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S.1 Additional Background on Riemannian Manifold
Here we provide formal definitions related to Riemannian manifolds, starting with perhaps the most basic5

geometric space — the topological space.

Definition S.1 (Topological space). A topological space is a set and a class of subsets of the set, called the
open sets, such that the class contains the empty set and is closed under the formation of arbitrary unions
and finite intersections. Such a class is called a topology.

The most commonly seen topological space is R together with the standard (but often not explicitly10

mentioned) topology that contains all open intervals, as well as the d-dimensional Euclidean space Rd together
with the standard topology that contains all open balls. In real analysis, continuous functions play an
important role. The concept of continuity can be generalized to functions defined on and/or taking values
in general topological spaces.

Definition S.2 (Continuity and homeomorphism). A function f ∶ T1 → T2 between two topological spaces is15

continuous if to every open set B of T2, the set f−1(B) ∶= {x ∈ T1 ∶ f(x) ∈ B} is an open set of T1. If f is
continuous and bijective and its inverse is also continuous, then we say f is a homeomorphism between T1

and T2. Two topological spaces are homeomorphic to each other if there exists a homeomorphism between
them.

When both T1 and T2 are R with the standard topology, the continuity defined in the above coincides20

with the one via the ε-δ definition. For instance, it is well know that f(x) = x3 is a continuous function,
and indeed, to every open interval (a, b), f−1((a, b)) = (a1/3, b1/3) is also an open interval, and this holds for
all open sets of R; see Example 1 of Section 18 in Munkres (2000
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connected if there are no holes passing through the space. For instance, Rd and spheres are simply connected,
while the torus is not. Here, connectedness, path-connectedness and simple connectedness are all topological
properties, i.e., preserved under homeomorphisms.35

There are topological spaces that locally resemble a Euclidean space Rd, but globally may not be home-
omorphic to Rd. Such spaces are called topological manifolds. An example of topological manifolds is the
surface of our earth that may be roughly parameterized by the two-dimensional sphere S2

r = {(x1, x2, x3) ∈
R3 ∶ x2

1 + x2
2 + x2

3 = r2} of radius r ≈ 6371km. Each small neighborhood of S2
r looks like a (subset of) two-

dimensional plane, and this is why our ancients perceived the flat earth model. However, there exists no40

homeomorphism between S2
r and Rd for any d.

Definition S.3 (Topological manifold). A topological space T is a topological manifold modeled on Rd, if
for each point p ∈ T there exists an open set that contains p and is homeomorphic to Rd. Here, d is called
the dimension of T .

In the above example of S2
r, let U1 = S2

r/{(r,0,0)} and U2 = S2
r/{(−r,0,0)}. Then every point in S2

r falls
into one of these two open sets. Moreover, both U1 and U2 are homeomorphic to Rd, with the following
corresponding homeomorphisms

φ1(x1, x2, x3) =
r

r − x1
(x2, x3) ∈ R2

φ2(x1, x2, x3) =
r

r + x1
(x2, x3) ∈ R2.

This formally shows that S2
r is a topological manifold of dimension 2.45

Due to the local resemblance between Rd and a topological manifold, one might parameterize a local
neighborhood of the topological manifold by using Rd, as we did in the above for neighborhoods U1 and
U2 of S2

r. Intuitively, the map φ1 (resp. φ2) assigns each point in U1 (resp. U2) a coordinate in R2. Since
U1 ∪ U2 = S2

r, each point gets a coordinate. However, for those points in U1 ∩ U2, such as the points in the
equator, are assigned two coordinates, one from φ1 and the other from φ2. In this case, one can obtain the50

coordinate under φ1 if we know its coordinate under φ2, and vice versa. For example, for (x1, x2, x3) ∈ U1∩U2,
if its coordinate under φ1 is (y1, z1) ∈ R2, then its coordinate under φ2 is (y2, z2) = (φ2 ○ φ−1

1 )(y1, z1),
where ○ represents the composition of functions, i.e., (f ○ g)(x) = f(g(x)) for generic functions f , g and
argument x. Moreover, φ2 ○ φ−1

1
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Figure S.1: Illustration of the chart and transition map.

The pair (Uα, φα) or sometimes φα itself is called a chart (or coordinate map). One can check that
compatibility defines an equivalence relation among atlases, and a maximal atlas is simply the union of
atlases within the same equivalence class. Therefore, a differentiable manifold is essentially completely70

determined by an atlas, in the sense that any compatible atlas gives to the same differentiable manifold and
incompatible atlases result in distinct differentiable manifolds. In light of this, in practice, we can describe
a differentiable manifold simply by providing an atlas. For instance, in the example of S2

r, the collection
A = {(U1, φ1), (U2, φ2)} forms a C∞-atlas that turns S2

r into a smooth manifold.
Let M be a d-dimensional differentiable manifold in the sequel. One merit of the differentiable manifold75

is that we can discuss regularity of functions taking values in a differentiable manifold. For instance, for an
interval I ⊂ R, the function γ ∶ I → M, which is also called a curve on M, is differentiable at t ∈ I if the
function φ ○ γ ∶ I → Rd is differentiable at t for a chart (U,φ), and thus all charts, such that γ(t) ∈ U in the
maximal atlas associated with M. The derivative, denoted by γ′(t), measuring the velocity of the curve γ
at t, has different representations in different charts. However, once we know its representation in one chart,80

we can then obtain its representation in another chart via the transition maps. In this sense, the velocity of
γ at t is essentially well defined, and is denoted by γ′(t). Note that this sense of “well-definedness” applies
generally to other concepts and quantities in differential geometry, that is, a manifold-related concept, such
as the differentiability of a curve, is well defined if it holds for all relevant charts, and a manifold-related
quantity, such the derivative of a differentiable curve at t, is well defined if its coordinate in one chart can85

be determined from the coordinate under another chart.
Consider all differentiable curves γ ∶ I → M with γ(t) = p. They may give rise to different derivatives

γ′(t). If we fix any chart (U,φ) with p ∈ U , then each γ′(t) is represented by (φ ○ γ)′(t) which is a
vector in Rd and all possible values of (φ ○ γ)′(t) form exactly the vector space Rd. Therefore, with Γtp
denoting the collection of differentiable curves γ ∶ I → M such that γ(t) = p, we can view the space90

TpM ∶= {γ′(t) ∶ γ ∈ Γtp} as a vector space with the vector addition γ′1(t) + γ′2(t) defined to be γ′3(t) ∈ TpM
such that (φ ○ γ1)′(t) + (φ ○ γ2)′(t) = (φ ○ γ3)′(t), and the scalar multiplication aγ′(t) defined to be η′(t)
such that a(φ ○ γ)′(t) = a(φ ○ η)′(t), where γ, γ1, γ2, γ3, η ∈ Γtp and a ∈ R. Note that, the representation
of both γ′1(t) + γ′2(t) and aγ′(t) in other charts is determined from its representation in (U,φ), and thus
they are well defined manifold-related quantities. The space TpM is called the tangent space at p and95

3
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its elements are called tangent vectors at p. Such (informal) definition also shows that TpM depends on
p through its dependence on Γtp. This agrees well with the physical meaning of the tangent vector γ′(t)
that represents the direction and amount to move if one wants to get to γ(t + ∆t) from γ(t) within an
infinitesimal amount time ∆t, i.e., γ′(t) encodes both the velocity and the base point p. In the chart (U,φ),
γ′(t) can be represented by (φ(p), (φ○t γ(t(φ(p), (φ○ t
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domain A ∩ U , is a function mapping U into R2d. We say V is a smooth vector field if to each chart
(U,φ), the function Φ○V is a smooth manifold map. An example of (smooth) vector fields is the vector field140

for the movement of air on Earth that represents the wind speed and direction at each location.

Definition S.8 (Riemannian manifold). A Riemannian manifold is a smooth manifold M endowed with an
inner product ⟨⋅, ⋅⟩p on TpM for each p ∈ M such that, for any smooth vector fields V1, V2 on M, the function
p↦ ⟨V1(p), V2(p)⟩p is a smooth manifold map defined on M. The inner products ⟨⋅, ⋅⟩p are collectively referred
to as Riemannian metric or Riemannian metric tensor.145

For a Riemannian manifold, each of its tangent spaces is now an inner product space, and thus along a
normed space with the induced norm ∥v∥p = ⟨v, v⟩p for v ∈ TpM. As a vector space, each tangent space is
entitled to an independent basis. For Riemannian manifold, since each tangent space is an inner product
space, it is also entitled to orthonormal basis. In this context, a frame refers to a map that assigns each
point of the manifold an independent basis, and when all of such basis are orthonormal, we say the frame is150

an orthonormal frame.
The Riemannian metric also induces a (canonical) distance dM on the Riemannian manifold, as follows.

