nu}_{T}^{(1)^{\prime}} \Sigma_{T T}^{(1)-1} \hat{\nu}_{T}^{(1)}-v_{T}^{(1)^{\prime}} \Sigma_{T T}^{(1)-1} \nu_{T}^{(1)}\right| .
\end{aligned}
$$

Together with Lemma 18 and Lemma 19, we conclude that with probability at least 1 $4 \%-4 \exp \left(-n \pi_{1} / 12\right)-4 \exp \left(-n \pi_{2} / 12\right)$,

$$
\begin{aligned}
& \left|\hat{\nu}_{T}^{(1)^{\prime}} \mathbf{S}_{T T}^{(1)-1} \hat{\nu}_{T}^{(1)}-\mathbf{v}_{T}^{(1)^{\prime}} \Sigma_{T T}^{(1)-1} \mathbf{v}_{T}^{(1)}\right| \lesssim \mathbf{q}_{\mathbf{n}} \mathbf{s}_{n} / \mathrm{n}+\log \left(\%^{1}\right) / \mathrm{n}+\mathbf{q}_{\mathbf{h}} \mathbf{s}_{n} / \mathrm{n}+\left\{\log \left(\%^{1}\right) / \mathrm{n}\right\}^{1 / 2} \\
& \cdot\left\{\nu_{T}^{(1)^{\prime}} \Sigma_{T T}^{(1)-1} \nu_{T}^{(1)}\right\}+\left\{\log \left(\%^{1}\right) / \mathrm{n}\right\}^{1 / 2}\left\{\nu_{T}^{(1)^{\prime}} \Sigma_{T T}^{(1)-1} \nu_{T}^{(1)}\right\}^{1 / 2},
\end{aligned}
$$

which completes the proof.

Lemma 5. Assume the following condition (a):

(a) $\log \left(\mathbf{q}_{n} \mathbf{s}_{n}\right)=\mathrm{O}(\mathrm{n})$.

Then there exist universal constants $\mathrm{c}_{1}>0$ and $\mathrm{c}_{2}>0$ such that:

$$
\text { 1) } \begin{array}{rl}
\mathrm{P} & \mathrm{k} \hat{\Lambda}_{T}^{(1)} \Lambda_{T}^{(1)-1}-\mathrm{I}_{q_{\mathrm{n}} \mathrm{~s}_{\mathrm{n}}} \mathrm{k}_{\max } \leq \mathrm{c}_{1}\left\{\log \left(\mathbf{q}_{\mathbf{n}} \mathbf{s}_{n}\right) / \mathrm{n}\right\}^{1 / 2} \geq 1-\mathrm{c}_{2}\left\{\left(\mathbf{q}_{n} \mathbf{s}_{n}\right)^{-1}\right. \\
\left.+\exp \left(-\mathrm{n} \pi_{1} / 12\right)+\exp \left(-\mathrm{n} \pi_{2} / 12\right)\right\} .
\end{array}
$$

2) $\mathrm{Pk} \Lambda_{T}^{(1)} \hat{\Lambda}_{T}^{(1)-1}-\mathrm{I}_{q_{\mathrm{n}} \mathrm{s}_{\mathrm{n}}} \mathrm{k}_{\max } \leq \mathrm{c}_{1}\left\{\log \left(\mathbf{q}_{n} \mathbf{s}_{n}\right) / \mathrm{n}\right\}^{1 / 2} \geq 1-\mathrm{c}_{2}\left\{\left(\mathrm{q}_{n} \mathbf{s}_{n}\right)^{-1}\right.$

$$
\left.+\exp \left(-\mathrm{n} \pi_{1} / 12\right)+\exp \left(-\mathrm{n} \pi_{2} / 12\right)\right\}
$$

3) $\mathrm{P} \mathrm{k} \hat{\Lambda}_{T}^{(1) 1 / 2} \Lambda_{T}^{(1)-1 / 2}-\mathrm{I}_{q_{\mathrm{n}} s_{\mathrm{n}}} \mathrm{k}_{\max } \leq \mathrm{c}_{1}\left\{\log \left(\mathrm{q}_{\mathbf{n}} \mathrm{s}_{n}\right) / \mathrm{n}\right\}^{1 / 2} \geq 1-\mathrm{c}_{2}\left\{\left(\mathrm{q}_{\mathrm{h}} \mathrm{s}_{n}\right)^{-1}\right.$ $\left.+\exp \left(-\mathrm{n} \pi_{1} / 12\right)+\exp \left(-\mathrm{n}_{2} / 12\right)\right\}$.
4) $\mathrm{P} \mathrm{k} \Lambda_{T}^{(1) 1 / 2} \hat{\Lambda}_{T}^{(1)-1 / 2}-\mathrm{I}_{q_{n} s_{n}} \mathrm{k}_{\max } \leq \mathrm{c}_{1}\left\{\log \left(\mathrm{q}_{\mathrm{n}} \mathrm{s}_{n}\right) / \mathrm{n}\right\}^{1 / 2} \geq 1-\mathrm{c}_{2}\left\{\left(\mathrm{q}_{\mathrm{h}} \mathrm{s}_{n}\right)^{-1}\right.$

$$
\left.+\exp \left(-\mathrm{n} \pi_{1} / 12\right)+\exp \left(-\mathrm{n} \pi_{2} / 12\right)\right\}
$$

Note that $I_{q_{n} s_{n}}$ denotes the $q_{n} s_{n} \times q_{n} s_{n}$ identity matrix.

Proof of Lemma 5: Before showing the Lemma, we prepare some notations. For any sub-exponential random variable X , its sub-exponential norm is denoted as $\mathrm{KX} \mathrm{k}_{\psi}=$ $\sup _{q \geq 1} \mathrm{q}^{-1}\left\{\mathrm{E}\left(|\mathrm{X}|^{q}\right)\right\}^{1 / q}$. Now, we are in a position to start the proof. First of all, notice that

$$
\begin{equation*}
\mathbf{k} \hat{\Lambda}_{T}^{(1)} \Lambda_{T}^{(1)-1}-\mathbf{I}_{q_{\mathrm{n}} s_{\mathrm{n}}} \mathbf{k}_{\max }=\max _{j \in T} \max _{k \leq s_{\mathrm{n}}}\left|\boldsymbol{\omega}_{j k} \boldsymbol{\omega}_{j k}^{-1}-1\right| . \tag{66}
\end{equation*}
$$

Moreover, by definition, we have that for every $\mathrm{j} \in \mathrm{T}$ and $\mathrm{k} \leq \mathrm{s}_{n}$,

$$
\begin{aligned}
& \omega_{j k}=(\mathrm{n}-2)^{-1}{ }^{\mathrm{h}} \mathrm{n}_{1} \mathrm{X} \quad\left(\xi_{i j k}-\mu_{1 j k}\right)^{2} / \mathrm{n}_{1}+\mathrm{n}_{2} \quad \begin{array}{l}
\mathrm{X} \\
\left(\xi_{i^{\prime} j k}-\mu_{2 j k}\right)^{2} / \mathrm{n}_{2}
\end{array} \\
& \left.-(\mathrm{n}-2)^{-1} \stackrel{\mathrm{~h}_{1}\left(\underset{i_{1} \in H_{1}}{\mathrm{i} \in H_{1}} \mathrm{X}\right.}{\left.\xi_{i_{1 j} j k} / \mathrm{n}_{1}-\mu_{1 j k}\right)^{2}+\mathrm{n}_{2}\left({ }_{i_{2} \in H_{2}}^{\mathrm{i} \in H_{2}}\right.} \xi_{i_{2 j k}} / \mathrm{n}_{2}-\mu_{2 j k}\right)^{2} \text {, }
\end{aligned}
$$

which implies that for every $\mathrm{j} \in \mathrm{T}$ and $\mathrm{k} \leq \mathrm{s}_{n}$,

$$
\begin{aligned}
& \omega_{j k} \omega_{j k}^{-1}-1=(\mathrm{n}-2)^{-1} \mathrm{n}_{1} \mathrm{n}_{1}^{-1} \underset{i \in H_{1}}{ }\left\{\omega_{j k}^{-1 / 2}\left(\boldsymbol{\xi}_{i j k}-\mu_{1 j k}\right)\right\}^{2}-1 \\
& +(\mathrm{n}-2)^{-1} \mathrm{n}_{2} \mathrm{n}_{2}^{-1} \underset{i^{\prime} \in H_{2}}{\mathrm{X}}\left\{\omega_{j k}^{-1 / 2}\left(\xi_{i^{\prime} j k}-\mu_{2 j k}\right)\right\}^{2}-1 \\
& -(\mathrm{n}-2)^{-1} \mathrm{n}_{1} \mathrm{n}_{1}^{-1}{ }_{i_{1} \in H_{1}} \omega_{j k}^{-1 / 2}\left(\boldsymbol{\xi}_{i_{1} j k}-\mu_{1 j k}\right)^{2} \\
& -(\mathrm{n}-2)^{-1} \mathrm{n}_{2} \mathrm{n}_{2}^{-1} \stackrel{i_{1} \in H_{1}}{\mathrm{X}} \boldsymbol{\omega}_{i_{2} \in H_{2}}^{-1 / 2}\left(\boldsymbol{\xi}_{\boldsymbol{i}_{2 j k}}-\mu_{2 j k}\right)^{2}+2(\mathrm{n}-2)^{-1} \text {. }
\end{aligned}
$$

Together with (66), we obtain

$$
\begin{equation*}
\mathrm{k} \hat{\Lambda}_{T}^{(1)} \Lambda_{T}^{(1)-1}-\mathrm{I}_{q_{\mathrm{n}} s_{\mathrm{n}}} \mathrm{k}_{\max } \leq 2 \mathrm{n}^{-1} \mathrm{n}_{1} \Upsilon_{1}+2 \mathrm{n}^{-1} \mathrm{n}_{2} \Upsilon_{2}+2 \mathrm{n}^{-1} \mathrm{n}_{1} \Upsilon_{3}^{2}+2 \mathrm{n}^{-1} \mathrm{n}_{2} \Upsilon_{4}^{2}+3 \mathrm{n}^{-1} \tag{67}
\end{equation*}
$$

where

$$
\begin{aligned}
& \Upsilon_{1}=\max _{j \in T} \max _{k \leq s_{n}} n_{1}^{-1} \underset{i \in H_{1}}{X}\left\{\omega_{j k}^{-1 / 2}\left(\xi_{i j k}-\mu_{1 j k}\right)\right\}^{2}-1, \\
& \Upsilon_{2}=\max _{j \in T} \max _{k \leq s_{\mathrm{n}}} \mathrm{n}_{2}^{-1} \xlongequal[i^{\prime} \in H_{2}]{\mathrm{X}}\left\{\omega_{j k}^{-1 / 2}\left(\boldsymbol{\xi}_{i^{\prime} j k}-\mu_{2 j k}\right)\right\}^{2}-1 \text {, } \\
& \Upsilon_{3}=\max _{j \in T} \max _{k \leq s_{n}} \mathrm{n}_{1}^{-1} \underset{i_{1} \in H_{1}}{ } \omega_{j k}^{-1 / 2}\left(\xi_{i_{1 j k}}-\mu_{1 j k}\right), \\
& \Upsilon_{4}=\max _{j \in T} \max _{k \leq s_{n}} \mathrm{n}_{2}^{-1}{ }_{i_{2} \in H_{2}} \omega_{j k}^{-1 / 2}\left(\xi_{i_{2} j k}-\mu_{2 j k}\right) .
\end{aligned}
$$

At this point, note that for every $\mathrm{i} \in \mathrm{H}_{1}, \mathrm{j} \leq \mathrm{q}_{n}, \mathrm{k} \leq \mathrm{s}_{n}$, the sub-exponential norms of the sub-exponential random variables $\left\{\omega_{j k}^{-1 / 2}\left(\boldsymbol{\xi}_{i j k}-\mu_{1 j k}\right)\right\}^{2}$ satisfy

$$
\begin{equation*}
\mathrm{k}\left\{\omega_{j k}^{-1 / 2}\left(\xi_{i j k}-\mu_{1 j k}\right)\right\}^{2} \mathrm{k}_{\psi} \leq \max \left\{4 \pi, 2 \mathrm{e}^{2 / e}\right\} \tag{68}
\end{equation*}
$$

For the term Υ_{1}, conditional on any nonempty $\left\{\mathrm{Y}_{i}=\mathrm{y}_{i}\right\}_{i=1}^{n} \cap \mathrm{M}_{n}$, one can show that for any $t \geq 0$,

$$
\begin{align*}
& \quad \mathrm{P} \Upsilon_{1} \geq \mathrm{t}\left\{\mathrm{Y}_{i}=\mathrm{y}_{i}\right\}_{i=1}^{n} \cap \mathrm{M}_{n} \\
& \mathrm{~S} \quad \underset{j \in T}{\mathrm{X}} \underset{k \leq s_{n}}{\mathrm{~h}} \mathrm{n}_{1}^{-1} \mathrm{X}\left\{\omega_{i \in H_{1}}^{-1 / 2}\left(\boldsymbol{\xi}_{i j k}-\mu_{1 j k}\right)\right\}^{2}-1 \geq \mathrm{t}\left\{\mathrm{Y}_{i}=\mathrm{y}_{i}\right\}_{i=1}^{n} \cap \mathrm{M}_{n}{ }^{\mathrm{i}} \\
& \leq 2 \mathrm{q}_{n} \mathrm{~s}_{n} \exp -\mathrm{c}_{1} \min \left\{\mathrm{t}^{2}, \mathrm{t}\right\} \mathrm{n}, \tag{69}
\end{align*}
$$

for some universal constant $\mathrm{C}_{1}>0$, where the first inequality holds from the union bound inequality, and the second inequality follows from (68) and the Bernstein inequality in Lemma H. 2 of Ning and Liu (2017). Similar reasoning gives the result that for any $\mathrm{t} \geq 0$,

$$
\begin{equation*}
\mathrm{P} \Upsilon_{2} \geq \mathrm{t}\left\{\mathrm{Y}_{i}=\mathrm{y}_{i}\right\}_{i=1}^{n} \cap \mathrm{M}_{n} \leq 2 \mathrm{q}_{n} \mathrm{~s}_{n} \exp -\mathrm{c}_{2} \min \left\{\mathrm{t}^{2}, \mathrm{t}\right\} \mathrm{n}, \tag{70}
\end{equation*}
$$

for some universal constant $\mathrm{C}_{2}>0$. Regarding the term Υ_{3}, it is clear that for any $\mathrm{t} \geq 0$,

$$
\begin{aligned}
& \mathrm{P} \Upsilon_{3} \geq \mathrm{t}\left\{\mathrm{Y}_{i}=\mathrm{y}_{i}\right\}_{i=1}^{n} \cap \mathrm{M}_{n}
\end{aligned}
$$

$$
\begin{align*}
& \leq 2 q_{n} \mathbf{s}_{n} \exp \left(-c_{3} n t^{2}\right), \tag{71}
\end{align*}
$$

for some universal constant $\mathrm{C}_{3}>0$, where the first inequality is based on the union bound inequality, and the second inequality follows from Hoeffding inequality. Similar argument leads to the result that for any $t \geq 0$,

$$
\begin{equation*}
\mathrm{P} \Upsilon_{4} \geq \mathrm{t}\left\{\mathrm{Y}_{i}=\mathrm{y}_{i}\right\}_{i=1}^{n} \cap \mathrm{M}_{n} \leq 2 \mathrm{q}_{n} \mathrm{~s}_{n} \exp \left(-\mathrm{c}_{4} \mathrm{nt}^{2}\right) \tag{72}
\end{equation*}
$$

for some universal constant $\mathbf{C}_{4}>0$. To this end, conditional on any nonempty $\left\{\mathrm{Y}_{i}=\right.$ $\left.\mathrm{y}_{i}\right\}_{i=1}^{n} \cap \mathrm{M}_{n}$, it can be deduced that for any $\mathrm{t} \geq 0$,

$$
\begin{array}{rl}
\mathrm{P} & \mathrm{k} \hat{\Lambda}_{T}^{(1)} \Lambda_{T}^{(1)-1}-\mathrm{I}_{q_{n} s_{n}} \mathrm{k}_{\max } \geq \mathrm{t}\left\{\mathrm{Y}_{i}=\mathrm{y}_{i}\right\}_{i=1}^{n} \cap \mathrm{M}_{n} \\
\leq \mathrm{P} & 2 \mathrm{n}^{-1} \mathrm{n}_{1} \Upsilon_{1}+2 \mathrm{n}^{-1} \mathrm{n}_{2} \Upsilon_{2}+2 \mathrm{n}^{-1} \mathrm{n}_{1} \Upsilon_{3}^{2}+2 \mathrm{n}^{-1} \mathrm{n}_{2} \Upsilon_{4}^{2}+3 \mathrm{n}^{-1} \geq \mathrm{t} \\
& \left\{\mathrm{Y}_{i}=\mathrm{y}_{i}\right\}_{i=1}^{n} \cap \mathrm{M}_{n} \\
\leq \mathrm{P} & \Upsilon_{1}+\Upsilon_{2}+\Upsilon_{3}^{2}+\Upsilon_{4}^{2}+\mathrm{n}^{-1} \geq \mathrm{c}_{5} \mathrm{t}\left\{\mathrm{Y}_{i}=\mathrm{y}_{i}\right\}_{i=1}^{n} \cap \mathrm{M}_{n} \\
\leq \mathrm{P} & \Upsilon_{1} \geq 5^{-1} \mathrm{c}_{5} \mathrm{t}\left\{\mathrm{Y}_{i}=\mathrm{y}_{i}\right\}_{i=1}^{n} \cap \mathrm{M}_{n}+\mathrm{P} \Upsilon_{2} \geq 5^{-1} \mathrm{c}_{5} \mathrm{t}\left\{\mathrm{Y}_{i}=\mathrm{y}_{i}\right\}_{i=1}^{n} \cap \mathrm{M}_{n} \\
& +\mathrm{P} \Upsilon_{3} \geq 5^{-1 / 2} \mathrm{c}_{5}^{1 / 2} \mathrm{t}^{1 / 2}\left\{\mathrm{Y}_{i}=\mathrm{y}_{i}\right\}_{i=1}^{n} \cap \mathrm{M}_{n} \\
& +\mathrm{P} \Upsilon_{4} \geq 5^{-1 / 2} \mathrm{c}_{5}^{1 / 2} \mathrm{t}^{1 / 2}\left\{\mathrm{Y}_{i}=\mathrm{y}_{i}\right\}_{i=1}^{n} \cap \mathrm{M}_{n} \\
& +\mathrm{P} \mathrm{n}^{-1} \geq 5^{-1} \mathrm{c}_{5} \mathrm{t}\left\{\mathrm{Y}_{i}=\mathrm{y}_{i}\right\}_{i=1}^{n} \cap \mathrm{M}_{n} \\
\leq 4 \mathrm{q}_{n} \mathrm{~s}_{n} \exp -\mathrm{c}_{6} \min \left\{\mathrm{t}^{2}, \mathrm{t}\right\} \mathrm{n}+4 \mathrm{q}_{n} \mathrm{~s}_{n} \exp \left(-\mathrm{c}_{6} \mathrm{nt}\right)+\mathrm{P}\left(\mathrm{n}^{-1} \geq 5^{-1} \mathrm{c}_{5} \mathrm{t}\right) \\
\leq & 8 \mathrm{q}_{n} \mathrm{~s}_{n} \exp -\mathrm{c}_{6} \min \left\{\mathrm{t}^{2}, \mathrm{t}\right\} \mathrm{n}+\mathrm{P}\left(\mathrm{n}^{-1} \geq 5^{-1} \mathrm{c}_{5} \mathrm{t}\right),
\end{array}
$$

for some carefully chosen universal constants $\mathrm{C}_{5}>0$ and $\mathrm{C}_{6}>0$, where the first inequality is by (67), the second inequality comes from the definition of \mathbf{M}_{n} in Lemma 3, the fourth
inequality is based on (69), (70), (71) and (72). Accordingly, we set $\mathbf{C}_{7}=\left(2 \mathrm{C}_{6}^{-1}\right)^{1 / 2}$ and substitute $\mathrm{t}=\mathrm{c}_{7}\left\{\log \left(\mathbf{q}_{n} \mathbf{s}_{n}\right) / \mathrm{n}\right\}^{1 / 2}$ into the above inequality to obtain

$$
\begin{equation*}
\mathbf{P} k \hat{\Lambda}_{T}^{(1)} \Lambda_{T}^{(1)-1}-\mathbf{I}_{q_{\mathrm{n}} s_{\mathrm{n}}} \mathrm{k}_{\max } \leq \mathrm{c}_{7}\left\{\log \left(\mathbf{q}_{\mathbf{n}} \mathbf{s}_{n}\right) / \mathrm{n}\right\}^{1 / 2}\left\{\mathbf{Y}_{i}=\mathbf{y}_{i}\right\}_{i=1}^{n} \cap \mathbf{M}_{n} \geq 1-8\left(\mathbf{q}_{n} \mathbf{s}_{n}\right)^{-1} . \tag{73}
\end{equation*}
$$

It then follows that

$$
\begin{aligned}
& \mathrm{P} \mathrm{k} \hat{\Lambda}_{T}^{(1)} \Lambda_{T}^{(1)-1}-\mathrm{I}_{q_{\mathrm{n}} s_{\mathrm{n}}} \mathrm{k}_{\max } \leq \mathrm{c}_{7}\left\{\log \left(\mathbf{q}_{n} \mathbf{s}_{n}\right) / \mathrm{n}\right\}^{1 / 2} \\
& \text { X } \\
& \geq \underbrace{}_{\left\{y_{i}\right\}_{i=1}^{\mathrm{n}} \in \mathcal{M}_{\mathrm{n}}} \mathrm{P} \mathrm{k} \hat{\Lambda}_{T}^{(1)} \Lambda_{T}^{(1)-1}-\mathrm{I}_{q_{\mathrm{n}} s_{\mathrm{n}}} \mathrm{k}_{\max } \leq \mathrm{c}_{7}\left\{\log \left(\mathrm{q}_{n} \mathbf{s}_{n}\right) / \mathrm{n}\right\}^{1 / 2}\left\{\mathrm{Y}_{i}=\mathrm{y}_{i}\right\}_{i=1}^{n} \cdot \mathrm{P} \quad\left\{\mathrm{Y}_{i}=\mathrm{y}_{i}\right\}_{i=1}^{n} \\
& \geq\left\{1-8\left(\mathbf{q}_{n} \mathbf{S}_{n}\right)^{-1}\right\} \quad \mathrm{X} \quad \mathrm{P}\left\{\mathrm{Y}_{i}=\mathrm{y}_{i}\right\}_{i=1}^{n}=\left\{1-8\left(\mathbf{q}_{n} \mathbf{s}_{n}\right)^{-1}\right\} \mathrm{P}\left(\mathrm{M}_{n}\right) \\
& \left\{y_{i}\right\}_{i=1}^{\mathrm{n}} \in \mathcal{M}_{\mathrm{n}} \\
& \geq 1-8\left\{\left(\mathbf{q}_{n} \mathbf{S}_{n}\right)^{-1}+\exp \left(-\mathrm{n} \pi_{1} / 12\right)+\exp \left(-\mathrm{n} \boldsymbol{m}_{2} / 12\right)\right\},
\end{aligned}
$$

where the second inequality is by (73), and the last inequality follows from Lemma 3. Therefore, property 1) holds from the above inequality. Moreover, it can be verified that under the event $\mathrm{k} \hat{\Lambda}_{T}^{(1)} \Lambda_{T}^{(1)-1}-\mathrm{I}_{q_{\mathrm{n}} \mathrm{s}_{\mathrm{n}}} \mathrm{k}_{\max } \leq \mathrm{c}_{7}\left\{\log \left(\mathbf{q}_{\mathbf{n}} \mathbf{s}_{n}\right) / \mathrm{n}\right\}^{1 / 2}$,

$$
\mathrm{k} \Lambda_{T}^{(1)} \hat{\Lambda}_{T}^{(1)-1}-\mathrm{I}_{q_{\mathrm{n}} s_{\mathrm{n}}} \mathrm{k}_{\max } \leq 2 \mathbf{k} \hat{\Lambda}_{T}^{(1)} \Lambda_{T}^{(1)-1}-\mathbf{I}_{q_{\mathrm{n}} s_{\mathrm{n}}} \mathrm{k}_{\max } .
$$

Hence, based on the above two inequalities, we conclude that

$$
\begin{align*}
& \mathrm{P} \mathrm{~K} \Lambda_{T}^{(1)} \hat{\Lambda}_{T}^{(1)-1}-\mathrm{I}_{q_{\mathrm{n}} \mathrm{~s}} \mathrm{k}_{\max } \leq 2 \mathbf{G}_{7}\left\{\log \left(\mathbf{q}_{\mathbf{n}} \mathbf{s}_{n}\right) / \mathrm{n}\right\}^{1 / 2} \\
& \geq 1-8\left\{\left(\mathbf{q}_{n} \mathbf{s}_{n}\right)^{-1}+\exp \left(-\mathrm{n} \pi_{1} / 12\right)+\exp \left(-\mathrm{n} \pi_{2} / 12\right)\right\}, \tag{74}
\end{align*}
$$

which completes the proof of property 2). Property 3) can be directly proved by using the fact that $\mathrm{k} \hat{\Lambda}_{T}^{(1) 1 / 2} \Lambda_{T}^{(1)-1 / 2}-\mathrm{I}_{q_{\mathrm{n}} s_{\mathrm{n}}} \mathrm{k}_{\max } \leq \mathrm{k} \hat{\Lambda}_{T}^{(1)} \Lambda_{T}^{(1)-1}-\mathrm{I}_{q_{\mathrm{n}} s_{\mathrm{n}}} \mathrm{k}_{\text {max }}$. Likewise, one can show property 4), which finishes the proof.

Lemma 6. Assume the following conditions (a)-(b):
(a) $\sup _{j \leq p_{n}} \mathrm{P}_{\infty=1}^{\infty} \omega_{j k}<\infty, \quad \lambda_{\min }\left(\Lambda_{N}^{(1)}\right) \geq \mathrm{C}_{0} \mathrm{~S}_{n}^{-a}$ for some constants $\mathrm{C}_{0}>0$ and $\mathrm{a}>1$.
(b) $\mathrm{s}_{n}^{2 a} \log \left\{\left(\mathrm{p}_{n}-\mathrm{q}_{n}\right) \mathrm{s}_{n}\right\}=\mathrm{o}(\mathrm{n})$.

Then there exist universal constants $\mathrm{c}_{1}>0$ and $\mathrm{c}_{2}>0$ such that:

1) $\mathrm{Pk} \hat{\Lambda}_{N}^{(1)} \Lambda_{N}^{(1)-1}-\mathrm{I}_{\left(p_{n}-q_{n}\right) s_{n}} \mathrm{k}_{\max } \leq \mathrm{c}_{1}\left[\log \left\{\left(\mathrm{p}_{n}-\mathrm{q}_{n}\right) \mathrm{s}_{n}\right\} / \mathrm{n}\right]^{1 / 2} \geq 1-\mathrm{c}_{2}\left[\left\{\left(\mathrm{p}_{n}-\mathrm{q}_{n}\right) \mathrm{s}_{n}\right\}^{-1}+\right.$ $\left.\exp \left(-\mathrm{n} \pi_{1} / 12\right)+\exp \left(-\mathrm{n} \boldsymbol{\pi}_{2} / 12\right)\right]$.
2) $\mathrm{PK} \Lambda_{N}^{(1)} \hat{\Lambda}_{N}^{(1)-1}-\mathrm{I}_{\left(p_{n}-q_{n}\right) s_{n}} \mathrm{k}_{\max } \leq \mathrm{c}_{1}\left[\log \left\{\left(\mathrm{p}_{n}-\mathrm{q}_{n}\right) \mathrm{s}_{n}\right\} / n\right]^{1 / 2} \geq 1-\mathrm{c}_{2}\left[\left\{\left(\mathrm{p}_{n}-\mathrm{q}_{n}\right) \mathrm{S}_{n}\right\}^{-1}+\right.$ $\left.\exp \left(-\mathrm{n} \pi_{1} / 12\right)+\exp \left(-\mathrm{n} \pi_{2} / 12\right)\right]$.
3) $\mathrm{PK} \hat{\Lambda}_{N}^{(1) 1 / 2} \Lambda_{N}^{(1)-1 / 2}-\mathrm{I}_{\left(p_{n}-q_{n}\right) s_{n}} \mathrm{k}_{\max } \leq \mathrm{c}_{1}\left[\log \left\{\left(\mathrm{p}_{n}-\mathrm{q}_{n}\right) \mathrm{s}_{n}\right\} / \mathrm{n}\right]^{1 / 2} \geq 1-\mathrm{c}_{2}\left[\left\{\left(\mathrm{p}_{n}-\right.\right.\right.$ $\left.\left.\left.\mathbf{q}_{n}\right) \mathbf{S}_{n}\right\}^{-1}+\exp \left(-\mathrm{n} \boldsymbol{r}_{1} / 12\right)+\exp \left(-\mathrm{n} \Pi_{2} / 12\right)\right]$.
4) $\mathrm{P} \mathrm{K} \Lambda_{N}^{(1) 1 / 2} \hat{\Lambda}_{N}^{(1)-1 / 2}-\mathrm{I}_{\left(p_{n}-q_{n}\right) s_{n}} \mathrm{k}_{\max } \leq \mathrm{c}_{1}\left[\log \left\{\left(\mathrm{p}_{n}-\mathrm{q}_{n}\right) \mathrm{s}_{n}\right\} / \mathrm{n}\right]^{1 / 2} \geq 1-\mathrm{c}_{2}\left[\left\{\left(\mathrm{p}_{n}-\right.\right.\right.$ $\left.\left.\left.\mathbf{q}_{n}\right) \mathbf{S}_{n}\right\}^{-1}+\exp \left(-\mathrm{n} \Pi_{1} / 12\right)+\exp \left(-\mathrm{n} \Pi_{2} / 12\right)\right]$.
5) $\mathrm{P}\left\{\operatorname{det}\left(\hat{\Lambda}_{N}^{(1)}\right) 60\right\} \geq 1-\mathrm{c}_{2}\left[\left\{\left(\mathbf{p}_{n}-\mathbf{q}_{n}\right) \mathbf{S}_{n}\right\}^{-1}+\exp \left(-\mathrm{n} \pi_{1} / 12\right)+\exp \left(-\mathrm{n} \pi_{2} / 12\right)\right]$.