For a smooth curve γ ∶ I →M, the restriction to an interval [a, b] ⊂ I is referred to as a segment of γ and is
denoted by γ([a, b]). The length of the segment γ([a, b]) is defined by

`γ(a, b) = ∫
b

a
∥γ′(t)∥γ(t)dt.155

Such definition can be extended to regular curves that are formed by connecting a finite number of smooth
segments, i.e., the length of a piecewisely smooth segment is defined to be the sum of the lengths of its
smooth segments. For a connected Riemannian manifold M, we can define the distance between two points
p, q by

dM(p, q) = inf{`γ(a, b) ∶ γ(a) = p, γ(b) = q, and γ is a regular curve}.160

The distance dM then turns M also into a metric space. If such metric space is complete, then we say
M is a complete Riemannian manifold. By Hopf–Rinow theorem, on a connected complete Riemannian
manifold, two points can be connected by a minimizing geodesic of which the length is exactly the distance
of the two points. By definition, a geodesic is a curve γ ∶ I → M such that for all sufficiently small ε > 0165

and all interior t ∈ I, γ([t, t + ε]) is a shortest path that connects γ(t) and γ(t + ε), and `γ(s, t) = a∣s − t∣
for a constant a and all s, t ∈ I. In words, geodesics are constant-speed curves that are locally shortest
segments. Note that a geodesic may not be globally a shortest path connecting two points. For example,
γ(t) = (0, cos(2πt), sin(2πt)) for t ∈ [0,1] is a geodesic, but it is not a shortest path from γ(ε) to γ(1) for
any ε ∈ [0,1/2). A minimizing geodesic refers to those geodesics γ ∶ I → M such that γ([s, t]) is a shortest170

path connecting γ(s) and γ(t) for all s, t ∈ I.

Remark S.1. In some textbooks, the term “curve” (and similarly, “geodesic”) is sometimes used to denote
the image of γ ∶ I → M on the manifold M, rather than the map γ. In this paper, we do not adopt this
practice. When we say a curve, we always refers to the map γ itself. One shall note that, the length of a curve
is invariant to parameterization, i.e., if η ∶ J →M is another curve such that t = g(s) for a smooth function175

with g′(s) ≠ 0 and η(s) = γ(g(s)) for all s ∈ J and I = g(J), then `γ(g(a), g(b)) = `η(a, b) for all a, b ∈ J .
This is because, `γ(g(a), g(b)) = ∫

g(b)

g(a) ∥γ′(t)∥γ(t)dt = ∫
b
a ∥γ′(g(s))∥γ(g(s))dg(s) = ∫

b
a ∥η′(s)∥η(s)ds = `η(a, b).

Below we assume M is complete and connected. The Riemannian metric also induces the Riemannian
exponential map for each point. For a unit tangent vector u ∈ TpM, let γu(t) be the geodesic such that

5
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γu(0) = p and γ′u(0) = u. As a starting point specified by p and an initial direction specified by the unit180

tangent vector u together uniquely determine a geodesic, the celebrated Hopf–Rinow theorem asserts that
the following map Expp is well defined at each p ∈ M on the entire tangent space TpM.

Definition S.9 (Exponential map). The map Expp(u) = γ u
∥u∥p

(∥u∥p) for u ∈ TpM is called the exponential
map at p.

Remark S.2. Exponential maps might be defined also for incomplete Riemannian manifolds, but potentially185

only locally, i.e., Exppu may be only defined for tangent vectors u ∈ TpM in a neighborhood of the zero
tangent vector 0 ∈ TpM.

For p ∈ M and u ∈ TpM, the curve γu(t) = Expp(tu) is a geodesic with speed ∥u∥p. The cut time
c(p, u) is defined to be t ∈ R+ such that γu([0, t − ε]) is a minimizing geodesic for any ε > 0 but γu([0, t])
is not, i.e., c(p, u) = sup{t ∈ R+ ∶ γu([0, t]) is a minimizing geodesic with γu(t) = Expp(tu)}. Let Ep = {tu ∶190

u ∈ TpM, ∥u∥p = 1,0 ≤ t < c(p, u)}, which is a neighborhood of the zero tangent vector in TpM, and define
Dp = {Exppu ∶ u ∈ Ep}. Then Expp is bijective between Ep and
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Figure S.3: Illustration of the vector bundle. The closed curve in the bottom represents the base manifold
M and the figure on the left represents the total space E , where each vertical line represents a fiber. The
thickened segment U ⊂ M represents an open subset of the manifold M, while Φ is a local trivialization
defined on π−1(U) that is highlighted in gray in the total space.

The map Φ in the above definition is called a local trivialization. As graphically illustrated in Figure
S.3, a vector bundle locally resembles the product space U × Rk for some integer k. A function V defined210

on M is called a section of the vector bundle if V (p) ∈ π−1(p) for all p ∈ M. As previously mentioned,
the union of all tangent spaces of a manifold, called the tangent bundle of the manifold, is a prominent
example of vector bundle, where the tangent space at each point is a fiber. In particular, a section of a
tangent bundle is also a vector field.

For a smooth function f ∶ M→ R and a tangent vector v ∈ TpM, the covariant derivative of f at p along
the direction v, denoted by ∇vf , is defined by

(∇vf)(p) ∶= (f ○ γ)′(0) = lim
t→0

f(γ(t)) − f(p)
t

,

where γ ∶ [−1,1] → M is a differentiable curve such that γ(0) = p and γ′(0) = v. For a smooth vector field215

U , ∇V (p)f is a real-valued function of p. Let C∞(M) denote the collection of smooth real-valued functions
defined on M. In addition, for f ∈ C∞(M) and a smooth vector field U , fU denotes a smooth vector field
defined by (fU)(p) = f(p)U(p) for all p ∈ M. Let Γ(E) be the collection of smooth sections.

For a smooth curve in a Euclidean space, it is meaningful to discuss its acceleration which is represented
by the second derivative of the curve. Note that the definition of second derivative involves differentiating220

the first derivative. To generalize the concept of acceleration to manifold-valued curves, we then need to
differentiate the velocity — represented by tangent vectors — of the curve, and this involves the concept of
connection.

Definition S.12 (Connection). A connection in a vector bundle E is a map ∇ ∶ Γ(E) × Γ(E) → Γ(E), with
(V,U)↦ ∇V U , that satisfies the following properties:225pition— of the cur(the)-51vU
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• ∇V (fU) = f∇V U + (∇V f)U for f ∈ C∞(M).

In the above, the value of ∇V U at p depends on V only through its value at p (Proposition 4.5, Lee,230

2018). This observation leads to the definition of covariant derivative of a vector field at p along v ∈ TpM.
Consequently, the expression ∇vU is sensible for v ∈ TpM, and is called the covariant derivative of U at
p along the tangent vector v.

Let fU,V (p) = ⟨U(p), V (p)⟩p. For a connection ∇ on the tangent bundle of M, we say ∇ is compatible
with the metric on M if ∇vfU,V = ⟨∇vU,V ⟩p + ⟨U,∇vV ⟩p for all smooth vector fields U and V , each p ∈ M235

and each tangent vector v ∈ TpM. For vector fields U and V , we use [U,V ] to denote a new vector field such
that ∇[U,V ]f = ∇U∇V f −∇V∇Uf for all f ∈ C∞(M). Similarly, for u, v ∈ TpM, [u, v] denotes the tangent at
p such that ∇[u,v]f = ∇u∇vf −∇v∇uf for all f ∈ C∞(M). A connection is torsion-free if ∇UV −∇vU = [U,V ]
for all smooth vector fields U,V . For a Riemannian manifold, there exists a unique connection is both torsion-
free and compatible with the Riemannian metric. Such connection is called the Levi–Civita connection240

and deemed the canonical connection in the tangent bundle.
To identify different fibers, one can introduce a parallel transport P on a vector bundle along a curve γ

on the base manifold. Such parallel transport must satisfy the following axioms: 1) Pp
p is the identity map

on π−1(p) for all p ∈ M, 2) P
γ(t)

γ(u)
○P

γ(u)

γ(s)
= P

γ(t)

γ(s)
, and 3) the dependence of P on γ, s and t are smooth.

An example is the vector bundle and the parallel transport constructed in Section 2.4. For a tangent bundle,245

such parallel transport can be induced by a connection.

Definition S.13 (Parallel transport). Let ∇ be a connection in the tangent bundle of a Riemannian manifold
M. A smooth vector field U is parallel along γ ∶ I →M (with respect to ∇) if ∇γ′(t)U = 0 for all t ∈ I. The
parallel transport of v ∈ TpM along γ with p = γ(0) is U(γ(t)) for the unique smooth vector field U along γ
such that U is parallel along γ and U(0) = v.250

Unlike Euclidean spaces, manifolds are often not flat and exhibit curvature that measures the degree of
deviation from being flat. For smooth vector fields U,V,W , we define the map R(U,V,W ) = ∇U∇VW −
∇V∇UW − ∇[U,V ]W . It turns out that the value of R(U,V,W ) at p depends only on the values of U,V,W
at p, and therefore it is sensible to write R(u, v,w) for tangent vectors at the same point.

Definition S.14 (Sectional curvature). The sectional curvature at p is a real-valued function on TpM×TpM255

defined for u, v ∈ TpM by K(u, v) = ⟨R(u, v, v), u⟩p/(⟨u,u⟩p⟨v, v⟩p − ⟨u, v⟩2
p).

Note that sectional curvature is invariant to the length of tangent vectors u and v. We say the sectional
curvature of a Riemannian manifold M is upper (lower, resp.) bounded by κ if K(u, v) ≤ κ (K(u, v) ≥ κ,
resp.) for all p ∈ M and u, v ∈ TpM.

S.2 Asymptotic distribution of the covariance estimator260

In this section, we provide a weak convergence result for the estimated covariance under the assumption
µ̂ = µ that is also adopted in Zhang and Wang (2016) for simplification. With the consistency property of
µ̂, the derived asymptotic normality under the assumption µ̂ = µ may approximate the reality well when
sample size is sufficiently large. To drop this assumption, a detailed analysis on the asymptotic normality
of µ̂ seems needed. However, this turns out to be very challenging in the context of Riemannian data due265

to the curvature effect. Since the focus of this paper is the construction of the covariance vector bundle
framework rather than the mean estimation by local linear smoothing, we decide to leave it for future study.

For vs ∈ Tµ(s)M and vt ∈ Tµ(t)M, let γvs,vt = ⟨Cvs, vt⟩µ(t) and γ̂vs,vt = ⟨P(µ(s),µ(t))

(µ̂(s),µ̂(t))
Ĉ(s, t)vs, vt⟩µ(t). It is

seen that each pair (vs, vt) defines a linear functional on L(µ(s), µ(t)). Then P
(µ(s),µ(t))

(µ̂(s),µ̂(t))
Ĉ(s, t) is weakly

8
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convergent to C(s, t) if we can show that γ̂vs,vt weakly converges to γvs,vt for all (vs, vt) according to the270

Cramér–Wold device. Below we demonstrate this for the random design; similar result can be proved for the
hybrid design, and for deterministic design by utilizing the concept of design densities (Sacks and Ylvisaker,
1970).

To state the result, let f be the probability density of T11, and ∥K∥2 = ∫ K2(u)du. Define

V1(s, t, vs, vt) =Var{⟨Logµ(T1)X(T1), vs⟩⟨Logµ(T2)X(T2), vt⟩ ∣ T1 = s, T2 = t},
V2(s, t, vs, vt) =Cov{⟨Logµ(T1)X(T1), vs⟩⟨Logµ(T2)X(T2), vt⟩, ⟨Logµ(T1)X(T1), vs⟩⟨Logµ(T3)X(T3), vt⟩ ∣

T1 = s, T2 = t, T3 = t},
V3(s, t, vs, vt) =Cov{⟨Logµ(T1)X(T1), vs⟩⟨Logµ(T2)X(T2), vt⟩, ⟨Logµ(T3)X(T3), vs⟩⟨Logµ(T4)X(T4), vt⟩ ∣

T1 = s, T2 = t, T3 = s, T4 = t}.

Theorem S.2.1. Suppose that Assumptions 2.1, 2.2, 3.1, 4.1, 4.4, 4.5 and 4.6 hold. In addition, assume
hC → 0, nm2h2

C → ∞, m3h3
C ≪ n, and mhC → c for some constant c ∈ [0,∞]. Then for s, t ∈ T and275

vs ∈ Tµ(s)M and vt ∈ Tµ(t)M,

Σ−1/2
C

(γ̂vs,vt − γvs,vt − b(hC) + oP (h2
C))

DÐ→ N(0,1), (S.1)

where b(h) = 1
2h

2( ∫ u2K(u)du) (∂
2γ
∂s2 (s, t) + ∂2γ

∂t2
(s, t)) and

ΣC ={1 + 1s=t}{ ∥K∥
4

nm(m−1)h2
C

V1(s,t,vs,vt)
f(s)f(t)

+ ∥K∥
2

n(m−1)hC
f(s)V2(t,s,vt,vs)+f(t)V2(s,t,vs,vt)

f(s)f(t)
} + (m−2)(m−3)V3(s,t,vs,vt)

nm(m−1) .

The proof for the above theorem follows from Zhang and Wang (2016) once one realizes that γ̂vs,vt is
the estimated covariance based on the raw covariance ⟨Logµ(Tij)X(Tij), vs⟩⟨Logµ(Tik)X(Tik), vt⟩. From the
theorem we then observe the same phase transition as that in Zhang and Wang (2016) in the following
corollary.280

Corollary S.2.1. Assume the conditions of Theorem S.2.1.

(a) When m≫ n1/4, with hC ≪ n−1/4 and mhC →∞, one has

√
n(γ̂vs,vt − γvs,vt)

DÐ→ N(0, V1(s, t, vs, vt)).

(b) When m/n1/4 → c○, with hC = c∗n−1/4, one has

√
n(γ̂vs,vt − γvs,vt − b(h))

DÐ→ N(0,Σ∗)

where

Σ∗ ={1 + 1s=t}{∥K∥4

c2
○c

2
∗

V1(s, t, vs, vt)
f(s)f(t) + ∥K∥2

c○c∗

f(s)V2(t, s, vt, vs) + f(t)V2(s, t, vs, vt)
f(s)f(t) } + V3(s, t, vs, vt).

(c) When m≪ n1/4, with hC ≍ n−1/6m−1/3, one has

n1/3m2/3(γ̂vs,vt − γvs,vt − b(h))
DÐ→ N(0,{1 + 1s=t}∥K∥4 V1(s,t,vs,vt)

f(s)f(t)
).

9
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S.3 Proofs of Main Results

Proof of Lemma 2.1. We prove this result for any fixed t ∈ T . First, we show E{Logµ(t)X(t)} = 0. Suppose
that γ is a geodesic emanating from µ(t) with velocity v ∈ Tµ(t)M and ∥v∥µ(t) = 1. According to Proposition
2.10 of Oller and Corcuera (1995), one has

d

ds
F (γ(s), t)∣

s=0 =E{2dM(X(t), µ(t)) cos⟨v,Logµ(t)X(t)⟩}

=2E{∥Logµ(t)X(t)∥ cos⟨v,Logµ(t)X(t)⟩}.

Since F (p, t) reaches the minimum at p = µ(t), we have d
ds
F (γ(s), t)∣

s=0 = 0 for any v ∈ Tµ(t)M. As
∥Logµ(t)X(t)∥ cos⟨v,Logµ(t)X(t)⟩ is the projection of Logµ(t)X(t) onto v, E{∥Logµ(t)X(t)∥ cos⟨v,Logµ(t)X(t)⟩} =
0 for all v ∈ Tµ(t)M then implies E{Logµ(t)X(t)} = 0. According to the definition of Y (t), it holds that285

E{Logµ(t)Y (t)} = 0. Similarly, it can be shown that the derivative of F ∗(⋅, t) = E{d2
M(Y (t), ⋅)} vanishes at

µ(t). With Assumption 2.1, this implies that µ(t) is the unique minimum of F ∗(⋅, t) and thus is the Fréchet
mean of Y (t).

Proof of Theorem 2.1. The mean continuity and joint measurability ensure that LogµX is a random element
in T (µ). According to the definition of C(s, t), for any u, v ∈ T (µ),

⟪∫
T

C(s, ⋅)u(s)ds, v⟫µ =∫
T
∫
T
⟨C(s, t)u(s), v(t)⟩µ(t)dsdt

=∫
T
∫
T

E{⟨Logµ(s)X(s), u(s)⟩µ(s)⟨Logµ(t)X(t), v(t)⟩µ(t)}dsdt

=E{∫
T
⟨Logµ(s)X(s), u(s)⟩µ(s)ds∫

T
⟨Logµ(t)X(t), v(t)⟩µ(t)dt}

=E(⟪LogµX,u⟫µ⟪LogµX,v⟫µ) = ⟪Cu, v⟫µ,

which implies that (Cu)(t) = ∫T C(s, t)u(s)ds.

Proof of Theorem 2.2. To see that {(π−1(Uα × Uβ), ϕα,β) ∶ (α,β) ∈ J2} is a smooth atlas, it is sufficient to290

check the transition maps. Suppose that (p, q,∑dj,k=1 vjkBα,j(p) ⊗Bβ,k(q)) ∈ π−1(Uα × Uβ) ∩ π−1(Uα̃ × Uβ̃)
is also represented by (p, q,∑dj,k=1 ṽjkBα̃,j(p) ⊗ Bβ̃,k(q)). The transformation from the coefficient vector
v = (v11, v12, . . . , vdd) to ṽ = (ṽ11, ṽ12, . . . , ṽdd) is smooth, since ṽ = {J ⊺

α (p)⊗J ⊺
β (q)}v and J ⊺

α (p), J ⊺
β (q) and

their Kronecker product J ⊺
α (p)⊗J ⊺

β (q) are respectively smooth in p, q and (p, q), where Jα(⋅) denotes the
Jacobian matrix that transforms the basis {Bα,1(⋅), . . . ,Bα,d(⋅)} into {Bα̃,1(⋅), . . . ,Bα̃,d(⋅)}.295

According to the vector bundle construction lemma (Lemma 5.5, Lee, 2002), it is sufficient to check that
when U ∶= (Uα ×Uβ)∩ (Uα̃ ×Uβ̃) ≠ ∅ for some indices α,β, α̃, β̃, the composite map Φα,β ○Φ−1

α̃,β̃
from U ×Rd2

to itself has the form Φα,β ○Φ−1
α̃,β̃

= (p, q,J (p, q)v) for a smooth map J ∶ U → GL(d2,R), where GL(d2,R) is
the collection of invertible real d2 × d2 matrices. From above discussion, we have J (p, q) = J ⊺

α (p)⊗J ⊺
β (q) is

smooth in (p, q). In addition, J (p, q) ∈ GL(d2,R) since both J ⊺
α (p) and J ⊺

α (q) are invertible and so is their300

Kronecker product. Note that the vector bundle construction lemma also asserts that any compatible atlas
for M gives rise to the same smooth structure on L.