Note that $\mathrm{I}_{\left(p_{n}-q_{n}\right) s_{n}}$ denotes the $\left(\mathrm{p}_{n}-\mathrm{q}_{n}\right) \mathrm{s}_{n} \times\left(\mathrm{p}_{n}-\mathrm{q}_{n}\right) \mathrm{s}_{n}$ identity matrix.
Proof of Lemma 6: The proof of property 1) is analogous to that of property 1) in Lemma 5. Then, it can be deduced that there exists $\mathrm{C}_{3}>0$ and $\mathrm{C}_{4}>0$ such that with probability at least $1-\mathbf{c}_{3}\left[\left\{\left(\mathbf{p}_{n}-\mathbf{q}_{n}\right) \mathbf{s}_{n}\right\}^{-1}+\exp \left(-\mathrm{n} \pi_{1} / 12\right)+\exp \left(-\mathrm{n} \boldsymbol{\pi}_{2} / 12\right)\right]$,

$$
\lambda_{\min }\left(\hat{\Lambda}_{N}^{(1)}\right) \geq \lambda_{\min }\left(\Lambda_{N}^{(1)}\right)-\lambda_{\max }\left(\Lambda_{N}^{(1)}\right) k \hat{\Lambda}_{N}^{(1)} \Lambda_{N}^{(1)-1}-\mathrm{I}_{\left(p_{n}-q_{n}\right) s_{n}} \mathrm{k}_{\max } \geq \mathrm{c}_{1} \mathrm{~s}_{n}^{-a},
$$

where the last inequality is based on (a), (b) and property 1). As a result, property 5) holds true from the above inequality. Finally, properties 2) to 4) can be derived in a similar fashion as properties 2) to 4) in Lemma 5, which finishes the proof.

Lemma 7. Assume the following condition (a):

(a) $\log \left(\mathbf{q}_{n} \mathbf{S}_{n}\right)=\mathbf{O}(\mathbf{n})$.

Then there exist universal constants $\mathrm{C}_{1}>0$ and $\mathrm{c}_{2}>0$ such that:

$$
\begin{aligned}
& \mathrm{P} \mathrm{k} \Lambda_{T}^{(1)-1 / 2} \mathbf{S}_{T T}^{(1)} \Lambda_{T}^{(1)-1 / 2}-\Lambda_{T}^{(1)-1 / 2} \Sigma_{T T}^{(1)} \Lambda_{T}^{(1)-1 / 2} \mathrm{k}_{2} \leq \mathrm{c}_{1}\left\{\mathrm{q}_{h}^{2} \mathbf{s}_{n}^{2} \log \left(\mathbf{q}_{h} \mathbf{s}_{n}\right) / \mathrm{n}\right\}^{1 / 2} \\
& \geq 1-\mathrm{c}_{2}\left\{\left(\mathbf{q}_{n} \mathbf{s}_{n}\right)^{-1}+\exp \left(-\mathrm{n} \pi_{1} / 12\right)+\exp \left(-\mathrm{n} \pi_{2} / 12\right)\right\} .
\end{aligned}
$$

Proof of Lemma 7: First of all, we note that

$$
\begin{equation*}
\mathrm{k} \Lambda_{T}^{(1)-1 / 2} \mathrm{~S}_{T T}^{(1)} \Lambda_{T}^{(1)-1 / 2}-\Lambda_{T}^{(1)-1 / 2} \Sigma_{T T}^{(1)} \Lambda_{T}^{(1)-1 / 2} \mathbf{k}_{2} \leq \Omega_{1}+\Omega_{2}+\Omega_{3}+\Omega_{4}+\Omega_{5} \tag{75}
\end{equation*}
$$

where

$$
\begin{aligned}
& \Omega_{1}=2 \mathbf{n}^{-1} \mathrm{n}_{1} \mathbf{q}_{\mathbf{n}} \mathbf{s}_{n} \max _{j_{2} \in T} \max _{k_{2} \leq s_{n} \max _{1} \in T \max _{k_{1} \leq s_{n}}} \mathrm{n}_{1}^{-1} \mathrm{X} \quad \mathrm{~h} \omega_{i \in H_{1}}^{-1 / 2}\left(\boldsymbol{\xi}_{j_{1} k_{1} k_{1}}-\mu_{1 j_{1} k_{1}}\right) \\
& \text { - } \omega_{j 2 k_{2}}^{-1 / 2}\left(\boldsymbol{\xi}_{i j_{2} k_{2}}-\mu_{1 j_{2} k_{2}}\right)-\operatorname{corr}\left(\boldsymbol{\xi}_{j_{1} k_{1}}, \boldsymbol{\xi}_{j_{2} k_{2}}\right)^{\mathrm{i}} \text {, } \\
& \Omega_{2}=2 \mathbf{n}^{-1} \mathrm{n}_{2} \mathrm{q}_{\mathrm{n}} \mathrm{~s}_{n} \max _{j_{2} \in T} \max _{k_{2} \leq s_{n}} \max _{j_{1} \in T} \max _{k_{1} \leq s_{\mathrm{n}}} \mathrm{n}_{2}^{-1} \mathrm{X} \quad \mathrm{~h} \omega_{i \in H_{2}}^{-1 / 2}\left(\xi_{j_{1} k_{1} k_{1}}-\mu_{2 j_{1} k_{1}}\right) \\
& \text { - } \omega_{j 2 k_{2}}^{-1 / 2}\left(\boldsymbol{\xi}_{i j_{2} k_{2}}-\mu_{2 j_{2} k_{2}}\right)-\operatorname{corr}\left(\boldsymbol{\xi}_{j_{1} k_{1}}, \boldsymbol{\xi}_{j_{2} k_{2}}\right)^{\mathbf{i}} \text {, } \\
& \Omega_{3}=2 \mathbf{n}^{-1} \mathbf{n}_{1} \mathbf{q}_{\mathbf{n}} \mathbf{s}_{n} \max _{j_{2} \in T \max _{2} \leq s_{n} \max _{j_{1} \in T} \max _{k_{1} \leq s_{\mathrm{n}}}} \mathrm{n}_{1}^{-1} \underset{i_{1} \in H_{1}}{ } \omega_{j_{1} k_{1}}^{-1 / 2}\left(\xi_{i_{1} j_{1} k_{1}}-\mu_{1 j_{1} k_{1}}\right) \\
& \text { - } \mathrm{n}_{1}^{-1}{ }_{i_{1} \in H_{1}} \omega_{j_{2} k_{2}}^{-1 / 2}\left(\xi_{i_{1 j_{2} k_{2}}}-\mu_{1 j_{2} k_{2}}\right) \text {, } \\
& \Omega_{4}=2 \mathbf{n}^{-1} \mathrm{n}_{2} \mathbf{q}_{\mathbf{n}} \mathbf{s}_{n} \max _{j_{2} \in T \max _{k_{2} \leq s_{n}} \max _{1} \in T \mathrm{max}_{1} \leq s_{\mathrm{n}}} \mathrm{n}_{2}^{-1} \mathrm{X} \omega_{i_{2} \in H_{2}}^{-1 / 2}\left(\xi_{i_{1} k_{1}}\left(k_{1} k_{1}-\mu_{2 j_{1} k_{1}}\right)\right. \\
& \text { - } \mathrm{n}_{2}^{-1}{ }^{\mathrm{X}} \omega_{j 2 k_{2}}^{-1 / 2}\left(\xi_{i 2 j_{2} k_{2}}-\mu_{2 j_{2} k_{2}}\right) \text {, } \\
& i_{2} \in H_{2} \\
& \Omega_{5}=4 \mathbf{n}^{-1} \mathbf{q}_{n} \mathbf{s}_{n} .
\end{aligned}
$$

For the term Ω_{1}, conditional on any nonempty $\left\{\mathrm{Y}_{i}=\mathrm{y}_{i}\right\}_{i=1}^{n} \cap \mathrm{M}_{n}$, it can be shown that for any $\mathrm{t} \geq 0$,

$$
\begin{aligned}
& \mathrm{P} \Omega_{1} \geq \mathrm{t}\left\{\mathrm{Y}_{i}=\mathrm{y}_{i}\right\}_{i=1}^{n} \cap \mathrm{M}_{n} \\
& \leq \mathrm{P} \max _{j_{2} \in T \max _{2} \leq s_{\mathrm{n}} \max _{1} \in T{ }_{k_{1} \leq s_{\mathrm{n}}} \mathrm{n}_{1}^{-1}} \mathrm{X} \quad \mathrm{~h} \omega_{i \in H_{1}}^{-1 / 2}\left(\xi_{j_{1} k_{1}}-\mu_{j_{1} k_{1}}\right) \cdot \omega_{j_{2} k_{2}}^{-1 / 2}\left(\xi_{i j_{2} k_{2}}-\mu_{1 j_{2} k_{2}}\right) \\
& -\operatorname{corr}\left(\boldsymbol{\xi}_{j_{1} k_{1}}, \boldsymbol{\xi}_{j 2 k_{2}}\right)^{\mathrm{i}} \geq\left(3 \Pi_{1} \mathrm{q}_{n} \mathrm{~S}_{n}\right)^{-1} \mathrm{t}\left\{\mathrm{Y}_{i}=\mathrm{y}_{i}\right\}_{i=1}^{n} \cap \mathrm{M}_{n}
\end{aligned}
$$

$$
\begin{aligned}
& -\operatorname{corr}\left(\boldsymbol{\xi}_{j_{1} k_{1}}, \boldsymbol{\xi}_{j 2 k_{2}}\right) \geq\left(3 \Pi_{1} \boldsymbol{q}_{n} \mathbf{s}_{n}\right)^{-1} \mathrm{t}\left\{\mathrm{Y}_{i}=\mathrm{y}_{i}\right\}_{i=1}^{n} \cap \mathrm{M}_{n}
\end{aligned}
$$

$$
\begin{aligned}
& =2\left(\mathbf{q}_{\mathbf{n}} \mathbf{s}_{n}\right)^{2} \exp -\mathbf{c}_{1} \mathbf{n} \min \left\{\left(\mathbf{q}_{n} \mathbf{s}_{n}\right)^{-2} \mathbf{t}^{2},\left(\mathbf{q}_{n} \mathbf{s}_{n}\right)^{-1} \mathbf{t}\right\},
\end{aligned}
$$

for some universal constant $c_{1}>0$, where the first inequality is by the definition of M_{n} in Lemma 3, the second inequality holds from the union bound inequality, and the last inequality is based on Bernstein inequality and the definition of M_{n}. To this end, we set $\mathrm{c}_{2}=\left(\mathrm{c}_{1} / 3\right)^{-1 / 2}$ and substitute $\mathrm{t}=\mathrm{c}_{2}\left\{\mathrm{q}_{n}^{2} \mathrm{~s}_{n}^{2} \log \left(\mathrm{q}_{n} \mathrm{~s}_{n}\right) / \mathrm{n}\right\}^{1 / 2}$ into the above inequality to obtain

$$
\begin{equation*}
\mathrm{P} \Omega_{1} \geq \mathrm{c}_{2}\left\{\mathrm{q}_{n}^{2} \mathbf{s}_{n}^{2} \log \left(\mathrm{q}_{n} \mathbf{s}_{n}\right) / \mathrm{n}\right\}^{1 / 2}\left\{\mathrm{Y}_{i}=\mathrm{y}_{i}\right\}_{i=1}^{n} \cap \mathrm{M}_{n} \leq 2\left(\mathrm{q}_{n} \mathbf{s}_{n}\right)^{-1} \tag{76}
\end{equation*}
$$

Similar reasoning yields that

$$
\begin{equation*}
\mathrm{P} \Omega_{2} \geq \mathrm{c}_{3}\left\{\mathrm{q}_{n}^{2} \mathbf{s}_{n}^{2} \log \left(\mathbf{q}_{n} \mathbf{s}_{n}\right) / \mathrm{n}\right\}^{1 / 2}\left\{\mathrm{Y}_{i}=\mathrm{y}_{i}\right\}_{i=1}^{n} \cap \mathrm{M}_{n} \leq 2\left(\mathbf{q}_{n} \mathbf{s}_{n}\right)^{-1} \tag{77}
\end{equation*}
$$

for some universal constant $\mathrm{C}_{3}>0$. For the term Ω_{3}, it is apparent to see that for any
$t \geq 0$,

$$
\begin{aligned}
& \mathrm{P} \Omega_{3} \geq \mathrm{t}\left\{\mathrm{Y}_{i}=\mathrm{y}_{i}\right\}_{i=1}^{n} \cap \mathrm{M}_{n}
\end{aligned}
$$

$$
\begin{aligned}
& \geq\left(3 \mathrm{H}_{1} \mathrm{q}_{n} \mathrm{~s}_{n}\right)^{-1 / 2} \mathbf{t}^{1 / 2}\left\{\mathrm{Y}_{i}=\mathrm{y}_{i}\right\}_{i=1}^{n} \cap \mathrm{M}_{n} \\
& \leq 4\left(\mathbf{q}_{n} \mathbf{s}_{n}\right)^{2} \exp \left(-\mathbf{c}_{4} \mathbf{n q}_{n}^{-1} \mathbf{s}_{n}^{-1} \mathbf{t}\right),
\end{aligned}
$$

for some universal constant $\mathbf{C}_{4}>0$, where the last inequality follows from Hoeffding inequality and the definition of \mathbf{M}_{n}. Therefore, we set $\mathbf{c}_{5}=3 \mathbf{c}_{4}^{-1}$ and plug $t=\mathbf{c}_{5} \mathbf{q}_{n} \mathbf{s}_{n} \log \left(\mathbf{q}_{n} \mathbf{s}_{n}\right) / n$ into the above inequality to obtain

$$
\mathrm{P} \Omega_{3} \geq \mathrm{c}_{5} \mathbf{q}_{n} \mathbf{s}_{n} \log \left(\mathbf{q}_{n} \mathbf{s}_{n}\right) / \mathrm{n}\left\{\mathrm{Y}_{i}=\mathrm{y}_{i}\right\}_{i=1}^{n} \cap \mathrm{M}_{n} \leq 4\left(\mathbf{q}_{n} \mathbf{s}_{n}\right)^{-1} .
$$

Similar reasoning leads to

$$
\mathrm{P} \Omega_{4} \geq \mathrm{c}_{6} \mathbf{q}_{n} \mathbf{s}_{n} \log \left(\mathbf{q}_{n} \mathbf{s}_{n}\right) / \mathrm{n}\left\{\mathrm{Y}_{i}=\mathrm{y}_{i}\right\}_{i=1}^{n} \cap \mathrm{M}_{n} \leq 4\left(\mathbf{q}_{n} \mathbf{s}_{n}\right)^{-1}
$$

for some universal constant $\mathrm{C}_{6}>0$. Accordingly, we set $\mathrm{C}_{7}=\mathrm{C}_{2}+\mathrm{C}_{3}+\mathrm{C}_{5}+\mathrm{C}_{6}+1$. By combining the above two inequalities with (76), (77), and (75), it can be deduced that

$$
\begin{align*}
& \mathrm{P} \mathrm{~K} \Lambda_{T}^{(1)-1 / 2} \mathbf{S}_{T T}^{(1)} \Lambda_{T}^{(1)-1 / 2}-\Lambda_{T}^{(1)-1 / 2} \Sigma_{T T}^{(1)} \Lambda_{T}^{(1)-1 / 2} \mathrm{k}_{2} \leq \mathrm{c}_{7}\left\{\mathrm{q}_{n}^{2} \mathbf{s}_{n}^{2} \log \left(\mathbf{q}_{n} \mathbf{S}_{n}\right) / \mathrm{n}\right\}^{1 / 2}\left\{\mathbf{Y}_{i}=\mathrm{y}_{i}\right\}_{i=1}^{n} \cap \mathrm{M}_{n} \\
& \geq 1-12\left(\mathbf{q}_{n} \mathbf{s}_{n}\right)^{-1} . \tag{78}
\end{align*}
$$

Finally, we have

$$
\begin{aligned}
& \text { P K } \Lambda_{T}^{(1)-1 / 2} \mathbf{S}_{T T}^{(1)} \Lambda_{T}^{(1)-1 / 2}-\Lambda_{T}^{(1)-1 / 2} \Sigma_{T T}^{(1)} \Lambda_{T}^{(1)-1 / 2} \mathrm{k}_{2} \leq \mathrm{c}_{7}\left\{\mathrm{q}_{n}^{2} \mathbf{S}_{n}^{2} \log \left(\mathbf{q}_{\mathbf{n}} \mathbf{s}_{n}\right) / \mathrm{n}\right\}^{1 / 2} \\
& \geq \mathrm{X}_{\left\{y_{i}\right\}_{i=1}^{\mathrm{n}} \in \mathcal{M}_{\mathrm{n}}} \mathrm{P} \mathrm{k} \Lambda_{T}^{(1)-1 / 2} \mathrm{~S}_{T T}^{(1)} \Lambda_{T}^{(1)-1 / 2}-\Lambda_{T}^{(1)-1 / 2} \Sigma_{T T}^{(1)} \Lambda_{T}^{(1)-1 / 2} \mathrm{k}_{2} \leq \\
& \mathrm{c}_{7} \mathrm{q}_{n} \mathbf{S}_{n}\left\{\log \left(\mathrm{q}_{n} \mathbf{s}_{n}\right) / \mathrm{n}\right\}^{1 / 2}\left\{\mathrm{Y}_{i}=\mathrm{y}_{i}\right\}_{i=1}^{n} \cdot \mathrm{P} \quad\left\{\mathrm{Y}_{i}=\mathrm{y}_{i}\right\}_{i=1}^{n} \\
& X \\
& \geq\left\{1-12\left(\mathrm{q}_{\mathrm{n}} \mathbf{s}_{n}\right)^{-1}\right\} \underset{\left\{y_{i}\right\}_{=1}^{n} \in \mathcal{M}_{\mathrm{n}}}{ } \mathrm{P}\left\{\mathrm{Y}_{i}=\mathrm{y}_{i}\right\}_{i=1}^{n}=\left\{1-12\left(\mathrm{q}_{n} \mathrm{~s}_{n}\right)^{-1}\right\} \mathrm{P}\left(\mathrm{M}_{n}\right) \\
& \geq 1-12\left\{\left(\mathrm{q}_{n} \mathbf{s}_{n}\right)^{-1}+\exp \left(-\mathrm{n} \pi_{1} / 12\right)+\exp \left(-\mathrm{n} \boldsymbol{r}_{2} / 12\right)\right\},
\end{aligned}
$$

where the second inequality is by (78), and the last inequality follows from Lemma 3. This completes the proof.

Lemma 8. Assume the following conditions (a)-(b):
(a) $\mathrm{q}_{n}^{2} \mathrm{~s}_{n}^{2} \log \left(\mathrm{q}_{n} \mathrm{~s}_{n}\right)=\mathrm{O}(\mathrm{n})$.
(b) $\mathrm{C}_{1} \leq \lambda_{\min }\left(\Lambda_{T}^{(1)-1 / 2} \Sigma_{T T}^{(1)} \Lambda_{T}^{(1)-1 / 2}\right) \leq \lambda_{\max }\left(\Lambda_{T}^{(1)-1 / 2} \Sigma_{T T}^{(1)} \Lambda_{T}^{(1)-1 / 2}\right) \leq \mathrm{C}_{2}$, for some universal constants $0<\mathrm{C}_{1}<\mathrm{C}_{2}$.

Then we have the following properties:

1) There exist universal constants $c_{3}>0$ and $c_{4}>0$ such that

$$
\mathbf{P}\left(\mathrm{k} \Lambda_{T}^{(1)-1 / 2} \mathbf{S}_{T T}^{(1)} \Lambda_{T}^{(1)-1 / 2} \mathbf{k}_{2} \leq \mathbf{c}_{3}\right) \geq 1-\mathbf{c}_{4}\left\{\left(\mathbf{q}_{n} \mathbf{s}_{n}\right)^{-1}+\exp \left(-\mathrm{n} \pi_{1} / 12\right)+\exp \left(-\mathrm{n} \pi_{2} / 12\right)\right\} .
$$

2) There exist universal constants $c_{5}>0$ and $c_{6}>0$ such that

$$
\mathbf{P}\left(\mathbf{k} \Lambda_{T}^{(1) 1 / 2} \mathbf{S}_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2} \mathbf{k}_{2} \leq \mathbf{c}_{5}\right) \geq 1-\mathrm{c}_{6}\left\{\left(\mathbf{q}_{n} \mathbf{s}_{n}\right)^{-1}+\exp \left(-\mathrm{n} \pi_{1} / 12\right)+\exp \left(-\mathrm{n} \boldsymbol{\pi}_{2} / 12\right)\right\} .
$$

Proof of Lemma 8: First of all, we note that

$$
\mathrm{k} \Lambda_{T}^{(1)-1 / 2} \mathrm{~S}_{T T}^{(1)} \Lambda_{T}^{(1)-1 / 2} \mathrm{k}_{2} \leq \mathrm{k} \Lambda_{T}^{(1)-1 / 2} \mathrm{~S}_{T T}^{(1)} \Lambda_{T}^{(1)-1 / 2}-\Lambda_{T}^{(1)-1 / 2} \Sigma_{T T}^{(1)} \Lambda_{T}^{(1)-1 / 2} \mathrm{k}_{2}+\mathrm{c}_{2},
$$

where C_{2} is defined in condition (b). Together with condition (a) and Lemma 7, it can be concluded that there exist universal constants $\mathrm{C}_{3}>0$ and $\mathrm{C}_{4}>0$ such that with probability at least $1-\mathrm{c}_{3}\left\{\left(\mathbf{q}_{\mathbf{n}} \mathbf{S}_{n}\right)^{-1}+\exp \left(-\mathrm{n} \boldsymbol{\pi}_{1} / 12\right)+\exp \left(-\mathrm{n} \boldsymbol{r}_{2} / 12\right)\right\}$,

$$
\mathrm{k} \Lambda_{T}^{(1)-1 / 2} \mathbf{S}_{T T}^{(1)} \Lambda_{T}^{(1)-1 / 2} \mathrm{k}_{2} \leq \mathrm{c}_{4}\left\{\mathrm{q}_{n}^{2} \mathbf{S}_{n}^{2} \log \left(\mathbf{q}_{n} \mathbf{S}_{n}\right) / \mathrm{n}\right\}^{1 / 2}+\mathrm{c}_{2} \leq 2 \mathbf{C}_{2},
$$

which completes the proof of property 1). To show the second property, we first notice that

$$
\begin{equation*}
\mathrm{k} \Lambda_{T}^{(1) 1 / 2} \mathrm{~S}_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2} \mathrm{k}_{2}=\lambda_{\min }^{-1}\left(\Lambda_{T}^{(1)-1 / 2} \mathrm{~S}_{T T}^{(1)} \Lambda_{T}^{(1)-1 / 2}\right) \tag{79}
\end{equation*}
$$

Moreover, it is apparent to deduce that

$$
\lambda_{\min }\left(\Lambda_{T}^{(1)-1 / 2} \mathrm{~S}_{T T}^{(1)} \Lambda_{T}^{(1)-1 / 2}\right) \geq \mathrm{c}_{1}-\mathrm{k} \Lambda_{T}^{(1)-1 / 2} \mathrm{~S}_{T T}^{(1)} \Lambda_{T}^{(1)-1 / 2}-\Lambda_{T}^{(1)-1 / 2} \Sigma_{T T}^{(1)} \Lambda_{T}^{(1)-1 / 2}
$$

2) $\mathrm{P}\left\{\operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right)^{\prime} \Lambda_{T}^{(1) 1 / 2} \Sigma_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2} \operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right)\right\} /\left\{\operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right)^{\prime} \hat{\Lambda}_{T}^{(1) 1 / 2} \mathbf{S}_{T T}^{(1)-1} \hat{\Lambda}_{T}^{(1) 1 / 2} \operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right)\right\}$
$-1 \leq \mathrm{c}_{3}\left\{\log \left(\mathrm{q}_{\mathbf{n}} \mathbf{s}_{n}\right) / \mathrm{n}\right\}^{1 / 2}+\{\log \log (\mathrm{n}) / \mathrm{n}\}^{1 / 2}$
$\geq 1-\mathbf{C}_{4}\left(\mathbf{q}_{\mathbf{n}} \mathbf{S}_{n}\right)^{-1}+\{\log (\mathrm{n})\}^{-1}+\exp \left(-\mathrm{n} \pi_{1} / 12\right)+\exp \left(-\mathrm{n} \boldsymbol{\pi}_{2} / 12\right)$.
Proof of Lemma 9: First of all, we note that

$$
\begin{equation*}
\operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right)^{\prime} \hat{\Lambda}_{T}^{(1) 1 / 2} \mathbf{S}_{T T}^{(1)-1} \hat{\Lambda}_{T}^{(1) 1 / 2} \operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right)=\operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right)^{\prime} \Lambda_{T}^{(1) 1 / 2} \mathbf{S}_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2} \operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right)+\Omega_{1}+2 \Omega_{2}, \tag{80}
\end{equation*}
$$

where

$$
\begin{aligned}
& \left.\Omega_{1}=\operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right)^{\prime} \hat{\Lambda}_{T}^{(1) 1 / 2} \Lambda_{T}^{(1)-1 / 2}-\mathbf{I}_{q_{n} s_{n}}\right)\left(\Lambda_{T}^{(1) 1 / 2} \mathbf{S}_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2}\right)\left(\Lambda_{T}^{(1)-1 / 2} \hat{\Lambda}_{T}^{(1) 1 / 2}-\mathbf{I}_{q_{n} s_{n}}\right) \operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right), \\
& \Omega_{2}=\operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right)^{\prime}\left(\Lambda_{T}^{(1) 1 / 2} \mathbf{S}_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2}\right)\left(\Lambda_{T}^{(1)-1 / 2} \hat{\Lambda}_{T}^{(1) 1 / 2}-\mathbf{I}_{q_{n} s_{n}}\right) \operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right) .
\end{aligned}
$$

For the term Ω_{1}, it can be deduced that

$$
\Omega_{1} \leq \mathrm{q}_{\mathrm{n}} \mathbf{s}_{n} \mathrm{k} \Lambda_{T}^{(1) 1 / 2} \mathbf{S}_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2} \mathrm{k}_{2} \cdot \mathrm{k} \hat{\mathrm{~N}}_{T}^{(1) 1 / 2} \Lambda_{T}^{(1)-1 / 2}-\mathbf{l}_{q_{\mathrm{n}} \mathrm{~s}_{\mathrm{n}}} \mathrm{k}_{\max }^{2} .
$$

Together with condition (a), condition (b), Lemma 8, and Lemma 5, it can be concluded that there exist universal constants $\mathrm{C}_{3}>0$ and $\mathrm{C}_{4}>0$ such that

$$
\begin{equation*}
\mathbf{P}\left\{\Omega_{1} \leq \mathbf{c}_{3} \mathbf{q}_{n} \mathbf{s}_{n} \log \left(\mathbf{q}_{n} \mathbf{s}_{n}\right) / \mathbf{n}\right\} \geq 1-\mathbf{c}_{4}\left\{\left(\mathbf{q}_{n} \mathbf{s}_{n}\right)^{-1}+\exp \left(-\mathbf{n} \pi_{1} / 12\right)+\exp \left(-\mathrm{n} \boldsymbol{r}_{2} / 12\right)\right\} . \tag{81}
\end{equation*}
$$