Proof of Theorem 2.3. One can show that the parallel transport defined in (5) is a genuine parallel transport
satisfying the property of Definition A.54 of Rodrigues and Capelas de Oliveira (2007) on the vector bundle.
Then the conclusion directly follows from Definitions A.55 and A.57 of Rodrigues and Capelas de Oliveira305

(2007) and the remarks right below them.

10
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Proof of Theorem 2.4. We first show that the definition (7) is invariant to the choice of orthonormal bases.
To this end, fix an orthonormal basis in TqM, and suppose that {ẽ1, . . . , ẽd} is another orthonormal basis
in TpM and is related to {e1, . . . , ed} by a d × d unitary matrix O. Let A1 and A2 be the respective matrix
representation of L1 and L2 under the basis {e1, . . . , ed}. Then their matrix representation under the basis310

{ẽ1, . . . , ẽd} is Ã1 = OA1 and Ã2 = OA2, respectively. The inner product Gp,q(L1, L2) is then calculated by
tr(Ã⊺

1Ã2) = tr(A⊺
1O⊺OA2) = tr(A⊺

1A2), which shows that Gp,q(L1, L2) is invariant to the choice of bases in
TpM. Its invariance to the choice of bases in TqM can be proved in a similar fashion.

The smoothness of G can be established by an argument similar to the one leading to Theorem 2.2 in
conjunction with smoothness of the trace of matrices. To see that the parallel transport (5) preserves the
bundle metric and thus defines isometries among fibers of L, i.e., for any L1, L2 ∈ L(p1, q1),

G(p1,q1)(L1, L2) = G(p2,q2)(P
(p2,q2)

(p1,q1)
L1,P

(p2,q2)

(p1,q1)
L2),

suppose that {e1, . . . , ed} is an orthogonal basis of Tp1M. Then {Pp2
p1
e1, . . . ,Pp2

p1
ed} is an orthogonal basis of

Tp2M. This further implies that

G(p2,q2)(P
(p2,q2)

(p1,q1)
L1,P

(p2,q2)

(p1,q1)
L2) =

d

∑
k=1

⟨(P(p2,q2)

(p1,q1)
L1)(Pp2

p1
ek), (P(p2,q2)

(p1,q1)
L2)(Pp2

p1
ek)⟩q2

=
d

∑
k=1

⟨Pq2
q1

[L1(ek)],Pq2
q1

[L2(ek)]⟩q2

=
d

∑
k=1

⟨L1(ek), L2(ek)⟩q1 = G(p1,q1)(L1, L2),

which completes the proof.

Proof of Proposition 3.1. Suppose that (B̃ij,1, . . . , B̃ij,d) is another orthonormal basis for Tµ̂(Tij)M, and Oij

is the unitary matrix relating (Bij,1, . . . ,Bij,d) to (B̃ij,1, . . . , B̃ij,d). Then the coefficient vectors z̃ij and g̃k,ij
of Logµ̂(Tij)Yij and ψ̂k(Tij) under the basis (B̃ij,1, . . . , B̃ij,d) are linked to zij and gk,ij by z̃ij = Oijzij and
g̃k,ij = Oijgk,ij , respectively. Similarly, C̃i,jl is linked to Ci,jl by C̃i,jl = OijCi,jlO⊺

il. More concisely, if we
put

Oi =

⎛
⎜⎜⎜⎜⎜
⎝

Oi1

Oi2

⋱
Oimi

⎞
⎟⎟⎟⎟⎟
⎠

,

then z̃i = Oizi, g̃k,i = Oigk,i and Σ̃i = OiΣiO⊺
i , which are the counterpart of zi, gk,i and Σi under the bases315

(B̃ij,1, . . . , B̃ij,d), respectively. Note that Σ̃−1
i = (OiΣiO⊺

i )−1 = O−⊺
i Σ−1

i O−1
i = OiΣ−1

i O⊺
i since Oij are unitary

matrices and thus O−1
i = O⊺

i . Now we see that g̃⊺k,iΣ̃−1
i z̃i = g⊺k,iO⊺

iOiΣ−1
i O⊺

iOizi = g⊺k,iΣ−1
i zi, which clearly

implies that the scores ξ̂ik calculated under the bases (B̃ij,1, . . . , B̃ij,d) is identical to the one computed under
the bases (Bij,1, . . . ,Bij,d).

Proof of Lemma 4.1. Notice that

∥Pp1
q1

Pq1
q2

Logq2y −Pp1
p2

Logp2y∥p1

=∥Pq2
p2

Pp2
p1

Pp1
q1

Pq1
q2

Logq2y −Pq2
p2

Logp2y∥q2

≤∥Pq2
p2

Pp2
p1

Pp1
q1

Pq1
q2

Logq2y − Logq2y∥q2 + ∥Logq2y −Pq2
p2

Logp2y∥q2 ,

11



12 Shao, Lin and Yao S.3 PROOFS OF MAIN RESULTS

where the equality follows from the fact that parallel transport preserves the inner product. Note that the
operator Pq2

p2
Pp2
p1

Pp1
q1

Pq1
q2

moves a tangent vector parallelly along a geodesic quadrilateral defined by the the
points p1, p2, q1, q2. The holonomy theory (Eq (6), Nichols et al., 2016) and the compactness of G suggests
that there exists a constant c1 > 0 depending only on G, such that for any v ∈ Tq2M with ∥v∥q2 ≤ diam(G),

∥Pq2
p2

Pp2
p1

Pp1
q2
v − v∥q2 ≤ c1∥Logq2p2∥q2 = c1dM(p2, q2),

∥Pq2
p1

Pp1
q1

Pq1
q2
v − v∥q2 ≤ c1∥Logq1p1∥q2 = c1dM(p1, q1),

which further imply that

∥Pq2
p2

Pp2
p1

Pp1
q1

Pq1
q2
v − v∥q2 = ∥(Pq2

p2
Pp2
p1

Pp1
q2

)(Pq2
p1

Pp1
q1

Pq1
q2

)v − v∥q2

≤ ∥(Pq2
p2

Pp2
p1

Pp1
q2

)(Pq2
p1

Pp1
q1

Pq1
q2

)v − (Pq2
p1

Pp1
q1

Pq1
q2

)v∥q2 + ∥(Pq2
p1

Pp1
q1

Pq1
q2

)v − v∥q2

≤ c1(dM(p2, q2) + dM(p1, q1)).

According to Theorem 3 in Pennec (2019), we have

∥Logq2y −Pq2
p2

Logp2y∥q2 ≤ c2∥Logq2p2∥q2 ≤ c2dM(p2, q2)

for some constant c2 > 0 depending only on G. The proof is then completed by taking c = c1 + c2.320

Proof of Propositions 4.1 and 4.2. Simple computation shows that

(Q̂n(y, τ) − F ∗(y, τ))

= û2(τ)
σ̂2

0(τ)
1
nm

∑
ij

Khµ(Tij − τ)(d2
M(Yij , y) − F ∗(y, τ))

− û1(τ)
σ̂2

0(τ)
1
nm

∑
ij

Khµ(Tij − τ)(Tij − τ)(d2
M(Yij , y) − F ∗(y, τ))

= û2(τ)
σ̂2

0(τ)
1
nm

∑
ij

Khµ(Tij − τ)(d2
M(Yij , y) − F ∗(y, τ) − ∂τF ∗(y, τ)(Tij − τ))

− û1(τ)
σ̂2

0(τ)
1
nm

∑
ij

Khµ(Tij − τ)(Tij − τ)(d2
M(Yij , y) − F ∗(y, τ) − ∂τF ∗(y, τ)(Tij − τ)).

Below we focus on the fist term, noting that the second term can be analyzed in a similar way.

Define
U ∶= 1

nm
∑
ij

Khµ(Tij − τ)(d2
M(Yij , y) − F ∗(y, τ) − ∂τF ∗(y, τ)(Tij − τ)).

Then, according to either Lemma S.4.1 or Lemma S.4.3, the rate of the first term depends on the rate of U .
By Taylor expansion of F ∗(y, Tij) at τ and Assumption 4.5(a), we have

sup
τ∈B(t;h)

∣EU ∣ = sup
τ∈B(t;h)

RRRRRRRRRRR
E( 1

nm
∑
ij

Khµ(Tij − τ)(F ∗(y, Tij) − F ∗(y, τ) − ∂τF ∗(y, τ)(Tij − τ)))
RRRRRRRRRRR

= sup
τ∈B(t;h)

RRRRRRRRRRR
E( 1

nm
∑
ij

Khµ(Tij − τ) ×O(h2
µ))

RRRRRRRRRRR
= O(h2

µ).

12
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For the random and hybrid designs, define the envelop function

H ∶= 2diam(K)2

m

m

∑
j=1

sup
τ∈B(t;h)

Khµ(T1j − τ).

According to Lemma S.4.1(a), we have E(H2) = O(1 + 1
mhµ

) and thus

sup
τ∈B(t;h)

∣U −EU ∣ = Op (
√

1
n
+ 1
nmhµ

)

according to Theorems 2.7.11 and 2.14.2 of van der Vaart and Wellner (1996). Lemma S.4.6 asserts that the
last equation also holds for a deterministic design. With Lemma S.4.1 we deduce that

sup
τ∈B(t;h)

∣Q̂n(y, τ) − F ∗(y, τ)∣ = Op (h2
µ +

√
1
n
+ 1
nmhµ

) .

A similar argument leads to

sup
d
M
(y1,y2)<δ

τ∈B(t;h)

∣ (Q̂n(y1, τ) − Q̂n(y2, τ)) − (F ∗(y1, τ) − F ∗(y2, τ)) ∣ = Op (δh2
µ + δ

√
1
n
+ 1
nmhµ

) . (S.2)

for any y1, y2 ∈ K and δ > 0. Following from the argument in the proof of Lemma 2 in Petersen and Müller
(2019), one can verify that for any κ > 0

lim
δ→0

lim sup
n→∞

Pr
⎧⎪⎪⎨⎪⎪⎩

sup
dM(y1,y2)<δ,τ∈B(t;h)

∣(Q̂n(y1, τ) − Q̂n(y2, τ)) − (F ∗(y1, τ) − F ∗(y2, τ))∣ > κ
⎫⎪⎪⎬⎪⎪⎭
= 0,

and further
sup

τ∈B(t;h)
dM(µ(τ), µ̂(τ)) = op(1) (S.3)

given Assumption 4.5(b).

To derive the rate we apply (S.2) with y1 = y and y2 = µ(τ) to obtain325

sup
d
M
(y,µ(τ))<δ

τ∈B(t;h)

∣(Q̂n(y, τ) − Q̂n(µ(τ), τ)) − (F ∗(y, τ) − F ∗(µ(τ), τ))∣ = Op (δh2
µ + δ

√
1
n
+ 1
nmhµ

) . (S.4)

By (S.3), the the event {dM(µ̂(τ), µ(τ)) < η1} occurs with probability tending to one. On this event,
according to Assumption 4.5(c), we have

F ∗(µ̂(τ), τ) − F ∗(µ(τ), τ) −C1dM(µ̂(τ), µ(τ))2 ≥ 0.

Since µ̂(τ) is the minimizer of Q̂n(y, τ), we have Q̂n(µ(τ), τ)− Q̂n(µ̂(τ), τ) ≥ 0 and the following inequality
on the event {dM(µ̂(τ), µ(τ)) < η1},

(F ∗(µ̂(τ), τ) − F ∗(µ(τ), τ)) − (Q̂n(µ̂(τ), τ) − Q̂n(µ(τ), τ)) ≥ C1dM(µ̂(τ), µ(τ))2. (S.5)

13



14 Shao, Lin and Yao S.3 PROOFS OF MAIN RESULTS

Let an = h2
µ +

√
n−1 + (nmhµ)−1. Below we fix an arbitrary ε > 0, and find M > 0 accordingly to satisfy

Pr
⎧⎪⎪⎨⎪⎪⎩

sup
τ∈B(t;h)

dM(µ̂(τ), µ(τ)) >Man

⎫⎪⎪⎬⎪⎪⎭
≤ ε.

To this end, for R > 0 to be determined later, let

BR(δ) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

sup
d
M
(y,µ(τ))<δ

τ∈B(t;h)

∣(Q̂n(y, τ) − Q̂n(µ(τ), τ)) − (F ∗(y, τ) − F ∗(µ(τ), τ))∣ ≤ Rδ (h2
µ +

√
1
n
+ 1
nmhµ

)
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
,

Bj = {2jMan ≤ sup
τ∈B(t;h)

dM(µ̂(τ), µ(τ)) ≤ 2j+1Man},

BC = { sup
τ∈B(t;h)

dM(µ̂(τ), µ(τ)) > 1
2
η1}.

Let j0 ≥ 0 be an integer satisfying 1
2η1 < 2j0+1Man ≤ η1. We then have

Pr{ sup
τ∈B(t;h)

dM(µ̂(τ), µ(τ)) >Man} ≤
j0

∑
j=0

Pr{Bj ∩BR(2η1)} +Pr{BC ∩BR(2η1)} +Pr{Ω/BR(2η1)}

≤
j0

∑
j=0

Pr
⎛
⎝
Bj ∩BR(2η1) ∩

⎧⎪⎪⎨⎪⎪⎩
sup

τ∈B(t;h)
∣(F ∗(µ̂(τ), τ) − F ∗(µ(τ), τ)) − (Q̂n(µ̂(τ), τ) − Q̂n(µ(τ), τ))∣ ≥ C1(2jMan)2

⎫⎪⎪⎬⎪⎪⎭

⎞
⎠

+Pr(BC) +Pr{Ω/BR(2η1)}

≤
j0

∑
j=0

Pr(1BR(2j+110

810
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deterministic design, we can show that

sup
τ∈T ,y∈K

∣Q̂n(y, τ) − F ∗(y, τ)∣ = Op (h2
µ +

√
1
n
+ 1
nmhµ

)(logn)1/2.

Together with (S.5), this proves Proposition 4.1.

Proof of Theorems 4.1. We divide the proof into three steps. In the first step, we identify two key terms330

that determine the convergence rate. In the second step and third step, we address the terms separately.
Note that v1 = ⋯ = vn = 1/{nm(m − 1)}.

Step 1. Define γ ∶= µ̂ to simplify notation in the sequel. Since the parallel transport P(µ(s),µ(t))

(γ(s),γ(t))
preserves

the fiber metric according to Theorem 2.4,

P
(µ(s),µ(t))

(γ(s),γ(t))
Ĉ(s, t) =argβ0 min

β0,β1,β2∈L(µ(s),µ(t))
{∑

i

νi∑
j≠k

∥P(µ(s),µ(t))

(γ(s),γ(t))
P

(γ(s),γ(t)),γ
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Combining (S.6) and (S.8), we deduce that

P
(µ(s),µ(t))

(γ(s),γ(t))
Ĉ(s, t) − C(s, t)

= (S20S02 − S2
11)[R00,1 +R00,2 − ∂sC(s, t)hCS10 − ∂tC(s, t)hCS01]

(S20S02 − S2
11)S00 − (S10S02 − S01S11)S10 + (S10S11 − S01S20)S01

− (S10S02 − S01S11)[R10,1 +R10,2 − ∂sC(s, t)hCS20 − ∂tC(s, t)hCS11]
(S20S02 − S2

11)S00 − (S10S02 − S01S11)S10 + (S10S11 − S01S20)S01

+ (S10S11 − S01S20)[R01,1 +R01,2 − ∂sC(s, t)hCS11 − ∂tC(s, t)hCS02]
(S20S02 − S2

11)S00 − (S10S02 − S01S11)S10 + (S10S11 − S01S20)S01
.

(S.9)

In light of Lemmas S.4.2 and S.4.3, the convergence rate of (S.6) depends onRab,1 andRab,2−∂sC(s, t)hCSa+1,b−
∂tC(s, t)hCSa,b+1.

Step 2. In this step we address Rab,1. According to the definition of P in (5), the first part in Equa-
tion (S.8) is

(Pµ(s)

γ(s)
Pγ(s)

γ(Tij)
Logγ(Tij)Yij)⊗ (Pµ(t)

γ(t)
Pγ(t)

γ(Tik)
Logγ(Tik)Yik) − (Pµ(s)

µ(Tij)
Logµ(Tij)Yij)⊗ (Pµ(t)

µ(Tik)
Logµ(Tik)Yik).

Then according to Assumption 4.4(b) and Lemma 4.1, its rate is

∥P(µ(s),µ(t))

(γ(s),γ(t))
P

(γ(s),γ(t))

(γ(Tij),γ(Tik))
Ĉi,jk − C̃i,jk∥

G
= O( sup

τ ∶∣τ−s∣<hC or ∣τ−t∣<hC

dM(γ(τ), µ(τ))).

By Proposition 4.2, we conclude that

Rab,1 = Op (h2
µ +

√
1
n
+ 1
nmhµ

) .

Step 3. In this step, we first analyze the term R00,2−∂sC(s, t)hCS10−∂tC(s, t)hCS01 in (S.9), which equals
to

U ∶=∑
i

νi∑
j≠k

$(Tij , Tik) {C̃i,jk − C(s, t) − ∂sC(s, t)(Tij − s) − ∂tC(s, t)(Tik − t)} .

We start with bounding its mean. Let T = {Tij ∶ i = 1, . . . , n, j = 1, . . . ,mi} and observe that

E(C̃i,jk ∣ T) = P
(µ(s),µ(t))

(µ(Tij),µ(Tik))
C(Tij , Tik).

In addition, since C is twice differentiable and the parallel transport P is depicted by a partial differential340

equation, we have the following Taylor expansion at (s, t),

P
(µ(s),µ(t))

(µ(Tij),µ(Tik))
C(Tij , Tik) = C(s, t) + ∂sC(s, t)(Tij − s) + ∂tC(s, t)(Tik − t) +O(h2

C) (S.10)

for all Tij , Tik such that ∣Tij − s∣ < hC and ∣Tik − t∣ < hC , where O(h2
C) is uniform over all Tij and Tik due to

Assumption 4.6 and the compactness of K. Then we further deduce that

E(U)

=E
⎧⎪⎪⎨⎪⎪⎩

E
⎡⎢⎢⎢⎢⎣
∑
i

νi∑
j≠k

$(Tij , Tik) {C̃i,jk − C(s, t) − ∂sC(s, t)(Tij − s) − ∂tC(s, t)(Tik − t)} ∣T
⎤⎥⎥⎥⎥⎦

⎫⎪⎪⎬⎪⎪⎭

=E
⎧⎪⎪⎨⎪⎪⎩
∑
i

νi∑
j≠k

$(Tij , Tik) ×O(h2
C)

⎫⎪⎪⎬⎪⎪⎭
= O(h2

C).