For the term Ω_{2}, one has

$$
\begin{aligned}
\left|\Omega_{2}\right| & \leq \mathrm{k}\left(\Lambda_{T}^{(1) 1 / 2} \mathbf{S}_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2}\right) \operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right) \mathbf{k}_{1} \cdot \mathrm{k}\left(\Lambda_{T}^{(1)-1 / 2} \hat{\Lambda}_{T}^{(1) 1 / 2}-\mathrm{I}_{q_{n} s_{n}}\right) \operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right) \mathbf{k}_{\infty} \\
& \leq \mathrm{q}_{\mathrm{h}} \mathrm{~S}_{n} \mathrm{k} \Lambda_{T}^{(1) 1 / 2} \mathbf{S}_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2} \mathrm{k}_{2} \cdot \mathrm{k} \hat{\Lambda}_{T}^{(1) 1 / 2} \Lambda_{T}^{(1)-1 / 2}-\mathrm{I}_{q_{\mathrm{n}} s_{n}} \mathrm{k}_{\max } .
\end{aligned}
$$

Together with condition (a), condition (b), Lemma 8, and Lemma 5, it can be deduced that there exist universal constants $\mathrm{C}_{5}>0$ and $\mathrm{C}_{6}>0$ such that

$$
\mathbf{P}\left[\left|\Omega_{2}\right| \leq \mathbf{c}_{5}\left\{\mathbf{q}_{n}^{2} \mathbf{s}_{n}^{2} \log \left(\mathbf{q}_{\mathbf{n}} \mathbf{s}_{n}\right) / \mathrm{n}\right\}^{1 / 2}\right] \geq 1-\mathrm{c}_{6}\left\{\left(\mathbf{q}_{\mathbf{h}} \mathbf{s}_{n}\right)^{-1}+\exp \left(-\mathrm{n} \boldsymbol{\mu}_{1} / 12\right)+\exp \left(-\mathrm{n} \pi_{2} / 12\right)\right\} .
$$

Together with (80) and (81), it can be concluded that there exist universal constants $\mathrm{C}_{7}>0$ and $\mathrm{C}_{8}>0$ such that with probability at least $1-\mathrm{C}_{7}\left\{\left(\mathbf{q}_{n} \mathbf{s}_{n}\right)^{-1}+\exp \left(-\mathrm{n} \boldsymbol{r}_{1} / 12\right)+\right.$ $\left.\exp \left(-\mathrm{n} \pi_{2} / 12\right)\right\}$,

$$
\begin{aligned}
& \left|\operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right)^{\prime} \hat{\Lambda}_{T}^{(1) 1 / 2} \mathbf{S}_{T T}^{(1)-1} \hat{\Lambda}_{T}^{(1) 1 / 2} \operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right)-\operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right)^{\prime} \Lambda_{T}^{(1) 1 / 2} \mathbf{S}_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2} \operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right)\right| \\
\leq & \mathbf{c}_{8}\left\{\mathbf{q}_{n}^{2} \mathbf{S}_{n}^{2} \log \left(\mathbf{q}_{\mathbf{n}} \mathbf{s}_{n}\right) / \mathrm{n}\right\}^{1 / 2} .
\end{aligned}
$$

Moreover, we note that

$$
\begin{aligned}
& \left\{\operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right)^{\prime} \hat{\Lambda}_{T}^{(1) 1 / 2} \mathbf{S}_{T T}^{(1)-1} \hat{\Lambda}_{T}^{(1) 1 / 2} \operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right)\right\} /\left\{\operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right)^{\prime} \Lambda_{T}^{(1) 1 / 2} \Sigma_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2} \operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right)\right\}-1 \\
\leq & \left\{\operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right)^{\prime} \Lambda_{T}^{(1) 1 / 2} \Sigma_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2} \operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right)\right\}^{-1} \\
& \cdot \operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right)^{\prime} \hat{\Lambda}_{T}^{(1) 1 / 2} S_{T T}^{(1)-1} \hat{\Lambda}_{T}^{(1) 1 / 2} \operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right)-\operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right)^{\prime} \Lambda_{T}^{(1) 1 / 2} S_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2} \operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right)+ \\
& \left\{\operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right)^{\prime} \Lambda_{T}^{(1) 1 / 2} \mathbf{S}_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2} \operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right)\right\} /\left\{\operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right)^{\prime} \Lambda_{T}^{(1) 1 / 2} \Sigma_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2} \operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right)\right\}-1 \\
\leq & \mathrm{C}_{2}\left(\mathbf{q}_{n} \mathbf{S}_{n}\right)^{-1} \operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right)^{\prime} \hat{\Lambda}_{T}^{(1) 1 / 2} \mathbf{S}_{T T}^{(1)-1} \hat{\Lambda}_{T}^{(1) 1 / 2} \operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right)-\operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right)^{\prime} \Lambda_{T}^{(1) 1 / 2} \mathbf{S}_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2} \operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right) \\
& +\left\{\operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right)^{\prime} \Lambda_{T}^{(1) 1 / 2} \mathbf{S}_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2} \operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right)\right\} /\left\{\operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right)^{\prime} \Lambda_{T}^{(1) 1 / 2} \Sigma_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2} \operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right)\right\}-1,
\end{aligned}
$$

where the last inequality is based on condition (b). Therefore, by combining Lemma 22 with the above two inequalities, we conclude that there exist universal constants $\boldsymbol{C}_{9}>0$ and $\mathrm{C}_{10}>0$ such that with probability at least $1-\mathrm{C}_{9}\left(\mathbf{q}_{n} \mathbf{S}_{n}\right)^{-1}+\{\log (\mathrm{n})\}^{-1}+\exp \left(-\mathrm{n} \pi_{1} / 12\right)+$ $\exp \left(-\mathrm{n} \boldsymbol{\pi}_{2} / 12\right)$,

$$
\left\{\operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right)^{\prime} \hat{\Lambda}_{T}^{(1) 1 / 2} \mathrm{~S}_{T T}^{(1)-1} \hat{\Lambda}_{T}^{(1) 1 / 2} \operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right)\right\} /\left\{\operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right)^{\prime} \Lambda_{T}^{(1) 1 / 2} \Sigma_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2} \operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right)\right\}-1
$$

$\leq c_{10}\left\{\log \left(\mathbf{q}_{n} \mathbf{s}_{n}\right) / n\right\}^{1 / 2}+\mathbf{q}_{n} \mathbf{s}_{n} / \mathbf{n}+\{\log \log (\mathrm{n}) / \mathrm{n}\}^{1 / 2}$
$\leq 2 \mathbf{C}_{10}\left\{\log \left(\mathbf{q}_{n} \mathbf{S}_{n}\right) / \mathrm{n}\right\}^{1 / 2}+\{\log \log (\mathrm{n}) / \mathrm{n}\}^{1 / 2}$,
which completes the proof of property 1). To show the second property, we notice the fact
that

$$
\begin{aligned}
& \left\{\operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right)^{\prime} \Lambda_{T}^{(1) 1 / 2} \Sigma_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2} \operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right)\right\} /\left\{\operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right)^{\prime} \hat{\Lambda}_{T}^{(1) 1 / 2} \mathbf{S}_{T T}^{(1)-1} \hat{\Lambda}_{T}^{(1) 1 / 2} \operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right)\right\}-1 \\
= & \left\{\operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right)^{\prime} \hat{\Lambda}_{T}^{(1) 1 / 2} \mathbf{S}_{T T}^{(1)-1} \hat{\Lambda}_{T}^{(1) 1 / 2} \operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right)\right\} /\left\{\operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right)^{\prime} \Lambda_{T}^{(1) 1 / 2} \Sigma_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2} \operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right)\right\}-1 \\
& \cdot\left\{\operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right)^{\prime} \hat{\Lambda}_{T}^{(1) 1 / 2} \mathbf{S}_{T T}^{(1)-1} \hat{\Lambda}_{T}^{(1) 1 / 2} \operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right)\right\} /\left\{\operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right)^{\prime} \Lambda_{T}^{(1) 1 / 2} \Sigma_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2} \operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right)\right\}^{-1} .
\end{aligned}
$$

Together with property 1), property 2) follows directly, which finishes the proof.
Lemma 10. Assume the following conditions (a)-(b):
(a) $\mathrm{q}_{n} \mathrm{~s}_{n}=\mathrm{O}(\mathrm{n})$.
(b) $\mathrm{C}_{1} \leq \lambda_{\text {min }}\left(\Lambda_{T}^{(1)-1 / 2} \Sigma_{T T}^{(1)} \Lambda_{T}^{(1)-1 / 2}\right) \leq \lambda_{\max }\left(\Lambda_{T}^{(1)-1 / 2} \Sigma_{T T}^{(1)} \Lambda_{T}^{(1)-1 / 2}\right) \leq \mathrm{C}_{2}$, for some universal constants $0<\mathrm{c}_{1}<\mathrm{c}_{2}$.

Then there exist universal constants $\mathrm{c}_{3}>0$ and $\mathrm{c}_{4}>0$ such that with probability at least
$1-\mathbf{c}_{3}\left[\left(\mathbf{q}_{n} \mathbf{s}_{n}\right)^{-1}+\{\log (\mathbf{n})\}^{-1}+\exp \left(-\mathrm{n} \pi_{1} / 12\right)+\exp \left(-\mathrm{n} \pi_{2} / 12\right)\right]$, we have:

$$
\begin{aligned}
& \left|\hat{\nu}_{T}^{(1)} S_{T T}^{(1)-1} \hat{\Lambda}_{T}^{(1) 1 / 2} \operatorname{sgn}\left(\beta_{T}^{(1)}\right)-\nu_{T}^{(1)^{\prime}} \Sigma_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2} \operatorname{sgn}\left(\beta_{T}^{(1)}\right)\right| \\
& \leq \mathbf{C}_{4}\left[\mathbf{q}_{n} \mathbf{s}_{n} / \mathrm{n}+\left\{\log \left(\mathbf{q}_{n} \mathbf{s}_{n}\right) / \mathrm{n}\right\}^{1 / 2}+\{\log \log (\mathrm{n}) / \mathrm{n}\}^{1 / 2}\right] \cdot\left|\boldsymbol{\nu}_{T}^{(1)^{\prime}} \Sigma_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2} \operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right)\right| \\
& +\mathbf{c}_{4}\left(\mathbf{a}_{\mathbf{n}} \mathbf{s}_{n}\right)^{1 / 2}\{\log \log (\mathrm{n}) / \mathrm{n}\}^{1 / 2}\left[1+\mathbf{v}_{T}^{(1)^{\prime}} \Sigma_{T T}^{(1)-1} \mathbf{v}_{T}^{(1)}+\left\{\mathbf{v}_{T}^{(1)^{\prime}} \Sigma_{T T}^{(1)-1} \mathbf{v}_{T}^{(1)} \log \log (\mathrm{n}) / \mathrm{n}\right\}^{1 / 2}\right]^{1 / 2} \\
& +\mathrm{c}_{4}\left(\mathrm{q}_{n} \mathbf{s}_{n}\right)^{1 / 2}\left\{\log \left(\mathrm{q}_{n} \mathbf{s}_{n}\right) / \mathrm{n}\right\}^{1 / 2}\left\{\mathbf{q}_{n} \mathbf{s}_{n} \log \left(\mathrm{q}_{n} \mathbf{s}_{n} \log \mathrm{n}\right) / \mathrm{n}\right\}^{1 / 2} \\
& \cdot\left[1+\nu_{T}^{(1)^{\prime}} \Sigma_{T T}^{(1)-1} \nu_{T}^{(1)}+\left\{\nu_{T}^{(1)^{\prime}} \Sigma_{T T}^{(1)-1} \nu_{T}^{(1)} \log \log (\mathrm{n}) / \mathrm{n}\right\}^{1 / 2}\right]^{1 / 2} .
\end{aligned}
$$

Proof of Lemma 10: First of all, we note that

$$
\begin{equation*}
\left|\hat{\nu}_{T}^{(1)^{\prime}} \mathrm{S}_{T T}^{(1)-1} \hat{\Lambda}_{T}^{(1) 1 / 2} \operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right)-v_{T}^{(1)^{\prime}} \Sigma_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2} \operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right)\right| \leq \Omega_{1}+\Omega_{2} \tag{82}
\end{equation*}
$$

where

$$
\begin{aligned}
& \Omega_{1}=\left|\hat{\nu}_{T}^{(1)^{\prime}} \Sigma_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2} \operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right)-\nu_{T}^{(1)^{\prime}} \Sigma_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2} \operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right)\right|, \\
& \Omega_{2}=\left|\hat{\nu}_{T}^{(1)^{\prime}} S_{T T}^{(1)-1} \hat{\Lambda}_{T}^{(1) 1 / 2} \operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right)-\hat{\nu}_{T}^{(1)^{\prime}} \Sigma_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2} \operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right)\right| .
\end{aligned}
$$

For the term Ω_{1}, Lemma 21 together with condition (b) imply that there exist universal constants $\mathrm{C}_{3}>0$ and $\mathrm{C}_{4}>0$ such that with probability at least $1-\mathrm{c}_{3}\left[\{\log (\mathrm{n})\}^{-1}+\right.$ $\left.\exp \left(-\mathrm{n} \pi_{1} / 12\right)+\exp \left(-\mathrm{n} \pi_{2} / 12\right)\right]$,

$$
\begin{equation*}
\Omega_{1} \leq \mathrm{c}_{4}\left\{\mathrm{q}_{\mathrm{n}} \mathrm{~s}_{n} \log \log (\mathrm{n}) / \mathrm{n}\right\}^{1 / 2} \tag{83}
\end{equation*}
$$

For the term Ω_{2}, it is clear that

$$
\begin{equation*}
\Omega_{2} \leq \Pi_{1}+\Pi_{2}, \tag{84}
\end{equation*}
$$

where

$$
\Pi_{1}=\mid \hat{\nu}_{T}^{(1)^{\prime}} \mathbf{S}_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2}\left(\Lambda_{T}^{(1)-1 / 2} \hat{\Lambda}_{T}^{(1) 1 / 2}-\mathbf{I}_{q}\right.
$$

$$
\begin{align*}
& 1-\mathrm{c}_{7}\left[\left(\mathbf{q}_{\mathbf{n}} \mathbf{s}_{n}\right)^{-1}+\right.\left.\{\log (\mathrm{n})\}^{-1}+\exp \left(-\mathrm{n} \pi_{1} / 12\right)+\exp \left(-\mathrm{n} \boldsymbol{m}_{2} / 12\right)\right] \\
& \Pi_{1} \leq \mathrm{c}_{8}\left\{\log \left(\mathbf{q}_{\mathbf{n}} \mathbf{s}_{n}\right) / \mathrm{n}\right\}^{1 / 2} \cdot\left|\mathbf{v}_{T}^{(1)^{\prime}} \Sigma_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2} \operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right)\right|+ \\
& \mathrm{c}_{8}\left\{\mathbf{q}_{\mathbf{n}} \mathbf{s}_{n} \log \left(\mathbf{q}_{n} \mathbf{s}_{n}\right) / \mathrm{n}\right\}^{1 / 2}\left\{\mathbf{q}_{\mathbf{n}} \mathbf{s}_{n} \log \left(\mathbf{q}_{\mathbf{n}} \mathbf{s}_{n} \log \mathrm{n}\right) / \mathrm{n}\right\}^{1 / 2} \\
& \cdot\left[1+\mathbf{v}_{T}^{(1)^{\prime}} \Sigma_{T T}^{(1)-1} \mathbf{v}_{T}^{(1)}+\left\{\mathbf{v}_{T}^{(1)^{\prime}} \Sigma_{T T}^{(1)-1} \mathbf{v}_{T}^{(1)} \log \log (\mathrm{n}) / \mathrm{n}\right\}^{1 / 2}\right]^{1 / 2} \tag{85}
\end{align*}
$$

To bound the term Π_{2}, we note that

$$
\begin{equation*}
\Pi_{2} \leq \mathrm{c}_{1}^{-1} \mathbf{q}_{n} \mathbf{s}_{n}\left(1+\Upsilon_{1}\right) \cdot\left|\Upsilon_{2}\right|+\left\{\left|\nu_{T}^{(1)^{\prime}} \Sigma_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2} \operatorname{sgn}\left(\beta_{T}^{(1)}\right)\right|+\Upsilon_{3}\right\} \cdot \Upsilon_{1}, \tag{86}
\end{equation*}
$$

where C_{1} is defined in condition (b) and

$$
\begin{aligned}
\Upsilon_{1}= & \left|\left\{\operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right)^{\prime} \Lambda_{T}^{(1) 1 / 2} \mathrm{~S}_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2} \operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right)\right\}\left\{\operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right)^{\prime} \Lambda_{T}^{(1) 1 / 2} \Sigma_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2} \operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right)\right\}^{-1}-1\right|, \\
\Upsilon_{2}= & \left\{\hat{\nu}_{T}^{(1)^{\prime}} \mathrm{S}_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2} \operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right)\right\}\left\{\operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right)^{\prime} \Lambda_{T}^{(1) 1 / 2} \mathrm{~S}_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2} \operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right)\right\}^{-1} \\
& -\left\{\hat{\nu}_{T}^{(1)^{\prime}} \Sigma_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2} \operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right)\right\}\left\{\operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right)^{\prime} \Lambda_{T}^{(1) 1 / 2} \Sigma_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2} \operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right)\right\}^{-1}, \\
\Upsilon_{3}= & \left|\hat{\nu}_{T}^{(1)^{\prime}} \Sigma_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2} \operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right)-\nu_{T}^{(1)^{\prime}} \Sigma_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2} \operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right)\right| .
\end{aligned}
$$

For the term Υ_{1}, Lemma 22 entails that there exist universal constants $\mathrm{C}_{9}>0$ and $\mathrm{C}_{10}>0$ such that with probability at least $1-\mathrm{C}_{9}\left[\{\log (\mathrm{n})\}^{-1}+\exp \left(-\mathrm{n} \pi_{1} / 12\right)+\exp \left(-\mathrm{n} \pi_{2} / 12\right)\right]$,

$$
\begin{equation*}
\Upsilon_{1} \leq c_{10}\left[\mathbf{q}_{n} \mathbf{s}_{n} / \mathrm{n}+\{\log \log (\mathrm{n}) / \mathrm{n}\}^{1 / 2}\right] \tag{87}
\end{equation*}
$$

For the term Υ_{2}, by using similar arguments as in the proof of Lemma 23, it can be deduced that there exist universal constants $\mathrm{C}_{11}>0$ and $\mathrm{C}_{12}>0$ such that conditional on any nonempty $\left\{\mathrm{Y}_{i}=\mathrm{y}_{i}\right\}_{i=1}^{n} \cap \mathrm{M}_{n} \cap\left\{\hat{\nu}_{T}\right\}$, and for any $\mathrm{t} \geq 0$,

$$
\begin{aligned}
& \mathrm{P}\left|\Upsilon_{2}\right| \geq \mathrm{t}\left\{\mathrm{Y}_{i}=\mathrm{y}_{i}\right\}_{i=1}^{n} \cap \mathrm{M}_{n} \cap\left\{\hat{\nu}_{T}\right\} \\
\leq & \mathrm{c}_{11} \exp -\mathrm{c}_{12} \mathrm{n}\left\{\hat{\nu}_{T}^{\prime} \Sigma_{T T}^{(1)-1} \hat{\nu}_{T}\right\}^{-1}\left\{\operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right)^{\prime} \Lambda_{T}^{(1) 1 / 2} \Sigma_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2} \operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right)\right\} \mathrm{t}^{2}
\end{aligned}
$$

By plugging $\mathbf{t}=\mathrm{C}_{13}\left\{\mathcal{\nu}_{T}^{\prime} \Sigma_{T T}^{(1)-1} \mathcal{\nu}_{T}\right\}^{1 / 2}\left\{\operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right)^{\prime} \Lambda_{T}^{(1) 1 / 2} \Sigma_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2} \operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right)\right\}^{-1 / 2}\{\log \log (\mathrm{n}) / \mathrm{n}\}^{1 / 2}$ with $\mathrm{C}_{13}=\mathrm{C}_{12}^{-1 / 2}$ into the above inequality, it yields that

$$
\begin{align*}
\mathrm{P} & \left|\Upsilon_{2}\right| \leq \mathrm{C}_{13}\left\{\hat{\nu}_{T}^{\prime} \Sigma_{T T}^{(1)-1} \hat{\nu}_{T}\right\}^{1 / 2}\left\{\operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right)^{\prime} \Lambda_{T}^{(1) 1 / 2} \Sigma_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2} \operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right)\right\}^{-1 / 2} \\
& \cdot\{\log \log (\mathrm{n}) / \mathrm{n}\}^{1 / 2}\left\{\mathrm{Y}_{i}=\mathrm{y}_{i}\right\}_{i=1}^{n} \cap \mathrm{M}_{n} \cap\left\{\hat{\nu}_{T}\right\} \\
\geq & 1-\mathrm{c}_{11}\{\log (\mathrm{n})\}^{-1} . \tag{88}
\end{align*}
$$

Therefore, we have

$$
\begin{aligned}
& \mathrm{P}\left|\Upsilon_{2}\right| \leq \mathrm{C}_{13}\left\{\hat{\nu}_{T}^{\prime} \Sigma_{T T}^{(1)-1} \hat{\nu}_{T}\right\}^{1 / 2}\left\{\operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right)^{\prime} \Lambda_{T}^{(1) 1 / 2} \Sigma_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2} \operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right)\right\}^{-1 / 2} \\
& \cdot\{\log \log (n) / n\}^{1 / 2} \\
& \geq \mathrm{X}_{\left.\left\{y_{i}\right\}\right\}_{i=1}^{\mathrm{n}} \in \mathcal{M}_{\mathrm{n}}} \mathrm{P}\left|\Upsilon_{2}\right| \leq \mathrm{C}_{13}\left\{\mathcal{\nu}_{T}^{\prime} \Sigma_{T T}^{(1)-1} \boldsymbol{\nu}_{T}\right\}^{1 / 2}\left\{\operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right)^{\prime} \Lambda_{T}^{(1) 1 / 2} \Sigma_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2} \operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right)\right\}^{-1 / 2} \\
& \cdot\{\log \log (\mathrm{n}) / \mathrm{n}\}^{1 / 2}\left\{\mathrm{Y}_{i}=\mathrm{y}_{i}\right\}_{i=1}^{n} \cdot \mathrm{P} \quad\left\{\mathrm{Y}_{i}=\mathrm{y}_{i}\right\}_{i=1}^{n}
\end{aligned}
$$

$$
\begin{aligned}
& \cdot\{\log \log (\mathrm{n}) / \mathrm{n}\}^{1 / 2}\left\{\mathrm{Y}_{i}=\mathrm{y}_{i}\right\}_{i=1}^{n} \cap\left\{\hat{\nu}_{T}\right\} \cdot \mathrm{f}\left(\hat{\nu}_{T} \mid\left\{\mathrm{Y}_{i}=\mathrm{y}_{i}\right\}_{i=1}^{n}\right) \mathrm{d}_{T}{ }^{\mathrm{O}} \cdot \mathrm{P} \quad\left\{\mathrm{Y}_{i}=\mathrm{y}_{i}\right\}_{i=1}^{n} \\
& \geq\left[1-\mathrm{C}_{11}\{\log (\mathrm{n})\}^{-1}\right] \cdot \underset{\left\{y_{i}\right\}_{i=1}^{\mathrm{n}} \in \mathcal{M}_{\mathrm{n}}}{\mathrm{X}}\left\{\mathrm{Y}_{i}=\mathrm{y}_{i}\right\}_{i=1}^{n}=\left[1-\mathrm{c}_{11}\{\log (\mathrm{n})\}^{-1}\right] \cdot \mathrm{P}\left(\mathrm{M}_{n}\right) \\
& \geq 1-\mathrm{C}_{14}\{\log (\mathrm{n})\}^{-1}+\exp \left(-\mathrm{n} \pi_{1} / 12\right)+\exp \left(-\mathrm{n} \pi_{2} / 12\right),
\end{aligned}
$$

for some universal constant $\mathrm{C}_{14}>0$, where $\mathrm{f}\left(\boldsymbol{\nu}_{T} \mid\left\{\mathrm{Y}_{i}=\mathrm{y}_{i}\right\}_{i=1}^{n}\right)$ denotes the conditional density function, and the second inequality is by (88). Together with Lemma 19 yields the result that there exist universal constants $\mathrm{C}_{15}>0$ and $\mathrm{C}_{16}>0$ such that with probability at least $1-\mathrm{C}_{15}\left[\{\log (\mathrm{n})\}^{-1}+\exp \left(-\mathrm{n} \boldsymbol{r}_{1} / 12\right)+\exp \left(-\mathrm{n} \pi_{2} / 12\right)\right]$,

$$
\begin{align*}
\left|\Upsilon_{2}\right| \leq & \mathrm{c}_{16}\left[\mathbf{q}_{\mathbf{n}} \mathbf{s}_{n} / \mathrm{n}+\log \log (\mathrm{n}) / \mathrm{n}+v_{T}^{(1)^{\prime}} \Sigma_{T T}^{(1)-1} \mathbf{v}_{T}^{(1)}+\left\{\mathbf{v}_{T}^{(1)^{\prime}} \Sigma_{T T}^{(1)-1} \mathbf{v}_{T}^{(1)} \log \log (\mathrm{n}) / \mathrm{n}\right\}^{1 / 2}\right]^{1 / 2} \\
& \cdot\left(\mathbf{q}_{\mathbf{n}} \mathbf{s}_{n}\right)^{-1 / 2}\{\log \log (\mathrm{n}) / \mathrm{n}\}^{1 / 2} \tag{89}
\end{align*}
$$

For the term Υ_{3}, Lemma 21 leads to the result that there exist universal constants $\mathrm{C}_{17}>0$ and $\mathrm{C}_{18}>0$ such that with probability at least $1-\mathrm{C}_{17}\left[\{\log (\mathrm{n})\}^{-1}+\exp \left(-\mathrm{n} \pi_{1} / 12\right)+\right.$ $\left.\exp \left(-\mathrm{n} \pi_{2} / 12\right)\right]$,

$$
\Upsilon_{3} \leq c_{18}\left\{q_{n} s_{n} \log \log (n) / n\right\}^{1 / 2}
$$

Together with (87), (89) and (86), it can be observed that there exist universal constants $\mathrm{C}_{19}>0$ and $\mathrm{C}_{20}>0$ such that with probability at least $1-\mathrm{C}_{19}\left[\{\log (\mathrm{n})\}^{-1}+\exp \left(-\mathrm{n} \pi_{1} / 12\right)+\right.$ $\left.\exp \left(-\mathrm{n} \pi_{2} / 12\right)\right]$,
$\Pi_{2} \leq \mathrm{c}_{20}\left[\mathbf{q}_{n} \mathbf{s}_{n} / \mathrm{n}+\log \log (\mathrm{n}) / \mathrm{n}+\boldsymbol{v}_{T}^{(1)^{\prime}} \Sigma_{T T}^{(1)-1} \mathbf{v}_{T}^{(1)}+\left\{\boldsymbol{v}_{T}^{(1)^{\prime}} \Sigma_{T T}^{(1)-1} \mathbf{v}_{T}^{(1)} \log \log (\mathrm{n}) / \mathrm{n}\right\}^{1 / 2}\right]^{1 / 2}$
$\cdot\left(\mathbf{q}_{\mathbf{n}} \mathbf{s}_{n}\right)^{1 / 2}\{\log \log (\mathbf{n}) / \mathbf{n}\}^{1 / 2}+\mathbf{c}_{20}\left[\mathbf{q}_{\mathbf{n}} \mathbf{s}_{n} / \mathbf{n}+\{\log \log (\mathrm{n}) / \mathbf{n}\}^{1 / 2}\right] \cdot\left|\mathbf{\nu}_{T}^{(1)^{\prime}} \Sigma_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2} \operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right)\right|$ $+\mathrm{c}_{20}\left\{\mathbf{q}_{n} \mathbf{s}_{n} \log \log (\mathrm{n}) / \mathrm{n}\right\}^{1 / 2} \cdot\left[\mathbf{q}_{n} \mathbf{s}_{n} / \mathrm{n}+\{\log \log (\mathrm{n}) / \mathrm{n}\}^{1 / 2}\right]$.

Together with (84) and (85), there exist universal constants $\boldsymbol{C}_{21}>0$ and $\boldsymbol{C}_{22}>0$ such that with probability at least $1-\mathrm{C}_{21}\left[\left(\mathbf{q}_{\mathbf{n}} \mathbf{s}_{n}\right)^{-1}+\{\log (\mathrm{n})\}^{-1}+\exp \left(-\mathrm{n} \boldsymbol{\pi}_{1} / 12\right)+\exp \left(-\mathrm{n} \pi_{2} / 12\right)\right]$,

$$
\begin{aligned}
& \Omega_{2} \leq \mathrm{c}_{22}\left(\mathbf{q}_{\mathbf{n}} \mathbf{s}_{n}\right)^{1 / 2}\{\log \log (\mathrm{n}) / \mathrm{n}\}^{1 / 2} \\
& \cdot\left[\mathbf{q}_{\mathbf{n}} \mathbf{s}_{n} / \mathrm{n}+\log \log (\mathrm{n}) / \mathrm{n}+\mathbf{v}_{T}^{(1)^{\prime}} \Sigma_{T T}^{(1)-1} \mathbf{v}_{T}^{(1)}+\left\{\boldsymbol{v}_{T}^{(1)^{\prime}} \Sigma_{T T}^{(1)-1} \mathbf{v}_{T}^{(1)} \log \log (\mathrm{n}) / \mathrm{n}\right\}^{1 / 2}\right]^{1 / 2} \\
& +\mathrm{c}_{22}\left[\mathbf{q}_{n} \mathbf{s}_{n} / \mathrm{n}+\left\{\log \left(\mathbf{q}_{n} \mathbf{s}_{n}\right) / \mathrm{n}\right\}^{1 / 2}+\{\log \log (\mathrm{n}) / \mathrm{n}\}^{1 / 2}\right] \cdot\left|\mathbf{v}_{T}^{(1)^{\prime}} \Sigma_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2} \operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right)\right| \\
& +\mathrm{c}_{22}\left\{\mathbf{q}_{n} \mathbf{s}_{n} \log \log (\mathrm{n}) / \mathrm{n}\right\}^{1 / 2} \cdot\left[\mathbf{q}_{n} \mathbf{s}_{n} / \mathrm{n}+\{\log \log (\mathrm{n}) / \mathrm{n}\}^{1 / 2}\right] \\
& +\mathrm{c}_{22}\left\{\mathbf{q}_{n} \mathbf{s}_{n} \log \left(\mathbf{q}_{n} \mathbf{s}_{n}\right) / \mathrm{n}\right\}^{1 / 2}\left\{\mathbf{q}_{n} \mathbf{s}_{n} \log \left(\mathbf{q}_{n} \mathbf{s}_{n} \log \mathrm{n}\right) / \mathrm{n}\right\}^{1 / 2} \\
& \cdot\left[1+\mathbf{v}_{T}^{(1)^{\prime}} \Sigma_{T T}^{(1)-1} \mathbf{v}_{T}^{(1)}+\left\{\mathbf{v}_{T}^{(1)^{\prime}} \Sigma_{T T}^{(1)-1} \mathbf{v}_{T}^{(1)} \log \log (\mathrm{n}) / \mathrm{n}\right\}^{1 / 2}\right]^{1 / 2} .
\end{aligned}
$$

Together with (82) and (83), it can be concluded that there exist universal constants $\mathrm{c}_{23}>0$ and $\mathrm{C}_{24}>0$ such that with probability at least $1-\mathrm{c}_{23}\left[\left(\mathrm{q}_{n} \mathbf{s}_{n}\right)^{-1}+\{\log (\mathrm{n})\}^{-1}+\right.$
$\left.\exp \left(-\mathrm{n} \pi_{1} / 12\right)+\exp \left(-\mathrm{n} \pi_{2} / 12\right)\right]$,

$$
\begin{aligned}
& \left|\mathbf{\nu}_{T}^{(1) \prime} \mathrm{S}_{T T}^{(1)-1} \hat{\Lambda}_{T}^{(1) 1 / 2} \operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right)-\nu_{T}^{(1)^{\prime}} \Sigma_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2} \operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right)\right| \\
& \leq \mathbf{C}_{24}\left[\mathbf{q}_{\mathbf{n}} \mathbf{s}_{n} / \mathbf{n}+\left\{\log \left(\mathbf{q}_{\mathbf{n}} \mathbf{s}_{n}\right) / \mathbf{n}\right\}^{1 / 2}+\{\log \log (\mathrm{n}) / \mathrm{n}\}^{1 / 2}\right] \cdot\left|\mathbf{\nu}_{T}^{(1)^{\prime}} \Sigma_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2} \operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right)\right|
\end{aligned}
$$

$$
\begin{aligned}
& +\mathrm{C}_{24}\left(\mathbf{q}_{n} \mathbf{s}_{n}\right)^{1 / 2}\left\{\log \left(\mathbf{q}_{n} \mathbf{s}_{n}\right) / n\right\}^{1 / 2}\left\{\mathbf{q}_{n} \mathbf{s}_{n} \log \left(\mathbf{q}_{n} \mathbf{s}_{n} \log \mathrm{n}\right) / \mathrm{n}\right\}^{1 / 2} \\
& \cdot\left[1+\mathbf{v}_{T}^{(1)^{\prime}} \Sigma_{T T}^{(1)-1} \nu_{T}^{(1)}+\left\{\nu_{T}^{(1)^{\prime}} \Sigma_{T T}^{(1)-1} \nu_{T}^{(1)} \log \log (\mathrm{n}) / \mathrm{n}\right\}^{1 / 2}\right]^{1 / 2},
\end{aligned}
$$

which completes the proof.

Lemma 11. Assume the following conditions (a)-(d):
(a) $\max \left\{\mathbf{q}_{n}^{2} \mathbf{s}_{n}^{2} \log \left(\mathbf{q}_{n} \mathbf{s}_{n}\right), \mathbf{q}_{n} \mathbf{s}_{n} \log \left(\mathbf{p}_{n}-\mathbf{q}_{n}\right)\right\}=\mathbf{O}(\mathrm{n})$.
(b) $\mathrm{C}_{1} \leq \lambda_{\min }\left(\Lambda_{T}^{(1)-1 / 2} \Sigma_{T T}^{(1)} \Lambda_{T}^{(1)-1 / 2}\right) \leq \lambda_{\max }\left(\Lambda_{T}^{(1)-1 / 2} \Sigma_{T T}^{(1)} \Lambda_{T}^{(1)-1 / 2}\right) \leq \mathrm{C}_{2}$, for some universal constants $0<\mathrm{C}_{1}<\mathrm{C}_{2}$.
(c) $\mathrm{K}_{1} \log \left\{\left(\mathrm{p}_{n}-\mathrm{q}_{n}\right) \mathrm{S}_{n} \log \mathrm{n}\right\} /\left(\mathrm{n} \lambda_{n}^{2}\right) \leq{ }^{\mathrm{P}} \underset{j \in T}{ } \mathrm{P}_{s_{n=1}} \omega_{j k} \beta_{j k}^{2} \leq \mathrm{K}_{2} \log \left\{\left(\mathrm{p}_{n}-\mathrm{q}_{n}\right) \mathrm{S}_{n} \log \mathrm{n}\right\} /\left(\mathrm{n} \lambda_{n}^{2}\right) \rightarrow$ ∞, for some sufficiently large universal constants $K_{2}>K_{1}>0$.
(d) $\operatorname{minmin}_{j \in T} \omega_{k \leq s_{n}}^{1 / 2}\left|\beta_{j k}\right|>K_{3}\left[\log \left\{\left(\mathbf{p}_{n}-\mathbf{q}_{n}\right) \mathrm{s}_{n} \log \mathrm{n}\right\} /\left(\mathrm{n} \lambda_{n}^{2}\right)\right]^{1 / 2}\left\{\log \left(\mathbf{q}_{\mathbf{n}} \mathrm{s}_{n} \log \mathrm{n}\right) / \mathrm{n}\right\}^{1 / 2}+$
$\mathrm{K}_{3}\left[\log \left\{\left(\mathrm{p}_{n}-\mathbf{q}_{n}\right) \mathbf{S}_{n} \log \mathrm{n}\right\} /\left(\mathrm{n} \lambda_{n}\right)\right] \cdot \mathrm{k} \Lambda_{T}^{(1) 1 / 2} \Sigma_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2} \operatorname{sgn}\left(\beta_{T}^{(1)}\right) \mathrm{K}_{\infty}+\mathrm{K}_{3}\left[\log \left\{\left(\mathrm{p}_{n}-\mathbf{q}_{n}\right) \mathrm{s}_{n} \log \mathrm{n}\right\} /\left(\mathrm{n} \lambda_{n}\right)\right]$. $\left[\left\{q_{n} s_{n} \log \left(q_{n} s_{n}\right) / n\right\}^{1 / 2}+\left\{q_{n} s_{n} \log \log (n) / n\right\}^{1 / 2}\right]$, for some sufficiently large universal constant $\mathrm{K}_{3}>0$.

Then there exists a universal constant $\mathrm{C}_{3}>0$ such that:

$$
\begin{aligned}
& \mathrm{P}\left\{\operatorname{sgn}\left(\check{\mathbf{v}}_{T}\right)=\operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right)=\operatorname{sgn}\left(\hat{\boldsymbol{\beta}}_{T}^{(1)}\right)\right\} \\
\geq & 1-\mathrm{C}_{3}\left[\left(\mathbf{q}_{\mathbf{n}} \mathbf{s}_{n}\right)^{-1}+\{\log (\mathrm{n})\}^{-1}+\exp \left(-\mathrm{n} \pi_{1} / 12\right)+\exp \left(-\mathrm{n} \pi_{2} / 12\right)\right],
\end{aligned}
$$

where $\hat{\boldsymbol{\beta}}_{T}^{(1)}=\mathrm{S}_{T T}^{(1)-1} \nu_{T}^{(1)}$, and also recall that $\tilde{\mathrm{V}}_{T}$ is defined in Lemma 2.

Proof of Lemma 11: First of all, we denote the two index sets S_{1} and S_{2} as

$$
\mathrm{S}_{1}=\left\{\mathrm{k}: \mathrm{e}_{k}^{\prime} \Sigma_{T T}^{(1)-1} \mathbf{v}_{T}^{(1)}>0\right\}, \quad \mathrm{S}_{2}=\left\{\mathrm{k}: \mathrm{e}_{k}^{\prime} \Sigma_{T T}^{(1)-1} \nu_{T}^{(1)}<0\right\} .
$$

By definition, we have $S_{1} \cup S_{2}=\left\{1, \ldots, q_{n} \mathbf{S}_{n}\right\}$. Moreover, by using Lemma 23 and conditions (a)-(c), it can be shown that there exist universal constants $\mathrm{C}_{3}>0$ and $\mathrm{C}_{4}>0$ such that

$$
\begin{align*}
& \mathrm{P}^{\mathrm{h} \backslash} \quad \mathrm{n} \mathrm{e}_{k}^{\prime} \Lambda_{T}^{(1) 1 / 2} \mathrm{~S}_{T T}^{(1)-1} \nu_{T}^{(1)} \geq \mathrm{e}_{k}^{\prime} \Lambda_{T}^{(1) 1 / 2} \Sigma_{T T}^{(1)-1} \nu_{T}^{(1)} \\
& k \in \mathcal{S}_{1} \\
& -\mathbf{c}_{3}\left[\mathbf{q}_{\mathbf{n}} \mathbf{s}_{n} / \mathbf{n}+\left\{\log \left(\mathbf{q}_{n} \mathbf{s}_{n} \log \mathbf{n}\right) / \mathbf{n}\right\}^{1 / 2}\right] \cdot \mathrm{e}_{k}^{\prime} \Lambda_{T}^{(1) 1 / 2} \Sigma_{T T}^{(1)-1} \mathbf{\nu}_{T}^{(1)} \\
& -\mathrm{c}_{3}\left\{\log \left(\mathrm{q}_{\mathrm{n}} \mathrm{~s}_{\mathrm{n}} \log \mathrm{n}\right) / \mathrm{n}\right\}^{1 / 2} \cdot\left\{\mathbf{v}_{T}^{(1)^{\prime}} \Sigma_{T T}^{(1)-1} \boldsymbol{\nu}_{T}^{(1)}\right\}^{1 / 2} \text { oi } \\
& \geq 1-\mathrm{C}_{4}\left[\{\log (\mathrm{n})\}^{-1}+\exp \left(-\mathrm{n} \pi_{1} / 12\right)+\exp \left(-\mathrm{n} \pi_{2} / 12\right)\right] . \tag{90}
\end{align*}
$$

For the term $\boldsymbol{v}_{T}^{(1)^{\prime}} \Sigma_{T T}^{(1)-1} \boldsymbol{v}_{T}^{(1)}$, conditions (b) and (c) entail that

$$
\boldsymbol{\nu}_{T}^{(1)^{\prime}} \Sigma_{T T}^{(1)-1} \boldsymbol{\nu}_{T}^{(1)} \sim \log \left\{\left(\mathrm{p}_{n}-\mathrm{q}_{n}\right) \mathbf{s}_{n} \log \mathrm{n}\right\} /\left(\mathrm{n} \lambda_{n}^{2}\right) \rightarrow \infty, \quad \text { as } \mathrm{n} \rightarrow \infty .
$$

Together with (90), there exist positive universal constants $\mathbf{C}_{5}, \mathbf{C}_{6}$ and \mathbf{C}_{7} such that

$$
\begin{align*}
& \mathrm{P}^{\mathrm{h} \backslash}{ }_{k \in \mathcal{S}_{1}} \mathrm{e}_{k}^{\prime} \Lambda_{T}^{(1) 1 / 2} \mathrm{~S}_{T T}^{(1)-1} \hat{\nu}_{T}^{(1)} \geq \mathrm{c}_{5} \mathrm{e}_{k}^{\prime} \Lambda_{T}^{(1) 1 / 2} \Sigma_{T T}^{(1)-1} \nu_{T}^{(1)} \\
& \quad-\mathrm{c}_{6}\left[\log \left\{\left(\mathrm{p}_{n}-\mathrm{q}_{n}\right) \mathrm{s}_{n} \log \mathrm{n}\right\} /\left(\mathrm{n} \lambda_{n}^{2}\right)\right]^{1 / 2}\left\{\log \left(\mathrm{q}_{n} \mathrm{~s}_{n} \log \mathrm{n}\right) / \mathrm{n}\right\}^{1 / 2} \mathrm{oi} \\
& \geq 1-\mathrm{c}_{7}\left[\{\log (\mathrm{n})\}^{-1}+\exp \left(-\mathrm{n} \pi_{1} / 12\right)+\exp \left(-\mathrm{n} \pi_{2} / 12\right)\right] . \tag{91}
\end{align*}
$$

By choosing $K_{3}>C_{6} / C_{5}$ in condition (d), (91) together with condition (d) further implies that

$$
\mathrm{P}_{k \in \mathcal{S}_{1}}^{\mathrm{h} \backslash \mathrm{n}} \mathrm{e}_{k}^{\prime} \Lambda_{T}^{(1) 1 / 2} \mathrm{~S}_{T T}^{(1)-1} \hat{\nu}_{T}^{(1)}>0{ }^{\mathrm{oi}} \geq 1-\mathrm{c}_{T}\left[\{\log (\mathrm{n})\}^{-1}+\exp \left(-\mathrm{n} \pi_{1} / 12\right)+\exp \left(-\mathrm{n} \pi_{2} / 12\right)\right]
$$

Likewise, it can be deduced that there exists a universal constant $\mathrm{C}_{8}>0$ such that

$$
\mathrm{P} \underset{k \in \mathcal{S}_{2}}{\mathrm{~h} \backslash} \mathrm{e}_{k}^{\prime} \Lambda_{T}^{(1) 1 / 2} \mathrm{~S}_{T T}^{(1)-1} \hat{\nu}_{T}^{(1)}<0 \quad \mathrm{oi} \geq 1-\mathrm{c}_{8}\left[\{\log (\mathrm{n})\}^{-1}+\exp \left(-\mathrm{n} \pi_{1} / 12\right)+\exp \left(-\mathrm{n} \pi_{2} / 12\right)\right]
$$

Putting the above two inequalities together implies that there exists a universal constant $\mathrm{C}_{9}>0$ such that

$$
\begin{equation*}
\mathbf{P}\left\{\operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right)=\operatorname{sgn}\left(\hat{\boldsymbol{\beta}}_{T}^{(1)}\right)\right\} \geq 1-\mathbf{c}_{9}\left[\{\log (\mathbf{n})\}^{-1}+\exp \left(-\mathrm{n} \boldsymbol{\pi}_{1} / 12\right)+\exp \left(-\mathrm{n} \pi_{2} / 12\right)\right] \tag{92}
\end{equation*}
$$

Moreover, it can be recalled from Lemma 2 that the quantity $\tilde{\mathbf{v}}_{T}$ can be formulated as

$$
\tilde{\mathbf{v}}_{T}=\hat{\vartheta} \mathrm{S}_{T T}^{(1)-1} \hat{\nu}_{T}^{(1)}-\lambda_{n} \mathrm{~S}_{T T}^{(1)-1} \hat{\Lambda}_{T}^{(1) 1 / 2} \operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right)
$$

where

$$
\begin{aligned}
& \hat{\vartheta}=\left\{\mathrm{n}_{1} \mathrm{n}_{2} \mathrm{n}^{-1}(\mathrm{n}-2)^{-1}\right\}\left\{1+\lambda_{n} \hat{\nu}_{T}^{(1)^{\prime}} \mathrm{S}_{T T}^{(1)-1} \hat{\Lambda}_{T}^{(1) 1 / 2} \operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right)\right\} \\
& \cdot 1+\left\{\mathrm{n}_{1} \mathrm{n}_{2} \mathrm{n}^{-1}(\mathrm{n}-2)^{-1}\right\} \hat{\nu}_{T}^{(1)^{\prime}} \mathrm{S}_{T T}^{(1)-1} \hat{\nu}_{T}^{(1)-1}
\end{aligned}
$$

To this end, by combining conditions (a)-(c) with Lemma 10, it can be deduced that there exists a universal constant $\mathrm{C}_{10}>0$ such that with probability at least $1-\mathrm{C}_{10}\left[\left(\mathbf{q}_{n} \mathbf{s}_{n}\right)^{-1}+\right.$ $\left.\{\log (\mathbf{n})\}^{-1}+\exp \left(-\mathrm{n} \pi_{1} / 12\right)+\exp \left(-\mathrm{n} \boldsymbol{\pi}_{2} / 12\right)\right]$,

$$
\boldsymbol{\lambda}_{n} \boldsymbol{\nu}_{T}^{(1)^{\prime}} \mathrm{S}_{T T}^{(1)-1} \hat{\Lambda}_{T}^{(1) 1 / 2}{ }_{\operatorname{sgn}}\left(\boldsymbol{\beta}_{T}^{(1)}\right)=\boldsymbol{\lambda}_{n} \boldsymbol{\nu}_{T}^{(1)^{\prime}} \Sigma_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2} \operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right)\{1+\mathbf{o}(1)\}+\mathbf{o}(1)
$$

Similarly, by combining conditions (a)-(c) with Lemma 4, it can be deduced that there exists a universal constant $\mathrm{C}_{11}>0$ such that with probability at least $1-\mathrm{C}_{11}\left[\{\log (\mathrm{n})\}^{-1}+\right.$ $\left.\exp \left(-\mathrm{n} \pi_{1} / 12\right)+\exp \left(-\mathrm{n} \pi_{2} / 12\right)\right]$,

$$
\boldsymbol{\nu}_{T}^{(1)^{\prime}} \mathbf{S}_{T T}^{(1)-1} \boldsymbol{\nu}_{T}^{(1)}=\mathbf{v}_{T}^{(1)^{\prime}} \Sigma_{T T}^{(1)-1} \mathbf{v}_{T}^{(1)}\{1+\mathbf{o}(1)\} .
$$

According to the above three inequalities and Lemma 3, it can be concluded that there exist universal constants $\mathrm{C}_{12}>0$ and $\mathrm{C}_{13}>0$ such that with probability at least $1-\mathrm{C}_{12}\left[\left(\mathbf{q}_{n} \mathbf{s}_{n}\right)^{-1}+\right.$ $\left.\{\log (\mathrm{n})\}^{-1}+\exp \left(-\mathrm{n} \pi_{1} / 12\right)+\exp \left(-\mathrm{n} \boldsymbol{\pi}_{2} / 12\right)\right]$,

$$
\hat{\vartheta} \geq c_{13} \Pi_{1} \Pi_{2}\left\{1+\lambda_{n} \nu_{T}^{(1)^{\prime}} \Sigma_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2} \operatorname{sgn}\left(\beta_{T}^{(1)}\right)\right\}\left\{1+\Pi_{1} \Pi_{2} \nu_{T}^{(1)^{\prime}} \Sigma_{T T}^{(1)-1} \nu_{T}^{(1)}\right\}^{-1} .
$$

For the term $\boldsymbol{\lambda}_{n} \boldsymbol{\nu}_{T}^{(1)^{\prime}} \Sigma_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2} \operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right)$, one has

$$
\begin{align*}
& \lambda_{n} \boldsymbol{v}_{T}^{(1)^{\prime}} \Sigma_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2} \operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right) \leq \lambda_{n}\left\{\nu_{T}^{(1)^{\prime}} \Sigma_{T T}^{(1)-1} \boldsymbol{v}_{T}^{(1)}\right\}^{1 / 2} \times \\
& \left\{\operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right)^{\prime} \Lambda_{T}^{(1) 1 / 2} \Sigma_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2} \operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right)\right\}^{1 / 2} \lesssim \lambda_{n}\left\{\mathbf{q}_{n} \mathbf{s}_{n} \boldsymbol{v}_{T}^{(1)^{\prime}} \Sigma_{T T}^{(1)-1} \nu_{T}^{(1)}\right\}^{1 / 2} \\
& \lesssim\left[\mathbf{q}_{n} \mathbf{s}_{n} \log \left\{\left(\mathbf{p}_{n}-\mathbf{q}_{\mathbf{n}}\right) \mathbf{s}_{n} \log \mathrm{n}\right\} / \mathrm{n}\right]^{1 / 2} \lesssim \mathrm{o}(1), \tag{93}
\end{align*}
$$

where the second and the third inequalities are based on (b) and (c), and the last inequality follows from (a). Piecing the above two inequalities together yields that there exist universal constants $\mathrm{C}_{14}>0$ and $\mathrm{C}_{15}>0$ such that with probability at least $1-\mathrm{C}_{14}\left[\left(\mathbf{q}_{\mathbf{n}} \mathbf{s}_{n}\right)^{-1}+\right.$ $\left.\{\log (\mathrm{n})\}^{-1}+\exp \left(-\mathrm{n} \boldsymbol{\pi}_{1} / 12\right)+\exp \left(-\mathrm{n} \boldsymbol{\pi}_{2} / 12\right)\right]$,

$$
\hat{\vartheta} \geq c_{15}\left\{\nu_{T}^{(1)^{\prime}} \Sigma_{T T}^{(1)-1} \nu_{T}^{(1)}\right\}^{-1}
$$

Together with (91) and (92), it can be deduced that there exist universal constants $\mathbf{C}_{16}, \mathrm{C}_{17}, \mathrm{C}_{18}>$ 0 such that

$$
\begin{aligned}
& \mathrm{P}_{k \in \mathcal{S}_{1}}^{\mathrm{h} \backslash} \hat{\mathrm{e}}_{k} \mathrm{e}_{T}^{(1) 1 / 2} \mathrm{~S}_{T T}^{(1)-1} \hat{\nu}_{T}^{(1)} \geq \mathrm{c}_{17}\left\{\boldsymbol{\nu}_{T}^{(1)^{\prime}} \Sigma_{T T}^{(1)-1} \boldsymbol{\nu}_{T}^{(1)}\right\}^{-1}\left(\mathrm{e}_{k}^{\prime} \Lambda_{T}^{(1) 1 / 2} \Sigma_{T T}^{(1)-1} \boldsymbol{\nu}_{T}^{(1)}\right. \\
& \left.-\mathrm{c}_{18}\left[\log \left\{\left(\mathrm{p}_{n}-\mathbf{q}_{n}\right) \mathrm{s}_{n} \log \mathrm{n}\right\} /\left(\mathrm{n} \lambda_{n}^{2}\right)\right]^{1 / 2}\left\{\log \left(\mathrm{q}_{n} \mathbf{s}_{n} \log \mathrm{n}\right) / \mathrm{n}\right\}^{1 / 2}\right) \text { oi } \\
& \geq 1-\mathbf{C}_{16}\left[\left(\mathbf{q}_{n} \mathbf{s}_{n}\right)^{-1}+\{\log (\mathbf{n})\}^{-1}+\exp \left(-\mathrm{n} \boldsymbol{\pi}_{1} / 12\right)+\exp \left(-\mathrm{n} \boldsymbol{\pi}_{2} / 12\right)\right] .
\end{aligned}
$$

In addition, utilizing Lemma 24 and conditions (a)-(c), it can also be justified that there
exist universal constants $\mathrm{C}_{19}>0$ and $\mathrm{C}_{20}>0$ such that

$$
\begin{aligned}
& \mathrm{P}^{\mathrm{h} \backslash}{ }_{k \in \mathcal{S}_{1}} \lambda_{n}\left|\mathrm{e}_{k}^{\prime} \Lambda_{T}^{(1) 1 / 2} \mathbf{S}_{T T}^{(1)-1} \hat{\Lambda}_{T}^{(1) 1 / 2} \operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right)\right| \leq \lambda_{n}\left|\mathrm{e}_{k} \Lambda_{T}^{(1) 1 / 2} \Sigma_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2} \operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right)\right| \\
& \quad+\mathrm{c}_{19} \lambda_{n}\left[\mathbf{q}_{n} \mathbf{s}_{n} / \mathrm{n}+\left\{\log \left(\mathbf{q}_{n} \mathbf{s}_{n} \log \mathrm{n}\right) / \mathrm{n}\right\}^{1 / 2}\right] \cdot\left|\mathrm{e}_{k}^{\mathrm{e}} \Lambda_{T}^{(1) 1 / 2} \Sigma_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2} \operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right)\right| \\
& \quad+\mathrm{c}_{19} \lambda_{n}\left[\left\{\mathbf{q}_{n} \mathbf{s}_{n} \log \left(\mathbf{q}_{n} \mathbf{s}_{n}\right) / \mathrm{n}\right\}^{1 / 2}+\left\{\mathbf{q}_{\mathbf{n}} \mathbf{s}_{n} \log \log (\mathrm{n}) / \mathrm{n}\right\}^{1 / 2}\right] \\
& \mathrm{oi} \\
& \geq 1-\mathrm{c}_{20}\left[\left(\mathbf{q}_{n} \mathbf{s}_{n}\right)^{-1}+\{\log (\mathrm{n})\}^{-1}+\exp \left(-\mathrm{n} \pi_{1} / 12\right)+\exp \left(-\mathrm{nr}_{2} / 12\right)\right] .
\end{aligned}
$$

Based on the above two inequalities, it is seen that there exist positive universal constants $\mathrm{C}_{21}, \mathrm{C}_{22}$ and C_{23} that

$$
\mathrm{P}_{k \in \mathcal{S}_{1}}^{\mathrm{h} \backslash} \mathrm{e}_{k}^{\prime} \Lambda_{T}^{(1) 1 / 2} \tilde{\mathbf{v}}_{T} \geq \mathrm{c}_{21}\left\{\nu_{T}^{(1)^{\prime}} \Sigma_{T T}^{(1)-1} \boldsymbol{\nu}_{T}^{(1)}\right\}^{-1}
$$

$$
\begin{aligned}
& \mathrm{e}_{k}^{\prime} \Lambda_{T}^{(1) 1 / 2} \Sigma_{T T}^{(1)-1} \mathbf{v}_{T}^{(1)}-\mathrm{c}_{22}\left[\log \left\{\left(\mathrm{p}_{n}-\mathbf{q}_{n}\right) \mathbf{s}_{n} \log \mathrm{n}\right\} /\left(\mathrm{n} \lambda_{n}^{2}\right)\right]^{1 / 2}\left\{\log \left(\mathbf{q}_{n} \mathbf{s}_{n} \log \mathrm{n}\right) / \mathrm{n}\right\}^{1 / 2} \\
& -\mathrm{c}_{22}\left[\log \left\{\left(\mathrm{p}_{n}-\mathbf{q}_{n}\right) \mathrm{s}_{n} \log \mathrm{n}\right\} /\left(\mathrm{n} \lambda_{n}\right)\right] \cdot\left|\mathrm{e}_{k} \Lambda_{T}^{(1) 1 / 2} \Sigma_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2} \operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right)\right|
\end{aligned}
$$

$$
-c_{22}\left[\log \left\{\left(p_{n}-q_{n}\right) \mathbf{s}_{n} \log n\right\} /\left(n \lambda_{n}\right)\right] \cdot\left[\left\{\mathbf{q}_{n} \mathbf{s}_{n} \log \left(\mathbf{q}_{n} \mathbf{s}_{n}\right) / n\right\}^{1 / 2}+\left\{\mathbf{q}_{n} \mathbf{s}_{n} \log \log (\mathrm{n}) / \mathrm{n}\right\}^{1 / 2}\right]
$$

$$
\geq 1-\mathbf{c}_{23}\left[\left(\mathbf{q}_{n} \mathbf{s}_{n}\right)^{-1}+\{\log (\mathbf{n})\}^{-1}+\exp \left(-\mathrm{n} \boldsymbol{r}_{1} / 12\right)+\exp \left(-\mathrm{n} \boldsymbol{\pi}_{2} / 12\right)\right] .
$$

By choosing $\mathrm{K}_{3}>\mathrm{C}_{22}$ in condition (d), it follows from condition (d) and the above inequality that

$$
\mathrm{P}_{k \in \mathcal{S}_{1}}^{\mathrm{h} \backslash} \mathrm{e}_{k}^{\prime} \Lambda_{T}^{(1) 1 / 2} \tilde{\mathrm{v}}_{T}>0{ }^{\text {oi }} \geq 1-\mathrm{c}_{23}\left[\left(\mathbf{q}_{\mathbf{n}} \mathbf{s}_{n}\right)^{-1}+\{\log (\mathrm{n})\}^{-1}+\exp \left(-\mathrm{n} \pi_{1} / 12\right)+\exp \left(-\mathrm{n} \pi_{2} / 12\right)\right] .
$$

Similar reasoning leads to the result that there exists a universal constants $\mathrm{C}_{24}>0$ such that

$$
\mathrm{P}_{k \in \mathcal{S}_{2}}^{\mathrm{h} \backslash} \mathrm{e}_{k}^{\prime} \Lambda_{T}^{(1) 1 / 2} \tilde{\mathrm{v}}_{T}<0{ }^{\text {oi }} \geq 1-\mathrm{c}_{24}\left[\left(\mathbf{q}_{n} \mathbf{s}_{n}\right)^{-1}+\{\log (\mathrm{n})\}^{-1}+\exp \left(-\mathrm{n} \pi_{1} / 12\right)+\exp \left(-\mathrm{n} \pi_{2} / 12\right)\right] .
$$

Based on (92) and the above two inequalities, there exists a universal constant $\mathrm{C}_{25}>0$ such
that

$$
\begin{aligned}
& \mathrm{P}\left\{\operatorname{sgn}\left(\tilde{\mathbf{V}}_{T}\right)=\operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right)=\operatorname{sgn}\left(\hat{\boldsymbol{\beta}}_{T}^{(1)}\right)\right\} \\
\geq & 1-\mathrm{C}_{25}\left[\left(\mathbf{q}_{n} \mathbf{s}_{n}\right)^{-1}+\{\log (\mathrm{n})\}^{-1}+\exp \left(-\mathrm{n} \pi_{1} / 12\right)+\exp \left(-\mathrm{n} \pi_{2} / 12\right)\right]
\end{aligned}
$$

which concludes the proof.