16
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For the random and hybrid designs, the i.i.d assumption on trajectories and Lemma S.4.2 imply that

E∥U −EU∥2
G ≤ 1

n2

n

∑
i=1

E
XXXXXXXXXXX

1
m(m − 1) ∑j≠k

$(Tij , Tik){C̃i,jk −P
(µ(s),µ(t))

(µ(Tij),µ(Tik))
C(Tij , Tik)}

XXXXXXXXXXX

2

G

≤4diam(M)4

n
E

RRRRRRRRRRR

1
m(m − 1) ∑j≠k

$(Tij , Tik)
RRRRRRRRRRR

2

= O ( 1
n
+ 1
nm2h2

C

) .

Lemma S.4.7 asserts that this also holds for the deterministic design. Combining this with EU = O(h2
C),

we deduce that E∥U − EU∥2
G = O(n−1 + n−1m−2h−2

C ), and with Markov inequality, further conclude that
R00,2 − ∂sC(s, t)hCS10 − ∂tC(s, t)hCS01 = Op(h2

C + n−1/2 + n−1/2m−1h−1
C ).

Similar arguments can show that the termsR10,2−∂sC(s, t)hCS20−∂tC(s, t)hCS11 andR01,2−∂sC(s, t)hCS11−345

∂tC(s, t)hCS02 in (S.9) are of the same order. The equation (10) is then obtained by inserting the results in
Steps 2 and 3 into Step 1.

Proof of Theorem 4.2. Similar to the proof of Theorem 4.1, we only need to consider the uniform rate of the
term R00,1 +R00,2 − ∂sC(s, t)hCS10 − ∂tC(s, t)hCS01 in (S.9).

Due to boundedness of K and Lemma 4.1, we have

sup
s,t

∥P(µ(s),µ(t))

(γ(s),γ(t))
P(γ(s),γ(t))

(γ(Tij),γ(Tik))
Ĉi,jk − C̃i,jk∥G ≤ C sup

τ
dM(γ(τ), µ(τ)).

Therefore, according to Lemma S.4.2 and Proposition 4.1, we deduce that

sup
s,t

∥R00,1∥G ≤ c(sup
s,t

∣S00∣) (sup
τ
dM(γ(τ), µ(τ)) = Op

⎛
⎝
h2
µ +

¿
ÁÁÀ logn

nmhµ
+ logn

n

⎞
⎠

for a universal constant c > 0 depending only on K.350

The uniform convergence rates of R00,2 − ∂sC(s, t)hCS10 − ∂tC(s, t)hCS01 and other similar terms are
obtained by arguments similar to those in Theorem 5.2 of Zhang and Wang (2016), except that no truncation
argument is needed due to Assumption 4.4(b), and moments of some random quantities are calculated by
using the techniques in Lemma S.4.2 for the hybrid design and by using Lemma S.4.7 for the deterministic
design.355

S.4 Technical Lemmas

The following lemma is used to establish the convergence rate of the mean estimator under the random or
hybrid design.

Lemma S.4.1 (mean, random). Suppose that Assumptions 2.1, 2.2, 3.1, 4.4, 4.5. Under either Assumption
4.1 or Assumption 4.3, if hµ → 0 and nmhµ →∞, then for any t and h = O(hµ), we have360

(a) E ∣ 1
m ∑j supτ∈B(t;h)Khµ(T1j − τ)∣

2 = O (1 + 1
mhµ

);

(b) supτ∈T ∣ûk(τ)∣ = Op(hkµ) for k = 0,1,2;

(c) infτ∈B(t;h) ∣σ̂2
0(τ)∣ ≍ h2

µ(1 + oP (1)).

17
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Proof of Lemma S.4.1. Under either Assumption 4.1 or Assumption 4.3, Ti1, . . . , Tim are identically dis-
tributed (since they are exchangeable), and we deduce that

sup
τ∈B(t;h)

∣Eûk ∣ = sup
τ∈B(t;h)

RRRRRRRRRRR

1
nm

∑
ij

E[Khµ(Tij − τ)(Tij − τ)k]
RRRRRRRRRRR
= sup
τ∈B(t;h)

∣EKhµ(T11 − τ)(T11 − τ)k ∣ = O(hkµ).

Define an envelop function
Hk ∶=

1
m
∑
j

sup
τ∈B(t;h)

∣Khµ(T1j − τ)(T1j − τ)k∣

for ûk. Under Assumption 4.1, the second moment of Hk is

E(H2
k) =

1
m2 ∑

j1,j2

⎧⎪⎪⎨⎪⎪⎩
E sup
τ∈B(t;h)

∣Khµ(T1j1 − τ)(T1j1 − τ)k∣ × sup
τ∈B(t;h)

∣Khµ(T1j2 − τ)(T1j2 − τ)k∣
⎫⎪⎪⎬⎪⎪⎭

= 1
m

E sup
τ∈B(t;h)

∣Khµ(T1j1 − τ)(T1j1 − τ)k ∣2

+ m − 1
m

E{ sup
τ∈B(t;h)

∣Khµ(T11 − τ)(T11 − τ)k∣} ×E{ sup
τ∈B(t;h)

∣Khµ(T12 − τ)(T12 − τ)k∣}

=O (h2k
µ (1 + 1

mhµ
)) .

Under Assumption 4.3,

E(H2
k) =

1
m2 ∑

j1,j2

⎧⎪⎪⎨⎪⎪⎩
E sup
τ∈B(t;h)

∣Khµ(T1j1 − τ)(T1j1 − τ)k∣ × sup
τ∈B(t;h)

∣Khµ(T1j2 − τ)(T1j2 − τ)k∣
⎫⎪⎪⎬⎪⎪⎭

= 1
m

E sup
τ∈B(t;h)

∣Khµ(T1j1 − τ)(T1j1 − τ)k ∣2

+ m − 1
m

E{ sup
τ∈B(t;h)

∣Khµ(T11 − τ)(T11 − τ)k∣ × sup
τ∈B(t;h)

∣Khµ(T12 − τ)(T12 − τ)k∣}

≤O(h
2k−1
µ

m
) +E[E{ supτ∈B(t;h) ∣Khµ(T11 − τ)(T11 − τ)k∣ ∣ S11, S12}

×E{ sup
τ∈B(t;h)

∣Khµ(T12 − τ)(T12 − τ)k∣ ∣ S11, S12}]

≤O(h
2k−1
µ

m
) +O(h2k−2

µ )E[E{1t−S11−O(hµ)≤ζ11≤t−S11+O(hµ) ∣ S11}E{1t−S12−O(hµ)≤ζ12≤t−S12+O(hµ) ∣ S12}].

When hµ ≲ L−1, E{1t−S11−O(hµ)≤ζ11≤t−S11+O(hµ) ∣ S11} is of order O(hL) when ∣S11 − t∣ = O(L−1) and zero
otherwise, an similar observation applies to E{1t−S12−O(hµ)≤ζ12≤t−S12+O(hµ) ∣ S12}. Together, they imply that

E[E{1t−S11−O(hµ)≤ζ11≤t−S11+O(hµ) ∣ S11}E{1t−S11−O(hµ)≤ζ11≤t−S11+O(hµ) ∣ S12}]
= O(h2

µL
2)E{1∣S11−t∣=O(L−1)1∣S12−t∣=O(L−1)} = O(h2

µL
2)O(L−2) = O(h2

µ).

When hµ ≳ L−1, E{1t−S11−O(hµ)≤ζ11≤t−S11+O(hµ) ∣ S11} is of order O(1) when ∣S11 − t∣ = O(hµ) and zero
otherwise, an similar observation applies to E{1t−S12−O(hµ)≤ζ12≤t−S12+O(hµ) ∣ S12}. Together, they imply
that

E[E{1t−S11≤ζ11≤t−S11+2h ∣ S11}E{1t−S12≤ζ12≤t−S12+2h ∣ S12}]
= O(1)E{1∣S11−t∣=O(hµ)1∣S12−t∣=O(L−1)} = O(1)O(h2

µ) = O(h2
µ).

18
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In summary, we still have EH2
k = O (h2k

µ (1 + 1
mhµ

)) under Assumption 4.3. Part (a) is then verified by taking
k = 0 in the above.365

Part (b) can be proved by an argument analogous to the proof for Lemma 4 of Zhang and Wang (2016).
For part (c), it is seen that σ̂0(τ) ≍ {Eû0Eû2 − (Eû1)2}(1 + oP (1)), where the oP (1) component is uniform
over τ . Define V ∶=Khµ(T11 − τ) and W ∶= EV ≍ 1. Simple calculation shows that

Eû0Eû2 − (Eû1)2 =WE(V [(T11 − τ) −W −1E{V (T11 − τ)}]2) ≍ h2
µ

uniformly over all τ ∈ T .

The following lemma is used to establish Theorems 4.1 and 4.2 under the random or hybrid design. Its
proof is similar to that for Lemma S.4.1 and thus is omitted.