Lemma 12. Let a_{n} and b_{n} be any two sequences of constants such that $\mathrm{a}_{n} \rightarrow \infty$ and $\mathrm{b}_{n} \rightarrow 0$. Also let X_{n} and U_{n} be any two sequences of random variables such that $X_{n}=\mathrm{o}_{p}(1)$ and $\mathrm{U}_{n}=\mathrm{o}_{p}(1)$. Assume that we have the following conditions (a)-(b):
(a) $\mathrm{a}_{n} \mathrm{X}_{n}=\mathrm{o}_{p}(1)$.
(b) $\mathrm{a}_{n}^{1 / 2}\left(\mathrm{U}_{n}-\mathrm{b}_{n}\right)=\mathrm{o}_{p}(1)$.

Then we have the following property:

$$
\Phi\left(-\mathrm{a}_{n}^{1 / 2}\left(1+\mathrm{X}_{n}\right)+\mathrm{U}_{n}\right) / \Phi\left(-\mathrm{a}_{n}^{1 / 2}+\mathrm{b}_{n}\right) \xrightarrow{p} 1 .
$$

Proof of Lemma 12: The proof is analogous to that of Lemma 1 in Shao et al. (2011).

Lemma 13. Consider a pair A, B of $p \times p$ matrices, assume the following condition (a):
(a) $\lambda_{\min }(A-B) \geq 0$.

Then we have the following property:

$$
\lambda_{\min }(A) \geq \lambda_{\min }(B), \quad \lambda_{\max }(A) \geq \lambda_{\max }(B)
$$

Proof of Lemma 13: First of all, we have

$$
\lambda_{\min }(A) \geq \lambda_{\min }(A-B)+\lambda_{\min }(B) \geq \lambda_{\min }(B),
$$

where the last inequality is by condition (a). Similarly, we also have

$$
\lambda_{\max }(A) \geq \lambda_{\min }(A-B)+\lambda_{\max }(B) \geq \lambda_{\max }(B)
$$

where the last inequality is by condition (a) as well, which completes the proof.

Lemma 14. For any $p \times p$ square matrix A, partitioned as

$$
\mathrm{A}=\begin{array}{ll}
\mathrm{A}_{11} & \mathrm{~A}_{12} \\
\mathrm{~A}_{21} & \mathrm{~A}_{22}
\end{array}
$$

where A_{11} is a $k \times k$ matrix for some positive integer $k<p$, assume we have the following condition (a):
(a) $\mathrm{C}_{1} \leq \lambda_{\min }(\mathrm{A}) \leq \lambda_{\max }(\mathrm{A}) \leq \mathrm{C}_{2}$, for some universal constants $0<\mathrm{C}_{1}<\mathrm{C}_{2}$.

Then we have the following properties:

1) $\mathrm{C}_{1} \leq \lambda_{\min }\left(\mathrm{A}_{11}-\mathrm{A}_{12} \mathrm{~A}_{22}^{-1} \mathrm{~A}_{21}\right) \leq \lambda_{\max }\left(\mathrm{A}_{11}-\mathrm{A}_{12} \mathrm{~A}_{22}^{-1} \mathrm{~A}_{21}\right) \leq \mathrm{C}_{2}$,

$$
\mathrm{c}_{1} \leq \lambda_{\min }\left(\mathrm{A}_{22}-\mathrm{A}_{21} \mathrm{~A}_{11}^{-1} \mathrm{~A}_{12}\right) \leq \lambda_{\max }\left(\mathrm{A}_{22}-\mathrm{A}_{21} \mathrm{~A}_{11}^{-1} \mathrm{~A}_{12}\right) \leq \mathrm{c}_{2} .
$$

2) $\lambda_{\max }\left(\mathrm{A}_{12} \mathrm{~A}_{22}^{-1} \mathrm{~A}_{21}\right) \leq \lambda_{\max }\left(\mathrm{A}_{11}\right) \leq \mathrm{C}_{2}$,
$\lambda_{\max }\left(\mathrm{A}_{21} \mathrm{~A}_{11}^{-1} \mathrm{~A}_{12}\right) \leq \lambda_{\max }\left(\mathrm{A}_{22}\right) \leq \mathrm{C}_{2}$,
$\lambda_{\text {min }}\left(\mathrm{A}_{12} \mathrm{~A}_{22}^{-1} \mathrm{~A}_{21}\right) \leq \lambda_{\min }\left(\mathrm{A}_{11}\right)$,
$\lambda_{\text {min }}\left(A_{21} A_{11}^{-1} A_{12}\right) \leq \lambda_{\text {min }}\left(A_{22}\right)$.

Proof of Lemma 14: Based on condition (a), we have

$$
\mathrm{c}_{2}^{-1} \leq \lambda_{\min }\left(\mathrm{A}^{-1}\right) \leq \lambda_{\max }\left(\mathrm{A}^{-1}\right) \leq \mathrm{c}_{1}^{-1},
$$

where A^{-1} can be expressed as

$$
\begin{array}{cc}
\left(\mathrm{A}_{11}-\mathrm{A}_{12} \mathrm{~A}_{22}^{-1} \mathrm{~A}_{21}\right)^{-1} & -\mathrm{A}_{11}^{-1} \mathrm{~A}_{12}\left(\mathrm{~A}_{22}-\mathrm{A}_{21} \mathrm{~A}_{11}^{-1} \mathrm{~A}_{12}\right)^{-1} \\
-\mathrm{A}_{22}^{-1} \mathrm{~A}_{21}\left(\mathrm{~A}_{11}-\mathrm{A}_{12} \mathrm{~A}_{22}^{-1} \mathrm{~A}_{21}\right)^{-1} & \left(\mathrm{~A}_{22}-\mathrm{A}_{21} \mathrm{~A}_{11}^{-1} \mathrm{~A}_{12}\right)^{-1}
\end{array} .
$$

Hence, we have

$$
\begin{aligned}
& \mathrm{C}_{2}^{-1} \leq \lambda_{\min }\left(\left(\mathrm{A}_{11}-\mathrm{A}_{12} \mathrm{~A}_{22}^{-1} \mathrm{~A}_{21}\right)^{-1}\right) \leq \lambda_{\max }\left(\left(\mathrm{A}_{11}-\mathrm{A}_{12} \mathrm{~A}_{22}^{-1} \mathrm{~A}_{21}\right)^{-1}\right) \leq \mathrm{c}_{1}^{-1}, \\
& \mathrm{C}_{2}^{-1} \leq \lambda_{\min }\left(\left(\mathrm{A}_{22}-\mathrm{A}_{21} \mathrm{~A}_{11}^{-1} \mathrm{~A}_{12}\right)^{-1}\right) \leq \lambda_{\max }\left(\left(\mathrm{A}_{22}-\mathrm{A}_{21} \mathrm{~A}_{11}^{-1} \mathrm{~A}_{12}\right)^{-1}\right) \leq \mathrm{c}_{1}^{-1},
\end{aligned}
$$

which implies that

$$
\begin{aligned}
& \mathrm{C}_{1} \leq \lambda_{\min }\left(\mathrm{A}_{11}-\mathrm{A}_{12} \mathrm{~A}_{22}^{-1} \mathrm{~A}_{21}\right) \leq \lambda_{\max }\left(\mathrm{A}_{11}-\mathrm{A}_{12} \mathrm{~A}_{22}^{-1} \mathrm{~A}_{21}\right) \leq \mathrm{C}_{2}, \\
& \mathrm{C}_{1} \leq \lambda_{\min }\left(\mathrm{A}_{22}-\mathrm{A}_{21} \mathrm{~A}_{11}^{-1} \mathrm{~A}_{12}\right) \leq \lambda_{\max }\left(\mathrm{A}_{22}-\mathrm{A}_{21} \mathrm{~A}_{11}^{-1} \mathrm{~A}_{12}\right) \leq \mathrm{C}_{2},
\end{aligned}
$$

finishing the proof of property 1). Finally, by combining property 1) with Lemma 13, the assertion in property 2) follows immediately, which completes the proof.

Lemma 15. Let $\left\{\mathrm{X}_{1}, \ldots, \mathrm{X}_{n+m}\right\}$ be a sample of random vectors in \mathbb{R}^{p}. Denote

$$
\begin{aligned}
& \mathrm{S}_{1}=\mathrm{X}_{i=1}^{\mathrm{X}^{n}}\left(\mathrm{X}_{i}-\overline{\mathrm{X}}_{1}\right)\left(\mathrm{X}_{i}-\overline{\mathrm{X}}_{1}\right)^{\prime} /(\mathrm{n}-1), \quad \overline{\mathrm{X}}_{1}={ }^{\mathrm{X}^{n}} \mathrm{X}_{i=1} / \mathrm{n},
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{S}_{\text {pool }}=\left\{(\mathrm{n}-1) \mathrm{S}_{1}+(\mathrm{m}-1) \mathrm{S}_{2}\right\} /(\mathrm{n}+\mathrm{m}-2) .
\end{aligned}
$$

Then we have the following property:

$$
\mathrm{S}=\mathrm{S}_{\text {pool }}+\mathrm{nm}(\mathrm{n}+\mathrm{m})^{-1}(\mathrm{n}+\mathrm{m}-2)^{-1}\left(\overline{\mathrm{X}}_{1}-\overline{\mathrm{X}}_{2}\right)\left(\overline{\mathrm{X}}_{1}-\overline{\mathrm{X}}_{2}\right)^{\prime}
$$

Proof of Lemma 15: The term \mathbf{S} can be decomposed as $S=I_{1}+I_{2}$ with

$$
\begin{aligned}
& \mathrm{I}_{1}=\mathrm{X}^{\mathrm{n}}\left(\mathrm{X}_{i}-\overline{\mathrm{X}}\right)\left(\mathrm{X}_{i}-\overline{\mathrm{X}}\right)^{\prime} /(\mathrm{n}+\mathrm{m}-2),
\end{aligned}
$$

For the term \mathbf{I}_{1}, one has

$$
\mathbf{I}_{1}=(\mathrm{n}-1)(\mathrm{n}+\mathrm{m}-2)^{-1} \mathbf{S}_{1}+\mathrm{nm}^{2}(\mathrm{n}+\mathrm{m})^{-2}(\mathrm{n}+\mathrm{m}-2)^{-1}\left(\bar{X}_{1}-\bar{X}_{2}\right)\left(\bar{X}_{1}-\bar{X}_{2}\right)^{\prime} .
$$

By symmetry, we also have

$$
\mathbf{I}_{2}=(\mathrm{m}-1)(\mathrm{n}+\mathrm{m}-2)^{-1} \mathrm{~S}_{2}+\mathrm{mn}^{2}(\mathrm{n}+\mathrm{m})^{-2}(\mathrm{n}+\mathrm{m}-2)^{-1}\left(\bar{X}_{1}-\bar{X}_{2}\right)\left(\bar{X}_{1}-\bar{X}_{2}\right)^{\prime} .
$$

Based on the above results, we conclude that $S=S_{p o o l}+n m(n+m)^{-1}(n+m-2)^{-1}\left(\bar{X}_{1}-\right.$ $\left.\bar{X}_{2}\right)\left(\bar{X}_{1}-\bar{X}_{2}\right)^{\prime}$, which finishes the proof.

Lemma 16. Recall that $T=\left\{1, \ldots, q_{h}\right\}$. Assume the matrix $\Sigma_{T T}^{(1)}$ is invertible and consider the following optimization problem:
where $\mathbf{w}_{T}=\left(\mathbf{w}_{1}^{\prime}, \ldots, \mathbf{w}_{q_{\mathrm{n}}}^{\prime}\right)^{\prime}$ with sub-vectors $\mathbf{w}_{j}=\left(\mathbf{w}_{j 1}, \ldots, \mathbf{w}_{j s_{\mathrm{n}}}\right)^{\prime} \in \mathbb{R}^{s_{\mathrm{n}}}$. Let $\tilde{\mathbf{w}}_{T}$ be the solution of the optimization problem where $\tilde{\mathbf{w}}_{T}=\left(\tilde{\mathbf{w}}_{1}^{\prime}, \ldots, \tilde{\mathbf{w}}_{q \mathrm{n}}^{\prime}\right)^{\prime}$ with sub-vectors $\tilde{\mathbf{w}}_{j}=$ $\left(\tilde{\mathbf{W}}_{j 1}, \ldots, \tilde{\mathbf{W}}_{j s_{n}}\right)^{\prime} \in \mathbb{R}^{s_{n}}$, then we have:

$$
\tilde{\mathbf{w}}_{T}=\boldsymbol{\Pi}_{1} \boldsymbol{\Pi}_{2}\left(1+\lambda_{n} \mathbf{k} \Lambda_{T}^{(1) 1 / 2} \boldsymbol{\beta}_{T}^{(1)} \mathrm{k}_{1}\right)\left(1+\boldsymbol{\pi}_{1} \boldsymbol{\Pi}_{2} \beta_{T}^{(1)^{\prime}} \Sigma_{T T}^{(1)} \boldsymbol{\beta}_{T}^{(1)}\right)^{-1} \boldsymbol{\beta}_{T}^{(1)}-\lambda_{n} \Sigma_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2} \operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right) .
$$

Proof of Lemma 16: First of all, based on first order condition, one has

$$
\begin{equation*}
\Sigma_{T T}^{(1)}+\Pi_{1} \boldsymbol{\Pi}_{2} \nu_{T}^{(1)} \boldsymbol{\nu}_{T}^{(1)^{\prime}} \tilde{\mathbf{w}}_{T}=\boldsymbol{\pi}_{1} \boldsymbol{\Pi}_{2} \nu_{T}^{(1)}-\lambda_{n} \Lambda_{T}^{(1) 1 / 2} \operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right) . \tag{94}
\end{equation*}
$$

Moreover, according to Sherman-Morrison-Woodbury formula, we have

$$
\begin{aligned}
& \Sigma_{T T}^{(1)}+\Pi_{1} \boldsymbol{\Pi}_{2} \nu_{T}^{(1)} \nu_{T}^{(1)^{\prime}-1}=\Sigma_{T T}^{(1)-1}-\Sigma_{T T}^{(1)-1} \nu_{T}^{(1)}\left(\boldsymbol{\pi}_{1}^{-1} \boldsymbol{\Pi}_{2}^{-1}+\nu_{T}^{(1)^{\prime}} \Sigma_{T T}^{(1)-1} \nu_{T}^{(1)}\right)^{-1} \nu_{T}^{(1)^{\prime}} \Sigma_{T T}^{(1)-1} \\
& =\Sigma_{T T}^{(1)-1}-\Pi_{1} \boldsymbol{\Pi}_{2}\left(1+\boldsymbol{\pi}_{1} \boldsymbol{\Pi}_{2} \boldsymbol{\nu}_{T}^{(1)^{\prime}} \Sigma_{T T}^{(1)-1} \mathbf{\nu}_{T}^{(1)}\right)^{-1} \Sigma_{T T}^{(1)-1} \boldsymbol{\nu}_{T}^{(1)} \boldsymbol{\nu}_{T}^{(1)^{\prime}} \Sigma_{T T}^{(1)-1} \text {. }
\end{aligned}
$$

Finally, by combining the above two equations, we have

$$
\begin{aligned}
& \tilde{\mathbf{w}}_{T}=\Sigma_{T T}^{(1)}+\Pi_{1} \Pi_{2} \nu_{T}^{(1)} \nu_{T}^{(1)^{\prime}}{ }^{-1}\left\{\boldsymbol{\pi}_{1} \Pi_{2} \nu_{T}^{(1)}-\lambda_{n} \Lambda_{T}^{(1) 1 / 2} \operatorname{sgn}\left(\beta_{T}^{(1)}\right)\right\} \\
& =\left\{\Sigma_{T T}^{(1)-1}-\Pi_{1} \Pi_{2}\left(1+\Pi_{1} \Pi_{2} \nu_{T}^{(1)^{\prime}} \Sigma_{T T}^{(1)-1} \nu_{T}^{(1)}\right)^{-1} \Sigma_{T T}^{(1)-1} \nu_{T}^{(1)} \nu_{T}^{(1){ }^{\prime}} \Sigma_{T T}^{(1)-1}\right\} \\
& \cdot\left\{\Pi_{1} \Pi_{2} \nu_{T}^{(1)}-\lambda_{n} \Lambda_{T}^{(1) 1 / 2} \operatorname{sgn}\left(\beta_{T}^{(1)}\right)\right\} \\
& =\left\{\Sigma_{T T}^{(1)-1}-\Pi_{1} \Pi_{2}\left(1+\pi_{1} \Pi_{2} \beta_{T}^{(1)^{\prime}} \Sigma_{T T}^{(1)} \beta_{T}^{(1)}\right)^{-1} \beta_{T}^{(1)} \nu_{T}^{(1)^{\prime}} \Sigma_{T T}^{(1)-1}\right\} \\
& \cdot\left\{\Pi_{1} \Pi_{2} \nu_{T}^{(1)}-\lambda_{n} \Lambda_{T}^{(1) 1 / 2} \operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right)\right\} \\
& =\left\{\boldsymbol{\pi}_{1} \boldsymbol{\Pi}_{2} \Sigma_{T T}^{(1)-1} \boldsymbol{\nu}_{T}^{(1)}-\Pi_{1}^{2} \boldsymbol{\Pi}_{2}^{2}\left(1+\Pi_{1} \boldsymbol{\pi}_{2} \boldsymbol{\beta}_{T}^{(1)^{\prime}} \Sigma_{T T}^{(1)} \boldsymbol{\beta}_{T}^{(1)}\right)^{-1} \boldsymbol{\beta}_{T}^{(1)} \boldsymbol{\nu}_{T}^{(1)^{\prime}} \Sigma_{T T}^{(1)-1} \boldsymbol{\nu}_{T}^{(1)}\right\}- \\
& \left\{\boldsymbol{\lambda}_{n} \Sigma_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2} \operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right)-\Pi_{1} \Pi_{2}\left(1+\Pi_{1} \Pi_{2} \beta_{T}^{(1)^{\prime}} \Sigma_{T T}^{(1)} \boldsymbol{\beta}_{T}^{(1)}\right)^{-1} \boldsymbol{\beta}_{T}^{(1)} \boldsymbol{\lambda}_{n} \mathrm{k} \Lambda_{T}^{(1) 1 / 2} \boldsymbol{\beta}_{T}^{(1)} \mathrm{k}_{1}\right\} \\
& =\boldsymbol{\pi}_{1} \boldsymbol{\Pi}_{2}\left(1+\lambda_{n} \mathrm{k} \Lambda_{T}^{(1) 1 / 2} \boldsymbol{\beta}_{T}^{(1)} \mathrm{k}_{1}\right)\left(1+\boldsymbol{\pi}_{1} \boldsymbol{\Pi}_{2} \boldsymbol{\beta}_{T}^{(1)^{\prime}} \Sigma_{T T}^{(1)} \boldsymbol{\beta}_{T}^{(1)}\right)^{-1} \boldsymbol{\beta}_{T}^{(1)}-\lambda_{n} \Sigma_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2} \operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right),
\end{aligned}
$$

which finishes the proof.

Lemma 17. Consider the following optimization problem:

$$
\begin{equation*}
\min _{w \in \mathbb{R}^{P_{n} s_{n}}} \frac{\mathrm{~h}_{1}}{2} \mathbf{W}^{\prime} \Sigma^{(1)}+\pi_{1} \Pi_{2} \nu^{(1)} \nu^{(1)^{\prime}} \mathbf{w}-\pi_{1} \pi_{2} \mathbf{W}^{\prime} \nu^{(1)}+\lambda_{n}{ }_{j=1}^{X^{n}} \mathrm{k} \Lambda_{j}^{(1) 1 / 2} \mathbf{W}_{j} \mathrm{k}_{1}^{\mathrm{i}}, \tag{95}
\end{equation*}
$$

where $\mathbf{w}=\left(\mathbf{w}_{1}^{\prime}, \ldots, \mathbf{w}_{p_{\mathrm{n}}}^{\prime}\right)^{\prime}$ with vectors $\mathbf{w}_{j}=\left(\mathbf{w}_{j 1}, \ldots, \mathbf{w}_{j s_{\mathrm{n}}}\right)^{\prime} \in \mathbb{R}^{s_{\mathrm{n}}}$. Assume we have the following conditions (a)-(c):
(a) $\Sigma_{T T}^{(1)}$ is invertible.
(b) $\boldsymbol{\Pi}_{1} \boldsymbol{\Pi}_{2}\left(1+\lambda_{n} \mathrm{k} \Lambda_{T}^{(1) 1 / 2} \boldsymbol{\beta}_{T}^{(1)} \mathrm{k}_{1}\right)\left(1+\boldsymbol{\Pi}_{1} \boldsymbol{\pi}_{2} \boldsymbol{\beta}_{T}^{(1)^{\prime}} \Sigma_{T T}^{(1)} \boldsymbol{\beta}_{T}^{(1)}\right)^{-1}\left(\operatorname{minmin}_{j \in T} \boldsymbol{\omega}_{k \leq s_{\mathrm{n}}}^{1 / 2}\left|\boldsymbol{\beta}_{j k}\right|\right)>$ $\lambda_{n} \mathrm{k} \Lambda_{T}^{(1) 1 / 2} \Sigma_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2} \operatorname{sgn}\left(\beta_{T}^{(1)}\right) \mathrm{k}_{\infty}$.
(c) $\mathrm{k} \Lambda_{N}^{(1)-1 / 2} \Sigma_{N T}^{(1)} \Sigma_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2} \operatorname{sgn}\left(\beta_{T}^{(1)}\right) \mathrm{k}_{\infty} \leq 1-\mathrm{\gamma}$, for a universal constant $\gamma \in(0,1]$.

Denote $\hat{\mathbf{w}}$ as $\hat{\mathbf{w}}=\left(\hat{\mathbf{W}}_{T}^{\prime}, \hat{\mathbf{w}}_{N}^{\prime}\right)^{\prime}=\left(\tilde{\mathbf{w}}_{T}^{\prime}, 0^{\prime}\right)^{\prime}$ with $\hat{\mathbf{w}}_{N}=0 \in \mathbb{R}^{\left(p_{\mathrm{n}}-q_{\mathrm{n}}\right) s_{\mathrm{n}}}$, and $\hat{\mathbf{w}}_{T}=\tilde{\mathbf{w}}_{T}$ where $\tilde{\mathbf{w}}_{T}$ is defined in Lemma 16. Then we have the following properties:

1) \hat{w} is a gobal minimum of (95).

$$
\text { 2) } \operatorname{sgn}(\hat{w})=\operatorname{sgn}\left(\beta^{(1)}\right)
$$

Proof of Lemma 17: First of all, based on (a), (b) and the definition of $\hat{\mathbf{w}}$, it is trivial to deduce that $\operatorname{sgn}(\hat{\mathbf{w}})=\operatorname{sgn}\left(\boldsymbol{\beta}^{(1)}\right)$, finishing the proof of 2). Moreover, according to the optimization theory, we know that $\hat{\mathbf{W}}$ is a global minimum of (95) if and only if

$$
\begin{align*}
& \Sigma_{T T}^{(1)}+\Pi_{1} \Pi_{2} \nu_{T}^{(1)} \nu_{T}^{(1)^{\prime}} \tilde{\mathbf{w}}_{T}=\Pi_{1} \Pi_{2} \nu_{T}^{(1)}-\lambda_{n} \Lambda_{T}^{(1) 1 / 2} \operatorname{sgn}\left(\beta_{T}^{(1)}\right), \tag{96}\\
& \mathrm{K} \Lambda_{N}^{(1)-1 / 2} \Sigma_{N T}^{(1)}+\Pi_{1} \Pi_{2} \nu_{N}^{(1)} \nu_{T}^{(1)^{\prime}} \tilde{\mathbf{w}}_{T}-\Pi_{1} \Pi_{2} \nu_{N}^{(1)} \mathrm{k}_{\infty} \leq \lambda_{n}, \tag{97}
\end{align*}
$$

where (96) and (97) serve as the Karush-Kuhn-Tucker conditions. It is apparent that (96) follows from (94). In addition, observe that

$$
\begin{aligned}
& \mathrm{k} \Lambda_{N}^{(1)-1 / 2} \\
&= \Sigma_{N T}^{(1)}+\pi_{1} \Pi_{2} \nu_{N}^{(1)} \nu_{T}^{(1)^{\prime}} \tilde{\mathbf{w}}_{T}-\pi_{1} \Pi_{2} \boldsymbol{v}_{N}^{(1)-1 / 2} \mathrm{k}_{\infty} \\
&= \Sigma_{N T}^{(1)}+\pi_{1} \Pi_{2} \Sigma_{N T}^{(1)} \Sigma_{T T}^{(1)-1} \nu_{T}^{(1)} \nu_{T}^{(1)^{\prime}} \tilde{\mathrm{w}}_{T}-\Pi_{1} \Pi_{2} \Sigma_{N T}^{(1)} \Sigma_{T T}^{(1)-1} \nu_{T}^{(1)} \mathrm{k}_{\infty} \\
&=1 / 2 \\
& \Sigma_{N T}^{(1)} \quad \mathrm{l}+\pi_{1} \Pi_{2} \beta_{T}^{(1)} \nu_{T}^{(1)^{\prime}} \tilde{\mathbf{w}}_{T}-\pi_{1} \Pi_{2} \beta_{T}^{(1)} \mathrm{k}_{\infty},
\end{aligned}
$$

where the first and the second equalities follow from (10) in the main paper. For the term $\mathbf{I}+\Pi_{1} \boldsymbol{\Pi}_{2} \boldsymbol{\beta}_{T}^{(1)} \boldsymbol{\nu}_{T}^{(1)^{\prime}} \tilde{\mathbf{W}}_{T}$, we have

$$
\begin{aligned}
& \mathrm{I}+\Pi_{1} \Pi_{2} \boldsymbol{\beta}_{T}^{(1)} \boldsymbol{\nu}_{T}^{(1)^{\prime}} \tilde{\mathbf{w}}_{T} \\
= & \Pi_{1} \boldsymbol{\Pi}_{2}\left(1+\lambda_{n} \mathrm{k} \Lambda_{T}^{(1) 1 / 2} \boldsymbol{\beta}_{T}^{(1)} \mathrm{k}_{1}\right) \boldsymbol{\beta}_{T}^{(1)}-\lambda_{n} \Sigma_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2} \operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right) \\
& -\Pi_{1} \boldsymbol{\Pi}_{2} \lambda_{n} \boldsymbol{\beta}_{T}^{(1)} \boldsymbol{\nu}_{T}^{(1)^{\prime}} \Sigma_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2} \operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right) \\
= & \Pi_{1} \boldsymbol{\Pi}_{2} \boldsymbol{\beta}_{T}^{(1)}-\lambda_{n} \Sigma_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2} \operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right),
\end{aligned}
$$

where the first equality is by Lemma 16. To this end, based on the above two equations, we deduce that

$$
\begin{aligned}
& \mathrm{k} \Lambda_{N}^{(1)-1 / 2} \quad \Sigma_{N T}^{(1)}+\Pi_{1} \boldsymbol{\pi}_{2} \boldsymbol{\nu}_{N}^{(1)} \nu_{T}^{(1)^{\prime}} \tilde{\mathbf{w}}_{T}-\pi_{1} \boldsymbol{\Pi}_{2} \boldsymbol{\nu}_{N}^{(1)} \mathrm{k}_{\infty} \\
= & \lambda_{n} \mathrm{k} \Lambda_{N}^{(1)-1 / 2} \Sigma_{N T}^{(1)} \Sigma_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2} \operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right) \mathrm{k}_{\infty} \leq \lambda_{n},
\end{aligned}
$$

where the last inequality is based on condition (c). According to the above results, it can be concluded that $\hat{\mathbf{w}}$ is a global minimum of (95), which completes the proof.

Lemma 18. For any $\% \in\left(\mathrm{e}^{-n / 100}, 1 / 100\right)$, define the event $\mathrm{M}_{1 n}$ ($\%$ as

$$
\begin{aligned}
\mathbf{M}_{1 n}(\%= & 2^{-1}\left(\mathbf{q}_{n} \mathbf{s}_{n} / \mathrm{n}\right)-8\left\{\log \left(\%^{1}\right) / \mathrm{n}\right\}^{1 / 2} \leq\left(\hat{\nu}_{T}^{(1)^{\prime}} \mathbf{S}_{T T}^{(1)-1} \hat{\nu}_{T}^{(1)}\right) /\left(\hat{\nu}_{T}^{(1)^{\prime}} \Sigma_{T T}^{(1)-1} \hat{\nu}_{T}^{(1)}\right)-1 \\
& \leq 2\left(\mathbf{q}_{\mathbf{n}} \mathbf{s}_{n} / \mathrm{n}\right)+16\left\{\log \left(\%^{1}\right) / \mathrm{n}\right\}^{1 / 2}
\end{aligned}
$$

Assume the condition (a):

(a) $\mathrm{q}_{n} \mathrm{~s}_{n}=\mathrm{o}(\mathrm{n})$.

Then we have the following property:

$$
\mathrm{P}\left\{\mathrm{M}_{1 n}(\%\} \geq 1-2 \%-2 \exp \left(-\mathrm{n} \pi_{1} / 12\right)-2 \exp \left(-\mathrm{n} \pi_{2} / 12\right), \quad \forall \% \in\left(\mathrm{e}^{-n / 100}, 1 / 100\right) .\right.
$$

Proof of Lemma 18: First of all, based on condition (a) and the definition, it is clear to observe that conditional on any nonempty set $\left\{\mathrm{Y}_{i}=\mathrm{y}_{i}\right\}_{i=1}^{n} \cap \mathrm{M}_{n}$, we have

$$
\begin{equation*}
(\mathrm{n}-2) \mathrm{S}_{T T}^{(1)} \mid\left\{\mathrm{Y}_{i}=\mathrm{y}_{i}\right\}_{i=1}^{n} \cap \mathrm{M}_{n} \sim \text { Wishart }\left(\mathrm{n}-2 \mid \Sigma_{T T}^{(1)}\right), \tag{98}
\end{equation*}
$$

where the degree of freedom of the Wishart distribution is equal to $\mathrm{n}-2$. Moreover, it is trivial to verify that conditional on $\left\{\mathrm{Y}_{i}=\mathrm{y}_{i}\right\}_{i=1}^{n} \cap \mathrm{M}_{n}$, one has the fact that $\mathcal{D}_{T}^{(1)} \mid\left\{\mathrm{Y}_{i}=\right.$ $\left.\mathrm{y}_{i}\right\}_{i=1}^{n} \cap \mathrm{M}_{n}$ is independent of $(\mathrm{n}-2) \mathrm{S}_{T T}^{(1)} \mid\left\{\mathrm{Y}_{i}=\mathrm{y}_{i}\right\}_{i=1}^{n} \cap \mathrm{M}_{n}$. Together with (98), condition (a) and Theorem 3.2.12 in Muirhead (1982), we reach a conclusion that

$$
(\mathrm{n}-2)\left(\boldsymbol{\nu}_{T}^{(1)^{\prime}} \Sigma_{T T}^{(1)-1} \hat{\nu}_{T}^{(1)}\right)\left(\mathcal{\nu}_{T}^{(1))^{\prime}} \mathbf{S}_{T T}^{(1)-1} \hat{\nu}_{T}^{(1)}\right)^{-1} \mid\left\{\mathbf{Y}_{i}=\mathrm{y}_{i}\right\}_{i=1}^{n} \cap \mathbf{M}_{n} \sim \chi_{n-q_{\mathrm{n}} s_{\mathrm{n}}-1}^{2} .
$$

Together with (A.2) and (A.3) in Johnstone and Lu (2009), we conclude that for any $t \in[0,1 / 2)$,

$$
\begin{aligned}
& \mathrm{P}\left|\left(\mathrm{n}-\mathrm{q}_{\mathbf{n}} \mathbf{s}_{n}-1\right)^{-1}(\mathrm{n}-2)\left(\hat{\nu}_{T}^{(1)^{\prime}} \Sigma_{T T}^{(1)-1} \hat{\nu}_{T}^{(1)}\right)\left(\hat{\nu}_{T}^{(1)^{\prime}} \mathbf{S}_{T T}^{(1)-1} \nu_{T}^{(1)}\right)^{-1}-1\right| \\
& \quad \geq \mathrm{t} \mid\left\{\mathrm{Y}_{i}=\mathrm{y}_{i}\right\}_{i=1}^{n} \cap \mathrm{M}_{n} \leq 2 \exp \left\{-3\left(\mathrm{n}-\mathbf{q}_{n} \mathbf{s}_{n}-1\right) \mathrm{t}^{2} / 16\right\} .
\end{aligned}
$$

For any $\% \in\left(\mathrm{e}^{-n / 100}, 1 / 100\right)$, we plug $\mathrm{t}=\left\{16\left(\mathrm{n}-\mathrm{q}_{n} \mathbf{s}_{n}-1\right)^{-1} \log \left(\%^{1}\right) / 3\right\}^{1 / 2}$ into the above inequality to obtain

$$
\begin{aligned}
\mathrm{P} & \left|\left(\mathrm{n}-\mathbf{q}_{\mathbf{n}} \mathbf{s}_{n}-1\right)^{-1}(\mathrm{n}-2)\left(\hat{\nu}_{T}^{(1)^{\prime}} \Sigma_{T T}^{(1)-1} \hat{\nu}_{T}^{(1)}\right)\left(\hat{\nu}_{T}^{(1)^{\prime}} \mathbf{S}_{T T}^{(1)-1} \hat{\nu}_{T}^{(1)}\right)^{-1}-1\right| \geq \\
& \left\{16\left(\mathrm{n}-\mathbf{q}_{n} \mathbf{s}_{n}-1\right)^{-1} \log \left(\%^{1}\right) / 3\right\}^{1 / 2} \mid\left\{\mathrm{Y}_{i}=\mathrm{y}_{i}\right\}_{i=1}^{n} \cap \mathrm{M}_{n} \leq 2 \%
\end{aligned}
$$

which implies that

$$
\begin{align*}
\mathrm{P} & \left|\left(\mathrm{n}-\mathrm{q}_{n} \mathbf{s}_{n}-1\right)^{-1}(\mathrm{n}-2)\left(\hat{\nu}_{T}^{(1)^{\prime}} \Sigma_{T T}^{(1)-1} \hat{\nu}_{T}^{(1)}\right)\left(\hat{\nu}_{T}^{(1)^{\prime}} \mathrm{S}_{T T}^{(1)-1} \hat{\nu}_{T}^{(1)}\right)^{-1}-1\right| \leq \\
& \left\{16\left(\mathrm{n}-\mathrm{q}_{n} \mathrm{~s}_{n}-1\right)^{-1} \log \left(\%^{1}\right) / 3\right\}^{1 / 2} \mid\left\{\mathrm{Y}_{i}=\mathrm{y}_{i}\right\}_{i=1}^{n} \cap \mathrm{M}_{n} \geq 1-2 \% \tag{99}
\end{align*}
$$

Therefore, it can be seen that

$$
\begin{align*}
& \text { P }\left|\left(\mathrm{n}-\mathbf{q}_{\mathbf{n}} \mathbf{s}_{n}-1\right)^{-1}(\mathrm{n}-2)\left(\hat{\nu}_{T}^{(1)^{\prime}} \Sigma_{T T}^{(1)-1} \hat{\nu}_{T}^{(1)}\right)\left(\hat{\nu}_{T}^{(1)^{\prime}} \mathrm{S}_{T T}^{(1)-1} \hat{\nu}_{T}^{(1)}\right)^{-1}-1\right| \leq \\
& \left\{16\left(\mathrm{n}-\mathrm{q}_{\mathrm{n}} \mathbf{s}_{n}-1\right)^{-1} \log \left(\%^{1}\right) / 3\right\}^{1 / 2} \\
& \geq \underbrace{}_{\left\{y_{i}\right\}_{i=1}^{\mathrm{n}} \in \mathcal{M}_{\mathrm{n}}} \mathrm{P} \mid\left(\mathrm{n}-\mathbf{q}_{\mathbf{n}} \mathbf{s}_{n}-1\right)^{-1}(\mathrm{n}-2)\left(\hat{\nu}_{T}^{(1)^{\prime}} \Sigma_{T T}^{(1)-1} \boldsymbol{\nu}_{T}^{(1)}\right)\left(\hat{\nu}_{T}^{(1)^{\prime}} \mathrm{S}_{T T}^{(1)-1} \hat{\nu}_{T}^{(1)}\right)^{-1} \\
& -1\left|\leq\left\{16\left(\mathrm{n}-\mathrm{q}_{\mathrm{n}} \mathrm{~s}_{n}-1\right)^{-1} \log \left(\%^{1}\right) / 3\right\}^{1 / 2}\right|\left\{\mathrm{Y}_{i}=\mathrm{y}_{i}\right\}_{i=1}^{n} \cdot \mathrm{P} \quad\left\{\mathrm{Y}_{i}=\mathrm{y}_{i}\right\}_{i=1}^{n} \\
& \text { X } \\
& \geq\left(1-2 \% \quad \mathrm{P}\left\{\mathrm{Y}_{i}=\mathrm{y}_{i}\right\}_{i=1}^{n}=\left(1-2 \% \mathrm{P}\left(\mathrm{M}_{n}\right)\right.\right. \\
& \left\{y_{i}\right\}_{i=1}^{\mathrm{n}} \in \mathcal{M}_{n} \\
& \geq 1-2 \%-2 \exp \left(-\mathrm{n} \pi_{1} / 12\right)-2 \exp \left(-\mathrm{n} \pi_{2} / 12\right) \text {, } \tag{100}
\end{align*}
$$

where the second inequality is by (99), and the last inequality follows from Lemma 3. To this end, based on condition (a), it is straightforward to verify that for any $\% \in\left(\mathrm{e}^{-n / 100}, 1 / 100\right)$,

$$
\begin{equation*}
\mathrm{M}_{1 n}^{*}\left(\% \subseteq \mathrm{M}_{1 n}(\%\right. \tag{101}
\end{equation*}
$$

in which $\mathrm{M}_{1 n}^{*}\left(\%=\left|\left(\mathrm{n}-\mathbf{q}_{\mathbf{n}} \mathbf{S}_{n}-1\right)^{-1}(\mathrm{n}-2)\left(\hat{\boldsymbol{v}}_{T}^{(1)^{\prime}} \Sigma_{T T}^{(1)-1} \hat{\nu}_{T}^{(1)}\right)\left(\hat{\nu}_{T}^{(1)^{\prime}} \mathbf{S}_{T T}^{(1)-1} \hat{\boldsymbol{v}}_{T}^{(1)}\right)^{-1}-1\right| \leq\right.$ $\left\{16\left(\mathrm{n}-\mathrm{q}_{n} \mathbf{s}_{n}-1\right)^{-1} \log \left(\%^{1}\right) / 3\right\}^{1 / 2}$. Finally, the assertion follows immediately from (100) and (101).

Moreover, conditional on $\left\{\mathrm{Y}_{i}=\mathrm{y}_{i}\right\}_{i=1}^{n} \cap \mathrm{M}_{n}$, we also note that

$$
\begin{aligned}
& \left(\mathrm{n}_{1}^{-1} \mathrm{n}_{2}^{-1} \mathrm{n}^{2}\right)\left(\mathrm{q}_{2} \mathrm{~s}_{n} / \mathrm{n}\right)+2\left(\mathrm{n}_{1}^{-1} \mathrm{n}_{2}^{-1} \mathrm{n}^{2}\right)\left\{\log \left(\%^{1}\right) / \mathrm{n}\right\} \\
& +2\left(\mathrm{n}_{1}^{-1} \mathrm{n}_{2}^{-1} \mathrm{n}^{2}\right)\left(\mathbf{q}_{n} \mathbf{s}_{n} / \mathrm{n}+2 \mathrm{n}_{1} \mathrm{n}_{2} \mathbf{n}^{-2} \boldsymbol{v}_{T}^{(1)^{\prime}} \Sigma_{T T}^{(1)-1} \boldsymbol{v}_{T}^{(1)}\right)^{1 / 2}\left\{\log \left(\%^{1}\right) / \mathrm{n}\right\}^{1 / 2} \\
& \leq\left(400 \pi_{1}^{-1} \pi_{2}^{-1}\right)^{1 / 2} \mathrm{q}_{\mathrm{n}} \mathrm{~s}_{n} / \mathrm{n}+\log \left(\%^{1}\right) / \mathrm{n}+\left\{\nu_{T}^{(1)^{\prime}} \Sigma_{T T}^{(1)-1} \nu_{T}^{(1)} \log \left(\%^{1}\right) / \mathrm{n}\right\}^{1 / 2},
\end{aligned}
$$

according to the definition of \mathbf{M}_{n} in Lemma 3. Therefore, based on the above two inequalities, we have

$$
\begin{align*}
& \mathrm{P} \quad \hat{\mathbf{v}}_{T}^{(1)^{\prime}} \Sigma_{T T}^{(1)-1} \hat{\nu}_{T}^{(1)}-\nu_{T}^{(1)^{\prime}} \Sigma_{T T}^{(1)-1} \nu_{T}^{(1)} \leq\left(400 \pi_{1}^{-1} \pi_{2}^{-1}\right)^{1 / 2} \mathrm{q}_{\mathrm{n}} \mathrm{~s}_{n} / \mathrm{n}+\log \left(\%^{1}\right) / \mathrm{n} \\
& \quad+\left\{\mathrm{v}_{T}^{(1)^{\prime}} \Sigma_{T T}^{(1)-1} \mathbf{v}_{T}^{(1)} \log \left(\%^{-1}\right) / \mathrm{n}\right\}^{1 / 2} \quad\left\{\mathrm{Y}_{i}=\mathrm{y}_{i}\right\}_{i=1}^{n} \cap \mathrm{M}_{n} \quad \mathrm{o} \geq 1-\% \tag{103}
\end{align*}
$$

Analogously, based on (102) and (8.35) of Lemma 8.1 in Birge (2001), it is obvious that for any $\mathrm{t}>0$,

$$
\begin{aligned}
& \mathrm{P}^{\mathrm{n}} \boldsymbol{v}_{T}^{(1)^{\prime}} \Sigma_{T T}^{(1)-1} \boldsymbol{v}_{T}^{(1)}-\mathbf{v}_{T}^{(1)^{\prime}} \Sigma_{T T}^{(1)-1} \boldsymbol{v}_{T}^{(1)} \leq\left(\mathrm{n}_{1}^{-1} \mathrm{n}_{2}^{-1} \mathrm{n}^{2}\right)\left(\mathbf{q}_{\mathrm{n}} \mathrm{~s}_{n} / \mathrm{n}\right)-2\left(\mathrm{n}_{1}^{-1} \mathrm{n}_{2}^{-1} \mathrm{n}^{2}\right) \\
& \quad\left(\mathbf{q}_{n} \mathbf{s}_{n} / \mathrm{n}+2 \mathrm{n}_{1} \mathrm{n}_{2} \mathrm{n}^{-2} \boldsymbol{v}_{T}^{(1)^{\prime}} \Sigma_{T T}^{(1)-1} \boldsymbol{v}_{T}^{(1)}\right)^{1 / 2}(\mathrm{t} / \mathrm{n})^{1 / 2}\left\{\mathrm{Y}_{i}=\mathrm{y}_{i}\right\}_{i=1}^{n} \cap \mathrm{M}_{n}^{\mathrm{o}} \\
& \quad \leq \exp (-\mathrm{t})
\end{aligned}
$$

We then substitute $\mathrm{t}=\log \left(\%^{1}\right)$ into the above inequality to obtain

$$
\begin{aligned}
& \mathrm{P} \mathrm{~h}_{T}^{(1)^{\prime}} \Sigma_{T T}^{(1)-1} \hat{\nu}_{T}^{(1)}-\boldsymbol{v}_{T}^{(1)^{\prime}} \Sigma_{T T}^{(1)-1} v_{T}^{(1)} \geq\left(\mathrm{n}_{1}^{-1} \mathrm{n}_{2}^{-1} \mathrm{n}^{2}\right)\left(\mathrm{q}_{\mathrm{n}} \mathrm{~s}_{n} / \mathrm{n}\right)-2\left(\mathrm{n}_{1}^{-1} \mathrm{n}_{2}^{-1} \mathrm{n}^{2}\right) . \\
& \quad\left(\mathrm{q}_{\mathrm{n}} \mathrm{~s}_{n} / \mathrm{n}+2 \mathrm{n}_{1} \mathrm{n}_{2} \mathrm{n}^{-2} \boldsymbol{v}_{T}^{(1)^{\prime}} \Sigma_{T T}^{(1)-1} \boldsymbol{v}_{T}^{(1)}\right)^{1 / 2}\left\{\log \left(\%^{-1}\right) / \mathrm{n}\right\}^{1 / 2}\left\{\mathrm{Y}_{i}=\mathrm{y}_{i}\right\}_{i=1}^{n} \cap \mathrm{M}_{n} \geq 1-\%
\end{aligned}
$$

Likewise, we note that conditional on $\left\{\mathrm{Y}_{i}=\mathrm{y}_{i}\right\}_{i=1}^{n} \cap \mathrm{M}_{n}$,

$$
\begin{aligned}
& \left(\mathrm{n}_{1}^{-1} \mathrm{n}_{2}^{-1} \mathrm{n}^{2}\right)\left(\mathbf{q}_{h} \mathbf{s}_{n} / \mathrm{n}\right)-2\left(\mathrm{n}_{1}^{-1} \mathrm{n}_{2}^{-1} \mathrm{n}^{2}\right)\left(\mathbf{q}_{\mathbf{n}} \mathbf{s}_{n} / \mathrm{n}+2 \mathrm{n}_{1} \mathrm{n}_{2} \mathrm{n}^{-2} \boldsymbol{v}_{T}^{(1)^{\prime}} \Sigma_{T T}^{(1)-1} \boldsymbol{\nu}_{T}^{(1)}\right)^{1 / 2}\left\{\log \left(\%^{1}\right) / \mathrm{n}\right\}^{1 / 2} \\
\geq & -\left(400 \boldsymbol{\pi}_{1}^{-1} \boldsymbol{\pi}_{2}^{-1}\right)^{1 / 2} \log \left(\%^{1}\right) / \mathrm{n}+\left\{\boldsymbol{v}_{T}^{(1)^{\prime}} \Sigma_{T T}^{(1)-1} \boldsymbol{v}_{T}^{(1)} \log \left(\%^{1}\right) / \mathrm{n}\right\}^{1 / 2}
\end{aligned}
$$

We then derive from the above two inequalities that

$$
\begin{aligned}
& \mathrm{P} \quad{ }^{\mathrm{n}} \hat{\nu}_{T}^{(1)^{\prime}} \Sigma_{T T}^{(1)-1} \hat{\nu}_{T}^{(1)}-v_{T}^{(1)^{\prime}} \Sigma_{T T}^{(1)-1} \nu_{T}^{(1)} \geq-\left(400 \pi_{1}^{-1} \pi_{2}^{-1}\right)^{1 / 2} \log \left(\%^{1}\right) / \mathrm{n} \\
& \quad+\left\{\nu_{T}^{(1)^{\prime}} \Sigma_{T T}^{(1)-1} \nu_{T}^{(1)} \log \left(\%^{-1}\right) / \mathrm{n}\right\}^{1 / 2} \quad\left\{\mathrm{Y}_{i}=\mathrm{y}_{i}\right\}_{i=1}^{n} \cap \mathrm{M}_{n} \quad \mathbf{0} \geq 1-\%
\end{aligned}
$$

Together with (103), we arrive at

$$
\begin{equation*}
\mathrm{P} \mathrm{M}_{2 n}\left(\%\left\{\mathrm{Y}_{i}=\mathrm{y}_{i}\right\}_{i=1}^{n} \cap \mathrm{M}_{n} \geq 1-2 \%\right. \tag{104}
\end{equation*}
$$

Finally, we have

$$
\begin{aligned}
& \mathrm{P}\left\{\mathrm{M}_{2 n}(\%\}\right. \geq \mathrm{P}_{\left\{\mathrm{M}_{2 n}\left(\% \cap \mathrm{M}_{n}\right\}=\underset{\left\{y_{i}\right\}_{i=1}^{\mathrm{n}} \in \mathcal{M}_{n}}{ } \mathrm{P} \mathrm{M}_{2 n}\left(\%\left\{\mathrm{Y}_{i}=\mathrm{y}_{i}\right\}_{i=1}^{n} \cdot \mathrm{P}\left\{\mathrm{Y}_{i}=\mathrm{y}_{i}\right\}_{i=1}^{n}\right.\right.} \\
& \geq\left(1-2 \% \mathrm{X}_{\left\{y_{i}\right\}_{i=1}^{\mathrm{n}} \in \mathcal{M}_{n}} \mathrm{P}\left\{\mathrm{Y}_{i}=\mathrm{y}_{i}\right\}_{i=1}^{n}=\left(1-2 \% \mathrm{P}\left(\mathrm{M}_{n}\right)\right.\right. \\
& \geq 1-2 \%-2 \exp \left(-\mathrm{n} \pi_{1} / 12\right)-2 \exp \left(-\mathrm{n} \pi_{2} / 12\right),
\end{aligned}
$$

where the second inequality is by (104), and the last inequality follows from Lemma 3. This finishes the proof.

Lemma 20. For any $\% \in\left(\mathrm{e}^{-n / 100}, 1 / 100\right)$, define the event $\mathrm{M}_{4 n}$ (\% as

$$
\begin{aligned}
& \mathrm{M}_{4 n}(\%)={ }_{j=1}^{\mathrm{p} s_{\mathrm{n}} \mathrm{n}} \mathrm{e}_{j}^{\prime} \Lambda_{T}^{(1) 1 / 2} \Sigma_{T T}^{(1)-1} \nu_{T}^{(1)}-\mathrm{e}_{j}^{\prime} \Lambda_{T}^{(1) 1 / 2} \Sigma_{T T}^{(1)-1} \nu_{T}^{(1)} \leq\left(8 \boldsymbol{\Pi}_{1}^{-1} \boldsymbol{\Pi}_{2}^{-1}\right)^{1 / 2} \\
& \left\{\mathrm{e}_{j}^{\prime} \Lambda_{T}^{(1) 1 / 2} \Sigma_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2} \mathrm{e}_{j}\right\}^{1 / 2}\left\{\log \left(\mathrm{q}_{\mathrm{h}} \mathrm{~s}_{n} \%^{-1}\right) / \mathrm{n}\right\}^{1 / 2}{ }^{\mathbf{0}},
\end{aligned}
$$

where $\left\{\mathrm{e}_{j}: \mathrm{j} \leq \mathrm{q}_{n} \mathrm{~s}_{n}\right\}$ denotes the standard basis for $\mathbb{R}^{q_{n} s_{n}}$. Then we have the following property:

$$
\mathrm{P}\left\{\mathrm{M}_{4 n}(\%\} \geq 1-2 \%-2 \exp \left(-\mathrm{n} \pi_{1} / 12\right)-2 \exp \left(-\mathrm{n} \pi_{2} / 12\right), \quad \forall \% \in\left(\mathrm{e}^{-n / 100}, 1 / 100\right) .\right.
$$

Proof of Lemma 20: First of all, we note that conditional on any nonempty $\left\{\mathrm{Y}_{i}=\mathrm{y}_{i}\right\}_{i=1}^{n} \cap$
M_{n}

$$
\begin{equation*}
\Lambda_{T}^{(1) 1 / 2} \Sigma_{T T}^{(1)-1} \boldsymbol{v}_{T}^{(1)}\left\{\Upsilon_{i}=\mathrm{y}_{i}\right\}_{i=1}^{n} \cap \mathrm{M}_{n} \sim \mathrm{~N}\left(\Lambda_{T}^{(1) 1 / 2} \Sigma_{T T}^{(1)-1} \mathrm{v}_{T}^{(1)}, \mathrm{n}_{1}^{-1} \mathrm{n}_{2}^{-1} \mathrm{n} \Lambda_{T}^{(1) 1 / 2} \Sigma_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2}\right) . \tag{105}
\end{equation*}
$$

Moreover, it can be observed that

$$
\mathrm{P} \mathrm{M}_{4 n}\left(\%\left\{\mathrm{Y}_{i}=\mathrm{y}_{i}\right\}_{i=1}^{n} \cap \mathrm{M}_{n} \geq{ }_{j=1}^{\text {X }_{n}} \mathrm{P} \mathrm{M}_{4 n j}\left(\%\left\{\mathrm{Y}_{i}=\mathrm{y}_{i}\right\}_{i=1}^{n} \cap \mathrm{M}_{n}-\left(\mathbf{q}_{n} \mathbf{S}_{n}-1\right),\right.\right.
$$

where the events $\mathrm{M}_{4 n j}\left(\%=\mathrm{e}_{j} \Lambda_{T}^{(1) 1 / 2} \Sigma_{T T}^{(1)-1} \boldsymbol{v}_{T}^{(1)}-\mathrm{e}_{j} \Lambda_{T}^{(1) 1 / 2} \Sigma_{T T}^{(1)-1} \nu_{T}^{(1)} \leq\left(8 \pi_{1}^{-1} \Pi_{2}^{-1}\right)^{1 / 2}\right.$ $\left\{\mathrm{e}_{j} \Lambda_{T}^{(1) 1 / 2} \Sigma_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2} \mathrm{e}_{j}\right\}^{1 / 2}\left\{\log \left(\mathbf{q}_{n} \mathbf{S}_{n} \%^{1}\right) / \mathrm{n}\right\}^{1 / 2}$ for all $\mathrm{j} \leq \mathbf{q}_{n} \mathbf{S}_{n}$. Under (105), the concentration inequality entails that for all $\mathrm{j} \leq \mathrm{q}_{n} \mathbf{S}_{n}$

$$
\text { P } \mathbf{M}_{4 n j}\left(\%\left\{\mathbf{Y}_{i}=\mathbf{y}_{i}\right\}_{i=1}^{n} \cap \mathbf{M}_{n} \geq 1-2 \exp \left\{-\log \left(\mathbf{q}_{n} \mathbf{s}_{n} \%^{1}\right)\right\}=1-2 \mathbf{q}_{n}^{-1} \mathbf{s}_{n}^{-1} \%\right.
$$

Putting the above two inequalities together leads to

$$
\begin{equation*}
\text { P } \mathrm{M}_{4 n}\left(\%\left\{Y_{i}=\mathrm{y}_{i}\right\}_{i=1}^{n} \cap \mathrm{M}_{n} \geq 1-2 \%\right. \tag{106}
\end{equation*}
$$

Therefore, we have

$$
\begin{aligned}
& \mathrm{P}\left\{\mathrm{M}_{4 n}(\%\} \geq \mathrm{P}\left\{\mathrm{M}_{4 n}\left(\% \cap \mathrm{M}_{n}\right\}\right.\right. \\
& \geq\left(1-2 \%{ }_{\left\{y_{i}\right\}_{i=1}^{n} \in \mathcal{M}_{n}}^{\mathrm{X}}\left\{\mathrm{Y}_{i}=\mathrm{y}_{i}\right\}_{i=1}^{n}=\left(1-2 \% \mathrm{P}\left(\mathrm{M}_{n}\right)\right.\right. \\
& \geq 1-2 \%-2 \exp \left(-\mathrm{n} \pi_{1} / 12\right)-2 \exp \left(-\mathrm{n} \pi_{2} / 12\right),
\end{aligned}
$$

where the second inequality is by (106), and the last inequality follows from Lemma 3. This finishes the proof.