Lemma S.4.2 (covariance, random). Suppose that Assumptions 2.1, 2.2, 3.1, 4.4 and 4.5. Under either of
additional Assumptions 4.1 and 4.3, if hC → 0 and nm2h2

C →∞, we have

sup
s,t∈T

E{Sab(s, t)} = O(1),

sup
s,t∈T

∣Sab(s, t) −E{Sab(s, t)} ∣ = oP (1),

inf
s,t∈T

{(S20S02 − S2
11)S00 − (S10S02 − S01S11)S10 + (S10S11 − S01S20)S01} ≍ 1 + oP (1),

sup
s,t∈T

E
RRRRRRRRRRR

1
m(m − 1) ∑j≠k

KhC(s − Tij)KhC(t − Tik)
RRRRRRRRRRR

2

= O (1 + 1
m2h2

C

) .

The next lemma is used to prove the convergence rates of the mean and covariance estimators under the
deterministic design.370

Lemma S.4.3 (mean and covariance, deterministic). Suppose that Assumptions 4.4(c)(d) and 4.2 hold, and
K is decreasing on [0,1]. If nmhµ →∞ and h ≍ hµ, then

(a) supτ∈T ∣ûk(τ)∣ = O(hkµ) for k = 0,1,2;

(b) supτ∈T ∣ûk(τ)∣ ≍ hkµ for k = 0,2;

(c) infτ∈T ∣σ̂2
0(τ)∣ ≍ h2

µ.375

If nm2h2
C →∞, then

(d) sups,t∈T Sab(s, t) = O(1);

(e) infs,t∈T {(S20S02 − S2
11)S00 − (S10S02 − S01S11)S10 + (S10S11 − S01S20)S01} ≍ 1;

(f) sups,t∈T ∑i,j≠k νiKhC(s − Tij)KhC(t − Tik) ∣
Tij−s

hC
∣
a
∣Tik−t
hC

∣
b
≍ 1,

where Sab is defined in (S.7).380

Proof. Part (a) can be verified by simple calculation. For part (b), we fix τ ∈ T and let W = ∑ijK(Tij−τ
hµ

).
The assumptions on the kernel function imply that K(u) ≥ c0 on [−3/4,3/4] for some constant c0 > 0
depending only on K. In the sequel, we assume n is sufficiently large so that nmhµ ≫ 1. Assumption 4.2
implies that there are at least c1nmhµ/2 points within the interval [τ − 3hµ/4, τ + 3hµ/4], from which we

19
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deduce that W ≥ c0c1nmhµ/2 > 0 regardless of the location of τ . Let wij = K (Tij−τ
hµ

) /W , which is well
defined. Observe that

ûk(τ) =
W

nmhµ
∑
ij

wij(Tij − τ)k.

According the assumptions on the kernel function and Assumption 4.2, at least c1nmhµ/4 of the pairs (i, j)
satisfy ∣Tij − τ ∣ ≥ hµ/8 and wij ≥ c0/W . Thus,

ûk(τ) ≥
W

nmhµ

c1nmhµ

4
c0

W

hkµ

8k
≥ c0c1

23k+2h
k
µ

regardless of the value of τ . Combining this with the first statement we prove the second statement. The
last statement can be established in a similar fashion.

To establish part (c), let E = ∑ij wijTij . As wij is nonzero if and only if Tij ∈ (τ − hµ, τ + hµ) and
∑ij wij = 1, we have E ∈ [τ − hµ, τ + hµ]. We then observe that

σ̂2
0(τ) =

W 2

(nmhµ)2

⎧⎪⎪⎨⎪⎪⎩
∑
ij

wij(Tij − τ)2
⎫⎪⎪⎬⎪⎪⎭
− W 2

(nmhµ)2

⎧⎪⎪⎨⎪⎪⎩
∑
ij

wij(Tij − τ)
⎫⎪⎪⎬⎪⎪⎭

2

= W 2

(nmhµ)2

⎡⎢⎢⎢⎢⎣
∑
ij

wij

⎧⎪⎪⎨⎪⎪⎩
(Tij − τ) −∑

i′j′
wi′j′(Ti′j′ − τ)

⎫⎪⎪⎬⎪⎪⎭

2⎤⎥⎥⎥⎥⎦

= W 2

(nmhµ)2

⎧⎪⎪⎨⎪⎪⎩
∑
ij

wij(Tij −E)2
⎫⎪⎪⎬⎪⎪⎭
.

According to Assumption 4.2, there are at least c1nmhµ/4 of Tij such that ∣Tij −E∣ ≥ hµ/8 and wij ≥ c0/W .
This implies that

σ̂2
0(τ) ≥

c0c1h
2
µ

256
W

nmhµ
≥ c

2
0c

2
1

512
h2
µ

regardless of the value of τ , where the last inequality is due to W ≥ c0c1nmhµ/2 that we have deduced
previously.

The other statements can be established by similar arguments.385

An ε-cover of a subset S of a pseudo-metric space (Ω, d) is a subset A ⊂ S such that for each p ∈
S there exists a q ∈ A such that d(p, q) ≤ ε. We define N(ε, S, d) = min{∣A∣ ∶ A is an ε cover of S} to
be the ε-covering number of S, where ∣A∣ denotes the cardinality of the set A. An ε-packing of S is a
subset A ⊂ S such that d(p, q) > ε for p, q ∈ A. The ε-packing number of S is defined by M(ε, S, d) =
max{∣A∣ ∶ A is an ε packing of S}. A standard relation between ε-covering number and ε-packing number is390

M(2ε, S, d) ≤ N(ε, S, d) ≤M(ε, S, d) for all ε > 0.

Lemma S.4.4. Let (S1, d1) and (S2, d2) be two pseudo-metric spaces and (S1×S2, d1×d2) the product pseudo-
metric space with the pseudo-metric (d1×d2)(p1×p2, q1×q2) = {d2

1(p1, q1)+d2
2(p2, q2)}1/2 for p1×p2, q1×q2 ∈

S1 × S2. Then N(ε, S1 × S2, d1 × d2) ≤ N(ε/
√

2, S1, d1)N(ε/
√

2, S2, d2).

Proof of Lemma S.4.4. Let A1 and A2 be an ε/
√

2-cover of A1 and A2, respectively. For each k = 1,2, for395

every pk ∈ Sk there exists p′k ∈ Ak such that dk(pk, p′k) ≤ ε/
√

2. Then for each p1 × p2 ∈ S1 × S2, we have
(d1×d2)(p1×p2, p

′
1×p′2) = {d2

1(p1, p
′
1)+d2

2(p2, p
′
2)}1/2 ≤ ε. This shows that A = {p′1×p′2 ∶ p′1 ∈ A1, p

′
2 ∈ A2} is an

ε-cover. The conclusion of the lemma then follows from the observation ∣A∣ = N(ε/
√

2, S1, d1)N(ε/
√

2, S2, d2).
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and
Zn(y, τ) =

1√
n

n

∑
i=1
Vi(y, τ). (S.16)

Then EVi(y, τ) = 0 and U(y, τ) −EU(y, τ) = n−1/2Zn(y, τ). Now we observe that

∣Vi(y, τ1) − Vi(z, τ2)∣ ≤
1

mhµ

RRRRRRRRRRR

m

∑
j=1

{K (Tij−τ1
hµ

) −K (Tij−τ2
hµ

)}(d2
M(Yij , y) − F ∗(y, Tij))

RRRRRRRRRRR

+ 1
mhµ

RRRRRRRRRRR

m

∑
j=1

K (Tij−τ2
hµ

)(d2
M(Yij , y) − F ∗(y, Tij) − d2

M(Yij , z) + F ∗(z, Tij))
RRRRRRRRRRR

≤ c

mhµ
( ∣τ2 − τ1∣

hµ
+ d(y, z))

m

∑
j=1

(1τ1−hµ≤Tij≤τ1+hµ + 1τ2−hµ≤Tij≤τ2+hµ)

≤cmax(c2mhµ,1)
mhµ

dh(y × τ1, z × τ2)

≤cdh(y × τ1, z × τ2)

where dh(y × τ1, z × τ2) ∶= {h−2
µ ∣τ2 − τ1∣2 + d2

M(y, z)}1/2 defines a distance on the product space K × T . With
the entropy bound in Lemma S.4.5, by Theorem 3.3 of van de Geer (1990) we deduce that

Pr
⎧⎪⎪⎨⎪⎪⎩

sup
y∈K,τ∈B(t;h)

∣Zn(y, τ)∣ ≥ x
⎫⎪⎪⎬⎪⎪⎭
≤ exp(−cx2), (S.17)

which directly implies that E{ supy∈K,τ∈B(t;h) ∣Zn(y, τ)∣} = O(1) and further E{ supy∈K,τ∈B(t;h) ∣U(y, τ) −
EU(y, τ)∣} = O(n−1/2).420

Next we consider the case mhµ → 0. Let

Vi(y, τ) =
m

∑
j=1

K (Tij − τ
hµ

)(d2
M(Yij , y) − F ∗(y, Tij)) (S.18)

and
Zn(y, τ) =

1√
nmhµ

n

∑
i=1
Vi(y, τ). (S.19)

Then EVi(y, τ) = 0 and U(y, τ) −EU(y, τ) = (nmhµ)−1/2Zn(y, τ). Observe that

∣Vi(y, τ1) − Vi(z, τ2)∣ ≤c(
∣τ2 − τ1∣
hµ

+ d(y, z))
m

∑
j=1

(1τ1−hµ≤Tij≤τ1+hµ + 1τ2−hµ≤Tij≤τ2+hµ)

≤cdh(y × τ1, z × τ2),

where we use the fact that ∑mj=1(1τ1−hµ≤Tij≤τ1+hµ + 1τ2−hµ≤Tij≤τ2+hµ) ≤ c due to the assumption mhµ → 0 and
Assumption 4.2. Note that for all sufficiently small hµ, there is at most one non-zero item in (S.18) and thus
Zn(y, τ) in (S.19) is sum of independent random variables. In addition, there are only at most cnmhµ non-425

zero terms in (S.19). Based on Theorem 3.3 of van de Geer (1990) again we see that (S.17) holds, which implies
that E{ supy∈K,τ∈B(t;h) ∣Zn(y, τ)∣} = O(1) and further E{ supy∈K,τ∈B(t;h) ∣U(y, τ) −EU(y, τ)∣} = O( 1

√
nmhµ

).