Lemma 21. For any $\% \in\left(\mathrm{e}^{-n / 100}, 1 / 100\right)$, define the event $\mathrm{M}_{5 n}$ (\% as

$$
\begin{aligned}
\mathbf{M}_{5 n}(\%= & { }^{\mathrm{n}} \boldsymbol{\nu}_{T}^{(1)^{\prime}} \Sigma_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2} \operatorname{sgn}\left(\beta_{T}^{(1)}\right)-\nu_{T}^{(1)^{\prime}} \Sigma_{T T}^{(1)-1} \Lambda_{T}^{(1) / 2} \operatorname{sgn}\left(\beta_{T}^{(1)}\right) \leq \\
& \left(8 \pi_{1}^{-1} \boldsymbol{\Pi}_{2}^{-1}\right)^{1 / 2} \lambda_{\max }^{1 / 2}\left(\Lambda_{T}^{(1) 1 / 2} \Sigma_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2}\right)\left\{\mathrm{q}_{n} \mathbf{s}_{n} \log \left(\%^{1}\right) / \mathrm{n}\right\}^{1 / 2} .
\end{aligned}
$$

Then we have the following property:

$$
\mathrm{P}\left\{\mathrm{M}_{5 n}(\%\} \geq 1-2 \%-2 \exp \left(-\mathrm{n} \pi_{1} / 12\right)-2 \exp \left(-\mathrm{n} \pi_{2} / 12\right), \quad \forall \% \in\left(\mathrm{e}^{-n / 100}, 1 / 100\right) .\right.
$$

Proof of Lemma 21: First of all, we know that conditional on any nonempty $\left\{\mathrm{Y}_{i}=\mathrm{y}_{i}\right\}_{i=1}^{n} \cap$ M_{n}

$$
\begin{aligned}
& \hat{\nu}_{T}^{(1)^{\prime}} \Sigma_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2} \operatorname{sgn}\left(\beta_{T}^{(1)}\right)\left\{Y_{i}=y_{i}\right\}_{i=1}^{n} \cap \mathbf{M}_{n} \\
\sim & N \nu_{T}^{(1)^{\prime}} \Sigma_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2} \operatorname{sgn}\left(\beta_{T}^{(1)}\right), n_{1}^{-1} n_{2}^{-1} n\left\{\operatorname{sgn}\left(\beta_{T}^{(1)}\right)^{\prime} \Lambda_{T}^{(1) 1 / 2} \Sigma_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2} \operatorname{sgn}\left(\beta_{T}^{(1)}\right)\right\}
\end{aligned}
$$

Together with the concentration inequality, we conclude that for any $t>0$

$$
\begin{gathered}
\mathrm{P} \quad\left(\hat{\nu}_{T}^{(1)}-\nu_{T}^{(1)}\right)^{\prime} \Sigma_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2} \operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right) \leq \mathrm{t}\left\{\mathrm{Y}_{i}=\mathrm{y}_{i}\right\}_{i=1}^{n} \cap \mathrm{M}_{n} \\
\geq 1-2 \exp -8^{-1} \boldsymbol{\pi}_{1} \Pi_{2}\left\{\mathrm{q}_{n} \mathrm{~s}_{n} \lambda_{\max }\left(\Lambda_{T}^{(1) 1 / 2} \Sigma_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2}\right)\right\}^{-1} \mathrm{nt}^{2} .
\end{gathered}
$$

Plugging $\mathrm{t}=\left(8 \boldsymbol{\pi}_{1}^{-1} \boldsymbol{\pi}_{2}^{-1}\right)^{1 / 2} \lambda_{\max }^{1 / 2}\left(\Lambda_{T}^{(1) 1 / 2} \Sigma_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2}\right)\left\{\mathrm{q}_{\mathbf{n}} \mathbf{s}_{n} \log \left(\%^{1}\right) / \mathrm{n}\right\}^{1 / 2}$ into the above inequality yields

$$
\begin{equation*}
\mathrm{P} \mathrm{M}_{5 n}\left(\%\left\{\mathrm{Y}_{i}=\mathrm{y}_{i}\right\}_{i=1}^{n} \cap \mathrm{M}_{n} \geq 1-2 \%\right. \tag{107}
\end{equation*}
$$

Finally, we have

$$
\begin{aligned}
& \mathrm{P}\left\{\mathrm{M}_{5 n}(\%\} \geq \mathrm{P}\left\{\mathrm{M}_{5 n}\left(\% \cap \mathrm{M}_{n}\right\}\right.\right. \\
\geq & \mathrm{X} \quad \mathrm{C}-2 \% \quad \underset{\left\{y_{i}\right\}_{i=1}^{n} \in \mathcal{M}_{n}}{ } \quad \mathrm{P}\left\{\mathrm{Y}_{i}=\mathrm{y}_{i}\right\}_{i=1}^{n}=\left(1-2 \% \mathrm{P}\left(\mathrm{M}_{n}\right)\right. \\
\geq & 1-2 \%-2 \exp \left(-\mathrm{n} \pi_{1} / 12\right)-2 \exp \left(-\mathrm{n}_{2} / 12\right),
\end{aligned}
$$

where the second inequality is by (107), and the last inequality follows from Lemma 3. This completes the proof.

Lemma 22. Assume the following condition (a):
(a) $\mathrm{q}_{n} \mathrm{~s}_{n}=\mathrm{O}(\mathrm{n})$.

Then there exists universal constants $\mathrm{c}_{1}>0$ and $\mathrm{c}_{2}>0$ such that:

1) $\mathrm{P} \max _{j \leq q_{\mathrm{n}} \mathrm{s}_{\mathrm{n}}}\left(\mathrm{e}_{j} \Lambda_{T}^{(1) 1 / 2} \Sigma_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2} \mathrm{e}_{j}\right) /\left(\mathbf{e}_{j}^{\prime} \Lambda_{T}^{(1) 1 / 2} \mathbf{S}_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2} \mathrm{e}_{j}\right)-1 \leq$
$c_{1} \mathbf{q}_{n} \mathbf{s}_{n} / n+\left\{\log \left(\mathbf{q}_{n} \mathbf{s}_{n} \log \mathrm{n}\right) / \mathrm{n}\right\}^{1 / 2} \geq 1-\mathrm{C}_{2}\{\log (\mathrm{n})\}^{-1}+\exp \left(-\mathrm{n} \pi_{1} / 12\right)+\exp \left(-\mathrm{n} \boldsymbol{\pi}_{2} / 12\right)$.
2) $\mathrm{P} \max _{j \leq q_{\mathrm{n}} \mathrm{s}_{\mathrm{n}}}\left(\mathrm{e}_{j} \Lambda_{T}^{(1) 1 / 2} \mathrm{~S}_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2} \mathrm{e}_{j}\right) /\left(\mathrm{e}_{j} \Lambda_{T}^{(1) 1 / 2} \Sigma_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2} \mathrm{e}_{j}\right)-1 \leq$
$\mathrm{c}_{1} \mathbf{q}_{n} \mathbf{s}_{n} / \mathrm{n}+\left\{\log \left(\mathbf{q}_{n} \mathbf{s}_{n} \log \mathrm{n}\right) / \mathrm{n}\right\}^{1 / 2} \geq 1-\mathrm{c}_{2}\{\log (\mathrm{n})\}^{-1}+\exp \left(-\mathrm{n} \pi_{1} / 12\right)+\exp \left(-\mathrm{n} \pi_{2} / 12\right)$.
3) $\mathrm{P} \quad\left\{\operatorname{sgn}\left(\beta_{T}^{(1)}\right)^{\prime} \Lambda_{T}^{(1) 1 / 2} \Sigma_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2} \operatorname{sgn}\left(\beta_{T}^{(1)}\right)\right\} /\left\{\operatorname{sgn}\left(\beta_{T}^{(1)}\right)^{\prime} \Lambda_{T}^{(1) 1 / 2} \mathrm{~S}_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2} \operatorname{sgn}\left(\beta_{T}^{(1)}\right)\right\}$
$-1 \leq \mathrm{c}_{1} \mathrm{q}_{n} \mathbf{s}_{n} / \mathbf{n}+\{\log \log (\mathrm{n}) / \mathrm{n}\}^{1 / 2} \geq 1-\mathrm{c}_{2}\{\log (\mathrm{n})\}^{-1}+\exp \left(-\mathrm{n} \boldsymbol{r}_{1} / 12\right)+$ $\exp \left(-\mathrm{n} \pi_{2} / 12\right)$.
4) $\mathrm{P} \quad\left\{\operatorname{sgn}\left(\beta_{T}^{(1)}\right)^{\prime} \Lambda_{T}^{(1) 1 / 2} \mathrm{~S}_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2} \operatorname{sgn}\left(\beta_{T}^{(1)}\right)\right\} /\left\{\operatorname{sgn}\left(\beta_{T}^{(1)}\right)^{\prime} \Lambda_{T}^{(1) 1 / 2} \Sigma_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2} \operatorname{sgn}\left(\beta_{T}^{(1)}\right)\right\}$
$-1 \leq \mathrm{c}_{1} \mathrm{q}_{\mathbf{n}} \mathbf{s}_{n} / \mathbf{n}+\{\log \log (\mathrm{n}) / \mathrm{n}\}^{1 / 2} \geq 1-\mathrm{c}_{2}\{\log (\mathrm{n})\}^{-1}+\exp \left(-\mathrm{n} \pi_{1} / 12\right)+$ $\exp \left(-\mathrm{n} \pi_{2} / 12\right)$.

Recall that $\left\{\mathrm{e}_{j}: \mathrm{j} \leq \mathrm{q}_{n} \mathrm{~s}_{n}\right\}$ denotes the standard basis for $\mathbb{R}^{q_{n} s_{n}}$.

Proof of Lemma 22: First of all, according to (98), condition (a) and Theorem 3.2.12 in Muirhead (1982), we know that conditional on any nonempty $\left\{\mathrm{Y}_{i}=\mathrm{y}_{i}\right\}_{i=1}^{n} \cap \mathrm{M}_{n}$, and for every $\mathbf{j} \leq \mathbf{q}_{n} \mathbf{S}_{n}$,

$$
(\mathrm{n}-2)\left(\mathrm{e}_{j}^{\prime} \Lambda_{T}^{(1) 1 / 2} \Sigma_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2} \mathrm{e}_{j}\right)\left(\mathrm{e}_{j}^{\prime} \Lambda_{T}^{(1) 1 / 2} \mathbf{S}_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2} \mathrm{e}_{j}\right)^{-1} \mid\left\{\mathrm{Y}_{i}=\mathrm{y}_{i}\right\}_{i=1}^{n} \cap \mathrm{M}_{n} \sim \chi_{n-q_{n} s_{n}-1}^{2}
$$

Together with (A.2) and (A.3) in Johnstone and Lu (2009), it can be deduced that for any $\mathrm{t} \in[0,1 / 2)$ and for every $\mathrm{j} \leq \mathrm{q}_{\mathrm{h}} \mathrm{s}_{n}$,

$$
\begin{aligned}
& \mathrm{P} \mid\left(\mathrm{n}-\mathrm{q}_{n} \mathbf{s}_{n}-1\right)^{-1}(\mathrm{n}-2)\left(\mathrm{e}_{j}^{\prime} \Lambda_{T}^{(1) 1 / 2} \Sigma_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2} \mathrm{e}_{j}\right)\left(\mathrm{e}_{j}^{\prime} \Lambda_{T}^{(1) 1 / 2} \mathbf{S}_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2} \mathrm{e}_{j}\right)^{-1} \\
& \quad-1|\geq \mathrm{t}|\left\{\mathrm{Y}_{i}=\mathrm{y}_{i}\right\}_{i=1}^{n} \cap \mathrm{M}_{n} \leq 2 \exp \left\{-3\left(\mathrm{n}-\mathrm{q}_{n} \mathbf{s}_{n}-1\right) \mathrm{t}^{2} / 16\right\}
\end{aligned}
$$

which together with condition (a) implies that

$$
\begin{aligned}
& \mathrm{P}\left|\left(\mathbf{e}_{j}^{\prime} \Lambda_{T}^{(1) 1 / 2} \Sigma_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2} \mathrm{e}_{j}\right)\left(\mathrm{e}_{j}^{\prime} \Lambda_{T}^{(1) 1 / 2} \mathbf{S}_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2} \mathrm{e}_{j}\right)^{-1}-1\right| \\
& \quad \leq 4 \mathbf{q}_{n} \mathbf{s}_{n} / \mathrm{n}+2 \mathrm{t} \mid\left\{\mathbf{Y}_{i}=\mathrm{y}_{i}\right\}_{i=1}^{n} \cap \mathbf{M}_{n} \geq 1-2 \exp \left\{-3\left(\mathrm{n}-\mathrm{q}_{\mathbf{n}} \mathbf{s}_{n}-1\right) \mathrm{t}^{2} / 16\right\} \\
& \geq 1-2 \exp \left(-\mathrm{nt}^{2} / 16\right)
\end{aligned}
$$

Together with the union bound inequality, it can be observed that for any $t \in[0,1 / 2)$,

$$
\begin{aligned}
& \mathrm{P} \max _{j \leq q_{\mathrm{n}} \mathrm{~s}_{\mathrm{n}}}\left|\left(\mathrm{e}_{j}^{\prime} \Lambda_{T}^{(1) 1 / 2} \Sigma_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2} \mathbf{e}_{j}\right)\left(\mathbf{e}_{j}^{\prime} \Lambda_{T}^{(1) 1 / 2} \mathbf{S}_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2} \mathbf{e}_{j}\right)^{-1}-1\right| \\
& \quad \leq 4 \mathbf{q}_{\mathrm{n}} \mathbf{s}_{n} / \mathrm{n}+2 \mathrm{t} \mid\left\{\mathbf{Y}_{i}=\mathrm{y}_{i}\right\}_{i=1}^{n} \cap \mathrm{M}_{n} \geq 1-2 \mathbf{q}_{n} \mathbf{s}_{n} \exp \left(-\mathrm{nt}^{2} / 16\right) .
\end{aligned}
$$

Subsequently, we substitute $t=\left\{16 \log \left(\mathbf{a}_{n} \mathbf{s}_{n} \log \mathbf{n}\right) / n\right\}^{1 / 2}$ into the above inequality to obtain

$$
\begin{align*}
& \mathrm{P} \max _{j \leq q_{n} s_{n}}\left|\left(\mathrm{e}_{j}^{\prime} \Lambda_{T}^{(1) 1 / 2} \Sigma_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2} \mathbf{e}_{j}\right)\left(\mathrm{e}_{j}^{\prime} \Lambda_{T}^{(1) 1 / 2} \mathbf{S}_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2} \mathbf{e}_{j}\right)^{-1}-1\right| \\
& \quad \leq 4 \mathbf{q}_{\mathbf{n}} \mathbf{s}_{n} / \mathbf{n}+8\left\{\log \left(\mathbf{q}_{\mathbf{n}} \mathbf{s}_{n} \log \mathbf{n}\right) / \mathrm{n}\right\}^{1 / 2} \mid\left\{\mathbf{Y}_{i}=\mathrm{y}_{i}\right\}_{i=1}^{n} \cap \mathbf{M}_{n} \\
& \geq 1-2\{\log (\mathrm{n})\}^{-1} . \tag{108}
\end{align*}
$$

It then follows that

$$
\begin{aligned}
& \mathrm{P} \max _{j \leq q_{\mathrm{n}} s_{\mathrm{n}}}\left(\mathrm{e}_{j}^{\prime} \Lambda_{T}^{(1) 1 / 2} \Sigma_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2} \mathrm{e}_{j}\right) /\left(\mathrm{e}_{j} \Lambda_{T}^{(1) 1 / 2} \mathbf{S}_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2} \mathrm{e}_{j}\right)-1 \\
& \leq 8 \mathbf{q}_{n} \mathbf{s}_{n} / \mathbf{n}+\left\{\log \left(\mathbf{q}_{n} \mathbf{s}_{n} \log \mathbf{n}\right) / n\right\}^{1 / 2} \\
& \geq \operatorname{Xin}_{\left\{y_{i}\right\}_{i=1}^{\mathrm{n}} \in \mathcal{M}_{\mathrm{n}}} \mathrm{P} \max _{j \leq q_{\mathrm{n}} s_{\mathrm{n}}}\left(\mathbf{e}_{j}^{\prime} \Lambda_{T}^{(1) 1 / 2} \Sigma_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2} \mathrm{e}_{j}\right) /\left(\mathbf{e}_{j}^{\prime} \Lambda_{T}^{(1) 1 / 2} \mathbf{S}_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2} \mathbf{e}_{j}\right) \\
& -1 \leq 8 \mathbf{q}_{n} \mathbf{s}_{n} / \mathbf{n}+\left\{\log \left(\mathbf{q}_{n} \mathbf{s}_{n} \log \mathbf{n}\right) / \mathbf{n}\right\}^{1 / 2} \quad\left\{\mathbf{Y}_{i}=\mathrm{y}_{i}\right\}_{i=1}^{n} \quad \cdot \mathbf{P} \quad\left\{\mathrm{Y}_{i}=\mathrm{y}_{i}\right\}_{i=1}^{n} \\
& \text { X } \\
& \geq\left[1-2\{\log (\mathrm{n})\}^{-1}\right] \quad \mathrm{P}\left\{\mathrm{Y}_{i}=\mathrm{y}_{i}\right\}_{i=1}^{n}=\left[1-2\{\log (\mathrm{n})\}^{-1}\right] \mathrm{P}\left(\mathrm{M}_{n}\right) \\
& \left\{y_{i}\right\}_{i=1}^{\mathrm{n}} \in \mathcal{M}_{n} \\
& \geq 1-2\{\log (\mathrm{n})\}^{-1}+\exp \left(-\mathrm{n} \pi_{1} / 12\right)+\exp \left(-\mathrm{n} \pi_{2} / 12\right),
\end{aligned}
$$

where the second inequality is by (108), and the last inequality follows from Lemma 3. Hence, property 1) is justified by the above inequality. To prove property 2), notice that
under the event $\max _{j \leq q_{\mathrm{n}} \mathrm{s}_{\mathrm{n}}}\left(\mathrm{e}_{j} \Lambda_{T}^{(1) 1 / 2} \Sigma_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2} \mathrm{e}_{j}\right) /$
$\left(\mathbf{e}_{j}^{\prime} \Lambda_{T}^{(1) 1 / 2} \mathbf{S}_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2} \mathbf{e}_{j}\right)-1 \leq 8 \mathbf{q}_{n} \mathbf{S}_{n} / \mathbf{n}+\left\{\log \left(\mathbf{q}_{n} \mathbf{s}_{n} \log \mathbf{n}\right) / \mathbf{n}\right\}^{1 / 2} \quad$, it is straightforward to verify that

$$
\begin{aligned}
& \max _{j \leq q_{\mathrm{n}} \mathrm{~s}_{\mathrm{n}}}\left(\mathbf{e}_{j}^{\prime} \Lambda_{T}^{(1) 1 / 2} \mathbf{S}_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2} \mathbf{e}_{j}\right) /\left(\mathbf{e}_{j}^{\prime} \Lambda_{T}^{(1) 1 / 2} \Sigma_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2} \mathbf{e}_{j}\right)-1 \\
\leq & \max _{j \leq q_{\mathrm{n}} \mathrm{n}_{\mathrm{n}}}\left(\mathbf{e}_{j}^{\left.\mathbf{\prime} \Lambda_{T}^{(1) 1 / 2} \Sigma_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2} \mathbf{e}_{j}\right) /\left(\mathbf{e}_{j}^{\prime} \Lambda_{T}^{(1) 1 / 2} \mathbf{S}_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2} \mathbf{e}_{j}\right)-1 .}\right.
\end{aligned}
$$

Putting the above t2 Tf 31.93F246F9 $511[(\mathrm{~T})] \mathrm{TJ}$ F15 11.9552 Tf 24.022 3.241 Td [($\Sigma)]$ TJ F21 7.9701 T
where

$$
\begin{aligned}
& \Omega_{1 j}=\left|\mathrm{e}_{j}^{\prime} \Lambda_{T}^{(1) 1 / 2} \Sigma_{T T}^{(1)-1} \hat{\nu}_{T}^{(1)}-\mathrm{e}_{j}^{\prime} \Lambda_{T}^{(1) 1 / 2} \Sigma_{T T}^{(1)-1} \nu_{T}^{(1)}\right|, \\
& \Omega_{2 j}=\left|\mathrm{e}_{j}^{\prime} \Lambda_{T}^{(1) 1 / 2} \mathrm{~S}_{T T}^{(1)-1} \hat{\nu}_{T}^{(1)}-\mathrm{e}_{j}^{\prime} \Lambda_{T}^{(1) 1 / 2} \Sigma_{T T}^{(1)-1} \hat{\nu}_{T}^{(1)}\right| .
\end{aligned}
$$

Invoking Lemma 20, it can be deduced that there exist universal constants $C_{1}>0$ and $\mathrm{C}_{2}>0$ such that

$$
\begin{align*}
& \mathrm{P}_{j=1}^{\mathrm{h} \boldsymbol{q}_{\mathrm{p}} \mathrm{~s}_{\mathrm{n}} \mathrm{n}} \Omega_{1 j} \leq \mathrm{c}_{1}\left\{\log \left(\mathbf{q}_{\mathbf{n}} \mathrm{s}_{n} \log \mathrm{n}\right) / \mathrm{n}\right\}^{1 / 2}\left\{\mathrm{e}_{j}^{\prime} \Lambda_{T}^{(1) 1 / 2} \Sigma_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2} \mathrm{e}_{j}\right\}^{1 / 2} \text { oi } \\
& \geq 1-\mathrm{c}_{2}\{\log (\mathrm{n})\}^{-1}+\exp \left(-\mathrm{n} \pi_{1} / 12\right)+\exp \left(-\mathrm{n}_{2} / 12\right) . \tag{110}
\end{align*}
$$

Regarding the term $\Omega_{2 j}$, it can be seen that

$$
\Omega_{2 j} \leq\left\{\mathrm{e}_{j}^{\prime} \Lambda_{T}^{(1) 1 / 2} \Sigma_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2} \mathrm{e}_{j}\right\} \cdot\left|\Pi_{1 j}\right| \cdot\left(1+\Pi_{2 j}\right)+\left(\Omega_{1 j}+\left|\mathrm{e}_{j}^{\prime} \Lambda_{T}^{(1) 1 / 2} \Sigma_{T T}^{(1)-1} \nu_{T}^{(1)}\right|\right) \cdot \Pi_{2 j}
$$

where

$$
\begin{aligned}
\Pi_{1 j}= & \left\{\mathrm{e}_{j}^{\prime} \Lambda_{T}^{(1) 1 / 2} \mathrm{~S}_{T T}^{(1)-1} \hat{\nu}_{T}^{(1)}\right\}\left\{\mathrm{e}_{j}^{\prime} \Lambda_{T}^{(1) 1 / 2} \mathrm{~S}_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2} \mathrm{e}_{j}\right\}^{-1} \\
& -\left\{\mathrm{e}_{j}^{\prime} \Lambda_{T}^{(1) 1 / 2} \Sigma_{T T}^{(1)-1} \hat{\mathrm{v}}_{T}^{(1)}\right\}\left\{\mathrm{e}_{j}^{\prime} \Lambda_{T}^{(1) 1 / 2} \Sigma_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2} \mathrm{e}_{j}\right\}^{-1}, \\
\Pi_{2 j}= & \left\{\mathrm{e}_{j} \Lambda_{T}^{(1) 1 / 2} \mathrm{~S}_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2} \mathrm{e}_{j}\right\}\left\{\mathrm{e}_{j}^{\prime} \Lambda_{T}^{(1) 1 / 2} \Sigma_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2} \mathrm{e}_{j}\right\}^{-1}-1
\end{aligned}
$$

For the term $\Pi_{2 j}$, it follows from Lemma 22 that there exist universal constants $\mathrm{C}_{3}>0$ and $C_{4}>0$ such that

$$
\begin{gathered}
\mathbf{P} \max _{j \leq q_{\mathrm{n}} \mathrm{~s}_{\mathrm{n}}} \Pi_{2 j} \leq \mathrm{c}_{3}\left[\mathbf{q}_{\mathbf{n}} \mathbf{s}_{n} / \mathrm{n}+\left\{\log \left(\mathbf{q}_{\mathbf{n}} \mathbf{s}_{n} \log \mathrm{n}\right) / \mathrm{n}\right\}^{1 / 2}\right] \\
\geq 1-\mathbf{c}_{4}\{\log (\mathrm{n})\}^{-1}+\exp \left(-\mathrm{n} \pi_{1} / 12\right)+\exp \left(-\mathrm{n} \pi_{2} / 12\right) .
\end{gathered}
$$

To this end, based on the above three inequalities, we conclude that there exist universal
constants $\mathrm{C}_{5}>0$ and $\mathrm{C}_{6}>0$ such that

$$
\begin{align*}
& h q_{p} s_{n} n \\
& \mathrm{P} \quad \Omega_{2 j} \leq \mathbf{c}_{5}\left|\Pi_{1 j}\right| \cdot\left\{\mathrm{e}_{j}^{\prime} \Lambda_{T}^{(1) 1 / 2} \Sigma_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2} \mathrm{e}_{j}\right\}+\left[\mathbf{q}_{n} \mathbf{s}_{n} / \mathrm{n}+\left\{\log \left(\mathbf{q}_{n} \mathbf{s}_{n} \log \mathbf{n}\right) / \mathrm{n}\right\}^{1 / 2}\right] \\
& j=1 \\
& \cdot\left\{\log \left(\mathbf{q}_{n} \mathbf{s}_{n} \log \mathbf{n}\right) / \mathrm{n}\right\}^{1 / 2} \cdot\left\{\mathrm{e}_{j} \Lambda_{T}^{(1) 1 / 2} \Sigma_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2} \mathrm{e}_{j}\right\}^{1 / 2}+\left[\mathbf{q}_{\mathbf{n}} \mathbf{s}_{n} / \mathrm{n}+\left\{\log \left(\mathbf{q}_{n} \mathbf{s}_{n} \log \mathbf{n}\right) / \mathrm{n}\right\}^{1 / 2}\right] \\
& \cdot\left|\mathrm{e}_{j}^{\prime} \Lambda_{T}^{(1) 1 / 2} \Sigma_{T T}^{(1)-1} \nu_{T}^{(1)}\right|^{\text {oi }} \geq 1-\mathrm{c}_{6}\{\log (\mathrm{n})\}^{-1}+\exp \left(-\mathrm{n} \pi_{1} / 12\right)+\exp \left(-\mathrm{n} \pi_{2} / 12\right) \text {. } \tag{111}
\end{align*}
$$

To bound the term $\Pi_{1 j}$, for every $\mathbf{j} \leq \mathbf{q}_{n} \mathbf{s}_{n}$, we define a $2 \times \mathbf{q}_{n} \mathbf{s}_{n}$ random matrix $\hat{\mathbf{M}}_{j}$ as

$$
\hat{\mathbf{M}}_{j}=\left[\Lambda_{T}^{(1) 1 / 2} \mathrm{e}_{j}, \hat{\nu}_{T}\right]^{\prime} \in \mathbb{R}^{2 \times q_{\mathrm{n}} s_{\mathrm{n}}} .
$$

Elementary algebra shows that for every $\mathrm{j} \leq \mathrm{q}_{n} \mathbf{s}_{n}$,

$$
\begin{align*}
& \hat{\mathbf{M}}_{j} \mathrm{~S}_{T T}^{(1)-1} \hat{\mathbf{M}}_{j}^{\prime}=\begin{array}{cc}
\mathrm{e}_{j}^{\prime} \Lambda_{T}^{(1) 1 / 2} \mathrm{~S}_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2} \mathrm{e}_{j} & \mathrm{e}_{j}^{\prime} \Lambda_{T}^{(1) 1 / 2} \mathrm{~S}_{T T}^{(1)-1} \hat{\boldsymbol{\nu}}_{T} \\
\mathrm{e}_{j}^{\prime} \Lambda_{T}^{(1) 1 / 2} \mathbf{S}_{T T}^{(1)-1} \boldsymbol{\nu}_{T} & \hat{\boldsymbol{\nu}}_{T}^{\prime} \mathbf{S}_{T T}^{(1)-1} \hat{\nu}_{T}
\end{array} \quad \in \mathbb{R}^{2 \times 2}, \\
& \hat{\mathbf{M}}_{j} \Sigma_{T T}^{(1)-1} \hat{\mathbf{M}}_{j}^{\prime}=\begin{array}{cc}
\mathrm{e}_{j}^{\prime} \Lambda_{T}^{(1) 1 / 2} \Sigma_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2} \mathrm{e}_{j} & \mathrm{e}_{j}^{\prime} \Lambda_{T}^{(1) 1 / 2} \Sigma_{T T}^{(1)-1} \boldsymbol{\nu}_{T} \\
\mathrm{e}_{j}^{\prime} \Lambda_{T}^{(1) 1 / 2} \Sigma_{T T}^{(1)-1} \boldsymbol{\nu}_{T} & \hat{\boldsymbol{\nu}}_{T}^{\prime} \Sigma_{T T}^{(1)-1} \boldsymbol{\nu}_{T}
\end{array} \quad \in \mathbb{R}^{2 \times 2} . \tag{112}
\end{align*}
$$

Moreover, since \mathcal{V}_{T} is independent of $\mathbf{S}_{T T}^{(1)}$, it can be shown that conditional on any nonempty $\left\{\mathbf{Y}_{i}=\mathrm{y}_{i}\right\}_{i=1}^{n} \cap \mathrm{M}_{n} \cap\left\{\boldsymbol{\nu}_{T}\right\}$, and for every $\mathbf{j} \leq \mathbf{q}_{n} \mathbf{S}_{n}$,

$$
\begin{equation*}
(\mathrm{n}-2)\left(\hat{\mathrm{M}}_{j} \mathrm{~S}_{T T}^{(1)-1} \hat{\mathrm{M}}_{j}^{\prime}\right)^{-1} \mid\left\{Y_{i}=\mathrm{y}_{i}\right\}_{i=1}^{n} \cap \mathrm{M}_{n} \cap\left\{\hat{\nu}_{T}\right\} \sim \text { Wishart }\left(\mathrm{n}-\mathrm{q}_{n} \mathrm{~S}_{n} \mid\left(\hat{\mathrm{M}}_{j} \Sigma_{T T}^{(1)-1} \hat{\mathrm{M}}_{j}^{\prime}\right)^{-1}\right), \tag{113}
\end{equation*}
$$

using Theorem 3.2.11 in Muirhead (1982). To this end, by combining (112), (113) with Theorem 3(d) in Bodnar and Okhrin (2008), it is straightforward to reach a conclusion that for every $\mathrm{j} \leq \mathrm{q}_{n} \mathrm{~s}_{n}$,

$$
\left\{\left(\mathrm{n}-\mathrm{q}_{n} \mathrm{~s}_{n}-3\right) / \mathrm{k}_{j}\right\}^{1 / 2} \Pi_{1 j} \mid\left\{\mathrm{Y}_{i}=\mathrm{y}_{i}\right\}_{i=1}^{n} \cap \mathrm{M}_{n} \cap\left\{\hat{v}_{T}\right\} \sim \mathrm{t}\left(\mathrm{n}-\mathrm{q}_{\mathrm{n}} \mathrm{~s}_{n}-3\right),
$$

where $t\left(n-q_{h} \mathbf{s}_{n}-3\right)$ represents the student t-distribution with $\mathrm{n}-\mathrm{q}_{n} \mathbf{s}_{n}-3$ degrees of freedom, and $\mathrm{K}_{j}=\left\{\hat{\nu}_{T}^{\prime} \Sigma_{T T}^{(1)-1} \hat{\nu}_{T}\right\}\left\{\mathrm{e}_{j}^{\prime} \Lambda_{T}^{(1) 1 / 2} \Sigma_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2} \mathrm{e}_{j}\right\}^{-1}-\left\{\mathrm{e}_{j} \Lambda_{T}^{(1) 1 / 2} \Sigma_{T T}^{(1)-1} \hat{\nu}_{T}\right\}^{2}\left\{\mathrm{e}_{j}^{\prime} \Lambda_{T}^{(1) 1 / 2} \Sigma_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2} \mathrm{e}_{j}\right\}^{-2}$.

Together with Lemma 20 in Kolar and Liu (2015), it is clear that there exist universal constands $\mathrm{C}_{7}>0$ and $\mathrm{C}_{8}>0$ such that for every $\mathrm{j} \leq \mathrm{q}_{\mathbf{n}} \mathrm{S}_{n}$ and for any $\mathrm{t}_{j} \geq 0$,

$$
\begin{aligned}
\mathrm{P}\left|\Pi_{1 j}\right| \geq \mathrm{t}_{j}\left\{\mathrm{Y}_{i}=\mathrm{y}_{i}\right\}_{i=1}^{n} \cap \mathrm{M}_{n} \cap\left\{\hat{\nu}_{T}\right\} \leq \mathrm{c}_{7} \exp \left\{-\mathrm{c}_{8}\left(\mathrm{n}-\mathrm{q}_{n} \mathrm{~s}_{n}-3\right) \mathrm{K}_{j}^{-1} \mathrm{t}_{j}^{2}\right\} \\
\leq \mathrm{C}_{7} \exp -2^{-1} \mathrm{c}_{8} \mathrm{n}\left\{\hat{\nu}_{T}^{\prime} \Sigma_{T T}^{(1)-1} \hat{\nu}_{T}\right\}^{-1}\left\{\mathrm{e}_{j} \Lambda_{T}^{(1) 1 / 2} \Sigma_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2} \mathrm{e}_{j}\right\} \mathrm{t}_{j}^{2},
\end{aligned}
$$

which further implies that

$$
\begin{aligned}
& \mathrm{P} \quad \cap_{j=1}^{q_{n} s_{n}}\left\{\left|\Pi_{1 j}\right| \leq \mathrm{t}_{j}\right\}\left\{\mathrm{Y}_{i}=\mathrm{y}_{i}\right\}_{i=1}^{n} \cap \mathrm{M}_{n} \cap\left\{\nu_{T}\right\} \\
& \geq 1-{ }_{j=1}^{\text {® sn }_{\mathrm{n}}} \mathrm{C}_{7} \exp -2^{-1} \mathrm{C}_{8} \mathrm{n}\left\{\nu_{T}^{\prime} \Sigma_{T T}^{(1)-1} \nu_{T}\right\}^{-1}\left\{\mathrm{e}_{j}^{\prime} \Lambda_{T}^{(1) 1 / 2} \Sigma_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2} \mathrm{e}_{j}\right\} \mathrm{t}_{j}^{2}
\end{aligned}
$$

By plugging $\mathrm{t}_{j}=\mathrm{c}_{9}\left\{\hat{\nu}_{T}^{\prime} \Sigma_{T T}^{(1)-1} \mathcal{\nu}_{T}\right\}^{1 / 2}\left\{\mathrm{e}_{j}^{\prime} \Lambda_{T}^{(1) 1 / 2} \Sigma_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2} \mathrm{e}_{j}\right\}^{-1 / 2}\left\{\log \left(\mathbf{q}_{\mathbf{n}} \mathbf{s}_{n} \log \mathrm{n}\right) / \mathrm{n}\right\}^{1 / 2}$ with $\mathrm{C}_{9}=\left(2 \mathrm{C}_{8}^{-1}\right)^{1 / 2}$ into the above inequality, it can be obtained that

$$
\begin{align*}
& \mathbf{P}^{\mathrm{h} \mathrm{p}_{\mathrm{s}} \mathrm{n}}\left|\Pi_{1 j}\right| \leq \mathrm{c}_{9}\left\{\hat{\nu}_{T}^{\prime} \Sigma_{T T}^{(1)-1} \nu_{T}\right\}^{1 / 2}\left\{\mathrm{e}_{j} \Lambda_{T}^{(1) 1 / 2} \Sigma_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2} \mathrm{e}_{j}\right\}^{-1 / 2}\left\{\log \left(\mathbf{q}_{\mathbf{n}} \mathbf{s}_{n} \log \mathrm{n}\right) / \mathrm{n}\right\}^{1 / 2} \\
& { }^{j=1} \\
& \left\{\mathrm{Y}_{i}=\mathrm{y}_{i}\right\}_{i=1}^{n} \cap \mathrm{M}_{n} \cap\left\{\mathrm{D}_{T}\right\}^{\mathrm{i}} \geq 1-\mathrm{c}_{7}\{\log (\mathrm{n})\}^{-1} . \tag{114}
\end{align*}
$$

It then follows that

$$
\begin{aligned}
& \mathrm{P}^{\mathrm{h} \mathrm{p}_{\mathrm{p}} s_{\mathrm{n}} \mathrm{n}}\left|\Pi_{1 j}\right| \leq \mathrm{c}_{9}\left\{\mathcal{\nu}_{T}^{\prime} \Sigma_{T T}^{(1)-1} \hat{\nu}_{T}\right\}^{1 / 2}\left\{\mathrm{e}_{j}^{\prime} \Lambda_{T}^{(1) 1 / 2} \Sigma_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2} \mathrm{e}_{j}\right\}^{-1 / 2}\left\{\log \left(\mathrm{q}_{\mathrm{s}} \mathrm{~s}_{\mathrm{n}} \log \mathrm{n}\right) / \mathrm{n}\right\}^{1 / 2} \text { oi } \\
& \geq{ }_{\left\{y_{i}\right\}_{i=1}^{\mathrm{n}} \in \mathcal{M}_{\mathrm{n}} \hat{\nu}_{T} \in \mathcal{M}_{\mathrm{n}}}^{j=1} \mathrm{X} \mathrm{X}_{j=1}^{\mathrm{h} \phi_{\mathrm{p}} s_{\mathrm{n}} \mathrm{n}}\left|\Pi_{1 j}\right| \leq \mathrm{c}_{9}\left\{\hat{\nu}_{T}^{\prime} \Sigma_{T T}^{(1)-1} \hat{\nu}_{T}\right\}^{1 / 2}\left\{\mathrm{e}_{j}^{\prime} \Lambda_{T}^{(1) 1 / 2} \Sigma_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2} \mathrm{e}_{j}\right\}^{-1 / 2} \\
& \left\{\log \left(\mathrm{o}_{n} \mathrm{~s}_{n} \log \mathrm{n}\right) / \mathrm{n}\right\}^{1 / 2}{ }^{\mathrm{O}}\left\{\mathrm{Y}_{i}=\mathrm{y}_{i}\right\}_{i=1}^{n} \cap\left\{\mathrm{\nu}_{T}\right\}^{\mathrm{i}} \cdot \mathrm{P} \quad\left\{\mathrm{Y}_{i}=\mathrm{y}_{i}\right\}_{i=1}^{n} \cap\left\{{\nu_{T}}\right\} \\
& \mathrm{X} \quad \mathrm{X} \\
& \geq\left[1-\mathrm{c}_{7}\{\log (\mathrm{n})\}^{-1}\right] . \quad \mathrm{P}\left\{\mathrm{Y}_{i}=\mathrm{y}_{i}\right\}_{i=1}^{n} \cap\left\{\mathrm{v}_{T}\right\}=\left[1-\mathrm{c}_{7}\{\log (\mathrm{n})\}^{-1}\right] \cdot \mathrm{P}\left(\mathrm{M}_{n}\right) \\
& \left\{y_{i}\right\}_{i=1}^{n} \in \mathcal{M}_{\mathrm{n}} \hat{\nu_{T} \in \mathcal{M}_{\mathrm{n}}} \\
& \geq 1-\mathrm{C}_{10}\{\log (\mathrm{n})\}^{-1}+\exp \left(-\mathrm{n} \pi_{1} / 12\right)+\exp \left(-\mathrm{n} \pi_{2} / 12\right) \text {, }
\end{aligned}
$$

for some universal constant $\mathrm{C}_{10}>0$, where the second inequality is by (114). Together with

Lemma 19, it is seen that there exist universal constants $\mathrm{C}_{11}>0$ and $\mathrm{C}_{12}>0$ such that,

$$
\begin{aligned}
& h q_{p} s_{n} n \\
& \mathrm{P}_{j=1}\left|\Pi_{1 j}\right| \leq \mathrm{C}_{11}\left\{\mathrm{e}_{j}^{\prime} \Lambda_{T}^{(1) 1 / 2} \Sigma_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2} \mathrm{e}_{j}\right\}^{-1 / 2}\left\{\log \left(\mathbf{q}_{\boldsymbol{n}} \mathbf{s}_{n} \log \mathbf{n}\right) / \mathrm{n}\right\}^{1 / 2} \\
& \text { - } \mathbf{q}_{\mathbf{n}} \mathbf{s}_{n} / \mathbf{n}+\log \log (\mathrm{n}) / \mathrm{n}+\left[1+\mathbf{q}_{\mathbf{n}} \mathbf{s}_{n} / \mathbf{n}+\{\log \log (\mathrm{n}) / \mathrm{n}\}^{1 / 2}\right]\left\{\mathbf{v}_{T}^{(1)^{\prime}} \Sigma_{T T}^{(1)-1} \mathbf{v}_{T}^{(1)}\right\} \\
& +\{\log \log (\mathrm{n}) / \mathrm{n}\}^{1 / 2}\left\{\mathbf{\nu}_{T}^{(1)^{\prime}} \Sigma_{T T}^{(1)-1} \boldsymbol{\nu}_{T}^{(1)}\right\}^{1 / 2 \quad 1 / 2} \text { oi } \\
& \geq 1-\mathrm{C}_{12}\{\log (\mathrm{n})\}^{-1}+\exp \left(-\mathrm{n} \pi_{1} / 12\right)+\exp \left(-\mathrm{n} \pi_{2} / 12\right) .
\end{aligned}
$$

Together with (111), it is clear that there exist universal constants
(b) $\mathrm{C}_{1} \leq \lambda_{\min }\left(\Lambda_{T}^{(1)-1 / 2} \Sigma_{T T}^{(1)} \Lambda_{T}^{(1)-1 / 2}\right) \leq \lambda_{\max }\left(\Lambda_{T}^{(1)-1 / 2} \Sigma_{T T}^{(1)} \Lambda_{T}^{(1)-1 / 2}\right) \leq \mathrm{C}_{2}$, for some universal constants $0<\mathrm{C}_{1}<\mathrm{C}_{2}$.

Then there exist universal constants $\mathrm{C}_{3}>0$ and $\mathrm{c}_{4}>0$ such that:

$$
\begin{aligned}
& \mathrm{P}_{j=1}^{\mathrm{h} \phi_{\mathrm{s}} \mathrm{n} \mathrm{n}}\left|\mathrm{e}_{j}^{\prime} \Lambda_{T}^{(1) 1 / 2} \mathrm{~S}_{T T}^{(1)-1} \hat{\Lambda}_{T}^{(1) 1 / 2} \operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right)-\mathrm{e}_{j}^{\prime} \Lambda_{T}^{(1) 1 / 2} \Sigma_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2} \operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right)\right| \\
& \leq \mathrm{C}_{3}\left\{\mathbf{q}_{n} \mathbf{s}_{n} \log \left(\mathbf{q}_{n} \mathbf{s}_{n}\right) / \mathrm{n}\right\}^{1 / 2}+\left\{\mathbf{q}_{n} \mathbf{s}_{n} \log \log (\mathrm{n}) / \mathrm{n}\right\}^{1 / 2} \\
& +\mathrm{c}_{3}\left|\mathrm{e}_{j}^{\prime} \Lambda_{T}^{(1) 1 / 2} \Sigma_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2} \operatorname{sgn}\left(\beta_{T}^{(1)}\right)\right| \cdot \mathbf{q}_{\mathbf{n}} \mathrm{s}_{n} / \mathrm{n}+\left\{\log \left(\mathrm{q}_{\mathbf{n}} \mathrm{s}_{n} \log \mathrm{n}\right) / \mathrm{n}\right\}^{1 / 2} \\
& \geq 1-\mathbf{C}_{4}\left[\left(\mathbf{q}_{\mathbf{n}} \mathbf{S}_{n}\right)^{-1}+\{\log (\mathbf{n})\}^{-1}+\exp \left(-\mathrm{n} \boldsymbol{\pi}_{1} / 12\right)+\exp \left(-\mathrm{n} \boldsymbol{\pi}_{2} / 12\right)\right] .
\end{aligned}
$$

Proof of Lemma 24: First of all, we note that for every $\mathrm{j} \leq \mathrm{q}_{n} \mathrm{~s}_{n}$,

$$
\begin{equation*}
\left|\mathbf{e}_{j}^{\prime} \Lambda_{T}^{(1) 1 / 2} \mathbf{S}_{T T}^{(1)-1} \hat{\Lambda}_{T}^{(1) 1 / 2} \operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right)-\mathbf{e}_{j}^{\prime} \Lambda_{T}^{(1) 1 / 2} \Sigma_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2} \operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right)\right| \leq \Omega_{1 j}+\Omega_{2 j} \tag{115}
\end{equation*}
$$

where

$$
\begin{aligned}
& \Omega_{1 j}=\left|\mathrm{e}_{j} \Lambda_{T}^{(1) 1 / 2} \mathrm{~S}_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2} \operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right)-\mathrm{e}_{j} \Lambda_{T}^{(1) 1 / 2} \Sigma_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2} \operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right)\right|, \\
& \Omega_{2 j}=\left|\mathrm{e}_{j} \Lambda_{T}^{(1) 1 / 2} \mathbf{S}_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2} \operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right)-\mathrm{e}_{j}^{\mathrm{e}} \Lambda_{T}^{(1) 1 / 2} \mathrm{~S}_{T T}^{(1)-1} \hat{\Lambda}_{T}^{(1) 1 / 2} \operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right)\right| .
\end{aligned}
$$

For the term $\Omega_{1 j}$, it is apparent to see that for every $\mathrm{j} \leq \mathbf{q}_{n} \mathbf{s}_{n}$,

$$
\begin{equation*}
\Omega_{1 j} \leq \mathrm{c}_{1}^{-1}\left(1+\Pi_{1 j}\right) \cdot\left|\Pi_{2 j}\right|+\left|\mathrm{e}_{j}^{\prime} \Lambda_{T}^{(1) 1 / 2} \Sigma_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2} \operatorname{sgn}\left(\beta_{T}^{(1)}\right)\right| \cdot \Pi_{1 j}, \tag{116}
\end{equation*}
$$

where C_{1} is defined in condition (b), and

$$
\begin{aligned}
\Pi_{1 j}= & \left|\left\{\mathrm{e}_{j}^{\prime} \Lambda_{T}^{(1) 1 / 2} \mathrm{~S}_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2} \mathrm{e}_{j}\right\}\left\{\mathrm{e}_{j}^{\prime} \Lambda_{T}^{(1) 1 / 2} \Sigma_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2} \mathrm{e}_{j}\right\}^{-1}-1\right|, \\
\Pi_{2 j}= & \left\{\mathrm{e}_{j}^{\prime} \Lambda_{T}^{(1) 1 / 2} \mathrm{~S}_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2} \operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right)\right\}\left\{\mathrm{e}_{j}^{\prime} \Lambda_{T}^{(1) 1 / 2} \mathrm{~S}_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2} \mathrm{e}_{j}\right\}^{-1} \\
& -\left\{\mathrm{e}_{j}^{\prime} \Lambda_{T}^{(1) 1 / 2} \Sigma_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2} \operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right)\right\}\left\{\mathrm{e}_{j}^{\prime} \Lambda_{T}^{(1) 1 / 2} \Sigma_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2} \mathrm{e}_{j}\right\}^{-1} .
\end{aligned}
$$

To bound the term $\Pi_{1 j}$, invoking Lemma 22, it can be seen that there exist universal constants $\mathrm{C}_{3}>0$ and $\mathrm{C}_{4}>0$ such that with probability at least $1-\mathrm{c}_{3}\left[\{\log (\mathrm{n})\}^{-1}+\right.$

$$
\begin{align*}
& \left.\exp \left(-\mathrm{n} \pi_{1} / 12\right)+\exp \left(-\mathrm{n} \pi_{2} / 12\right)\right] \\
& \qquad \max _{j \leq q_{n} s_{n}} \Pi_{1 j} \leq \mathrm{c}_{4}\left[\mathbf{q}_{n} \mathbf{s}_{n} / \mathrm{n}+\left\{\log \left(\mathbf{q}_{n} \mathbf{s}_{n} \log \mathrm{n}\right) / \mathrm{n}\right\}^{1 / 2}\right] . \tag{117}
\end{align*}
$$

To bound the term $\Pi_{2 j}$, based on similar argument as in the proof of Lemma 23, it can be shown that there exist universal constants $\mathrm{C}_{5}>0$ and $\mathrm{C}_{6}>0$ such that conditional on any nonempty $\left\{\mathrm{Y}_{i}=\mathrm{y}_{i}\right\}_{i=1}^{n} \cap \mathrm{M}_{n}$, and for any $\mathrm{t} \geq 0$,

$$
\mathrm{P} \quad \cap_{j=1}^{q_{\mathrm{n}} \mathrm{~s}_{n}}\left\{\left|\Pi_{2 j}\right| \leq \mathrm{t}\right\}\left\{\mathrm{Y}_{i}=\mathrm{y}_{i}\right\}_{i=1}^{n} \cap \mathrm{M}_{n} \geq 1-\mathrm{c}_{5} \mathrm{q}_{n} \mathrm{~s}_{n} \exp \left\{-\mathrm{c}_{6} \mathrm{n}\left(\mathrm{q}_{n} \mathrm{~s}_{n}\right)^{-1} \mathbf{t}^{2}\right\}
$$

By setting $\mathrm{c}_{7}=\mathrm{c}_{6}^{-1 / 2}$ and plugging $\mathrm{t}=\mathrm{c}_{7}\left\{\mathbf{q}_{n} \mathbf{s}_{n} \log \left(\mathbf{q}_{n} \mathbf{s}_{n} \log \mathrm{n}\right) / \mathrm{n}\right\}^{1 / 2}$ into the above inequality, it can be obtained that

$$
\mathbf{P} \max _{j \leq q_{\mathrm{n}} s_{n}}\left|\Pi_{2 j}\right| \leq \mathrm{c}_{7}\left\{\mathbf{q}_{n} \mathbf{s}_{n} \log \left(\mathbf{q}_{n} \mathbf{s}_{n} \log \mathbf{n}\right) / \mathrm{n}\right\}^{1 / 2}\left\{\mathbf{Y}_{i}=\mathrm{y}_{i}\right\}_{i=1}^{n} \cap \mathbf{M}_{n} \geq 1-\mathrm{c}_{5}\{\log (\mathbf{n})\}^{-1}
$$

Together with Lemma 3, there exist universal constants $\mathrm{C}_{8}>0$ and $\mathrm{C}_{9}>0$ such that with probability at least $1-\mathrm{c}_{8}\left[\{\log (\mathrm{n})\}^{-1}+\exp \left(-\mathrm{n} \pi_{1} / 12\right)+\exp \left(-\mathrm{n} \pi_{2} / 12\right)\right]$,

$$
\begin{equation*}
\max _{j \leq q_{n} s_{n}} \Pi_{2 j} \leq \mathrm{c}_{9}\left\{\mathbf{q}_{n} s_{n} \log \left(\mathbf{q}_{n} \mathbf{s}_{n} \log \mathrm{n}\right) / \mathrm{n}\right\}^{1 / 2} \tag{118}
\end{equation*}
$$

By combining (117), (118) with (116), it is seen that there exist universal constants $\mathrm{C}_{10}>0$ and $\mathrm{C}_{11}>0$ such that

$$
\begin{align*}
& \mathrm{P}^{\mathrm{h} \mathbf{q}_{\mathrm{p}} \mathbf{s}_{\mathrm{n}} \mathrm{n}} \Omega_{1 j} \leq \mathrm{c}_{10}\left\{\mathbf{q}_{n} \mathbf{s}_{n} \log \left(\mathbf{q}_{n} \mathbf{s}_{n} \log \mathrm{n}\right) / \mathrm{n}\right\}^{1 / 2}+\mathrm{c}_{10}\left|\mathrm{e}_{j}^{\prime} \Lambda_{T}^{(1) 1 / 2} \Sigma_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2} \operatorname{sgn}\left(\boldsymbol{\beta}_{T}^{(1)}\right)\right| \\
& \quad \cdot\left[\mathbf{q}_{n} \mathbf{s}_{n} / \mathrm{n}+\left\{\log \left(\mathbf{q}_{n} \mathbf{s}_{n} \log \mathrm{n}\right) / \mathrm{n}\right\}^{1 / 2}\right] \\
& \text { oi } \\
& \geq 1-\mathrm{c}_{11}\left[\{\log (\mathrm{n})\}^{-1}+\exp \left(-\mathrm{n} \pi_{1} / 12\right)+\exp \left(-\mathrm{n} \pi_{2} / 12\right)\right] . \tag{119}
\end{align*}
$$

To bound the term $\Omega_{2 j}$, it can be verified that

$$
\max _{j \leq \mathbf{q}_{n} s_{n}} \Omega_{2 j} \leq\left(\mathbf{q}_{\mathbf{n}} \mathbf{s}_{n}\right)^{1 / 2} \mathbf{K} \Lambda_{T}^{(1)-1 / 2} \hat{\Lambda}_{T}^{(1) 1 / 2}-\mathbf{I}_{q_{n} s_{n}} \mathbf{k}_{\max } \cdot \mathbf{k} \Lambda_{T}^{(1) 1 / 2} \mathbf{S}_{T T}^{(1)-1} \Lambda_{T}^{(1) 1 / 2} \mathbf{k}_{2} .
$$

Together with Lemma 5 and Lemma 8, it is seen that there exist universal constants $\mathrm{C}_{12}, \mathrm{C}_{13}>0$ such that

$$
\begin{aligned}
& \mathrm{P} \\
& \max _{j \leq q_{\mathrm{n}} \mathbf{s}_{\mathrm{n}}} \Omega_{2 j} \leq \mathrm{c}_{12}\left\{\mathbf{q}_{n} \mathbf{s}_{n} \log \left(\mathbf{q}_{n} \mathbf{s}_{n}\right) / \mathrm{n}\right\}^{1 / 2} \\
& \geq 1-\mathrm{c}_{13}\left[\left(\mathbf{q}_{n} \mathbf{s}_{n}\right)^{-1}+\exp \left(-\mathrm{n} \pi_{1} / 12\right)+\exp \left(-\mathrm{n} \pi_{2} / 12\right)\right]
\end{aligned}
$$

Together with (115) and (119), the assertion holds trivially, which completes the proof.

R eferences

Birge, L. (2001). An alternative point of view on lepski's method. State of the Art in Probability and Statistics, 36:113-133.

Bodnar, T. and Okhrin, Y. (2008). Properties of the singular, inverse and generalized inverse partitioned wishart distributions. J ournal of Multivariate Analysis, 99(10):23892405.

Johnstone, I. M. and Lu, A. Y. (2009). On consistency and sparsity for principal components analysis in high dimensions. J ournal of the American Statistical Association, 104(486):682-693.

Kolar, M. and Liu, H. (2015). Optimal feature selection in high-dimensional discriminant analysis. IEEE Transactions on Information Theory, 61(2):1063-1083.

Muirhead, R. J. (1982). Aspects of Multivariate Statistical Theory. Wiley Series in Probability and Statistics. Wiley.

Ning, Y. and Liu, H. (2017). A general theory of hypothesis tests and confidence regions for sparse high dimensional models. The Annals of Statistics, 45(1):158-195.

Shao, J., Wang, Y., Deng, X., and Wang, S. (2011). Sparse linear discriminant analysis by thresholding for high dimensional data. The Annals of Statistics, 39(2):1241-1265.