To establish (S.13), let R = ⌈h−1
µ ∣T ∣⌉ = O(h−1

µ ) and A1, . . . ,AR a partition of T with ∣Ar ∣ ≤ hµ. According
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to (S.17), we observe that, in either case of mhµ ≳ 1 and mhµ → 0,

Pr{ sup
y∈K,τ∈T

∣Zn(y, τ)∣ ≥ x
√

logn} ≤
R

∑
r=1

Pr{ sup
y∈K,τ∈Ar

∣Zn(y, τ)∣ ≥ x
√

logn}

= O(h−1
µ ) exp(−cx logn) ≤ O(n−1h−1

µ )n1−x

= O(1)n1−x,

which then implies (S.13).

The following lemma is used to establish Theorems 4.1 and 4.2 under the deterministic design. Its proof
is similar to that of Lemma S.4.6 and thus is omitted.430

Lemma S.4.7 (covariance, deterministic). Suppose that Assumptions 2.1, 2.2, 3.1, 4.4, 4.5, 4.6 and 4.2
hold. Let

U(s, t) ∶=∑
i

νi∑
j≠k

$(Tij , Tik) {C̃i,jk − C(s, t) − ∂sC(s, t)(Tij − s) − ∂tC(s, t)(Tik − t)} ,

where $(s′, t′) =KhC(s− s′)KhC(t− t′) for s′, t′ ∈ T . If hC → 0 and nm2h2
C →∞, then for all sufficient small

hC,

sup
s,t∈T

E{∣U(s, t) −EU(s, t)∣} = O (n−1/2 + (nm2h2
C)−1/2) . (S.20)

If hC → 0, nh2
C ≳ 1 and nm2h2

C/ logn→∞, then

E{ sup
s,t∈T

∣U(s, t) −EU(s, t)∣} = O (n−1/2 + (nm2h2
C)−1/2) (logn)1/2. (S.21)

S.5 Theoretical Results for Regular Design
In a regular design, each sample path is observed on a common set of time points {Tj}1≤j≤m. From a
theoretical perspective, this design is fundamentally different from the designs discussed in Section 4, as
under such design, m →∞ is required for the estimators µ̂ and Ĉ to be consistent. Below we consider both
random and deterministic regular design which includes the often-encountered equally-spaced design as a435

special case.

Assumption S.5.1 (Regular Random Design). The design points {Tj}1≤j≤m, independent of other random
quantities, are i.i.d. sampled from a distribution on T with a probability density that is bounded away from
zero and infinity.

Assumption S.5.2 (Regular Deterministic Design). The design points {Tj}1≤j≤m are nonrandom, and there440

exist constants c2 ≥ c1 > 0, such that for any intervals A,B ⊂ T ,

(a) c1m∣A∣ − 1 ≤ ∑mj=1 1Tj∈A ≤ max{c2m∣A∣,1},

(b) c1m
2∣A∣∣B∣ − 1 ≤ ∑j,k 1Tj∈A1Tk∈B ≤ max{c2m

2∣A∣∣B∣,1},

where ∣A∣ denotes the length of A.

For any fixed t ∈ T , under either of Assumptions S.5.1 or S.5.2, the number of distinct observed time445

points in the interval of length hµ is O(mhµ), and thus the condition of mhµ ≳ 1 is necessary for consistency
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of the mean and covariance estimators. Proposition S.5.1 presents the local and global uniform convergence
rates for the mean estimation under regular design. The optimal bandwidth hµ ≍ 1

m
leads to the same

convergence rate as that from Cai and Yuan (2011) in the Euclidean case.

Proposition S.5.1. Suppose that Assumptions 2.1, 2.2, 3.1, 4.4 and 4.5 hold. Under either of Assumptions
S.5.1 or S.5.2, if hµ → 0 and mhµ > 1/c1, then

sup
t∈T

d2
M(µ(t), µ̂(t)) = Op (h4

µ +
logn
n

) ,

and for any fixed t ∈ T and h = O(hµ),

sup
τ ∶∣τ−t∣≤h

d2
M(µ(τ), µ̂(τ)) = Op (h4

µ +
1
n
) .

In the above, the condition mhµ > 1/c1 ensures that there is at least one observation of the time point450

for the interval [t−hµ, t+hµ] for each t, according to Assumption S.5.2 for the regular deterministic design.
The proof of Proposition S.5.1 is similar to that of Propositions 4.1 and 4.2, where Lemma S.4.1 is replaced
with Lemma S.5.1 below for the regular random design and Lemmas S.4.3 and S.4.6 are replaced with
Lemma S.5.2 for the regular deterministic design.

Lemma S.5.1 (mean, regular random). Suppose that Assumptions 2.1, 2.2, 3.1, 4.4, 4.5. Define

U ∶= 1
nm

∑
ij

Khµ(Tj − τ)(d2
M(Yij , y) − F ∗(y, τ) − ∂τF ∗(y, τ)(Tj − τ)).

Under Assumption S.5.1, if hµ → 0 and mhµ ≳ 1, then for any fixed t ∈ T and h = O(hµ),455

(a) supτ∈B(t;h) ∣U −EU ∣ = Op (
√

1
n
);

(b) supτ∈T ∣ûk(τ)∣ = Op(hkµ) for k = 0,1,2;

(c) infτ∈B(t;h) ∣σ̂2
0(τ)∣ ≍ h2

µ(1 + oP (1)).

Proof of Lemma S.5.1. Define the envelop function

H ∶= 2diam(K)2

m

m

∑
j=1

sup
τ∈B(t;h)

Khµ(Tj − τ).

Since mhµ ≳ 1, simple computation leads to E(H2) = O(1) and thus

sup
τ∈B(t;h)

∣U −EU ∣ = Op
⎛
⎝

√
1
n

⎞
⎠

according to Theorems 2.7.11 and 2.14.2 of van der Vaart and Wellner (1996). Combining above results
together, we deduce part (a). Similar technique leads to part (b). For part (c), it is seen that σ̂0(τ) ≍
{Eû0Eû2−(Eû1)2}(1+oP (1)), where the oP (1) component is uniform over τ . Define V ∶=Khµ(T11−τ) and
W ∶= EV ≍ 1. Simple calculation shows that

Eû0Eû2 − (Eû1)2 =WE(V [(T11 − τ) −W −1E{V (T11 − τ)}]2) ≍ h2
µ

uniformly over all τ ∈ T .
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Lemma S.5.2 (mean, regular deterministic). Suppose that Assumptions 2.1, 2.2, 3.1, 4.4, 4.5. Define

U ∶= 1
nm

∑
ij

Khµ(Tj − τ)(d2
M(Yij , y) − F ∗(y, τ) − ∂τF ∗(y, τ)(Tj − τ)).

Under Assumption S.5.2, if hµ → 0 and mhµ > 1/c1, then for any fixed t ∈ T and h = O(hµ),460

(a) supτ∈B(t;h) ∣U −EU ∣ = Op (
√

1
n
);

(b) supτ∈T ∣ûk(τ)∣ = Op(hkµ) for k = 0,1,2;

(c) infτ∈B(t;h) ∣σ̂2
0(τ)∣ ≍ h2

µ.

Proof of Lemma S.5.2. Part (a) can be established by an argument similar to that of Lemma S.4.6 under
the condition mhµ ≳ 1. Part (b) can be verified by simple calculation. For part (c), we fix τ ∈ T and let
W ∶= ∑jK(Tj−τ

hµ
). The assumptions on the kernel function imply that K(u) ≥ c0 on [−3/4,3/4] for some

constant c0 > 0 depending only on K. Assumption S.5.2 implies that there are at least 3c1mhµ/2 points
within the interval [τ − 3hµ/4, τ + 3hµ/4], from which we deduce that W ≥ 3c0c1mhµ/2 > 0 regardless of
the location of τ . Let wj = K (Tj−τ

hµ
) /W , which is well defined. Observe that ûk(τ) = W

mhµ
∑j wj(Tj − τ)k.

According to the assumptions on the kernel function and Assumption S.5.2, at least c1mhµ/4 of sampling
points Tj satisfy ∣Tj − τ ∣ ≥ hµ/8 and wj ≥ c0/W . Thus, for k = 0,2,

ûk(τ) ≥
W

mhµ

c1mhµ

4
c0

W

hkµ

8k
≥ c0c1

23k+2h
k
µ

regardless of the value of τ . Combining this with part (b) we prove part (c).

The following theorem provides the pointwise and uniform convergence rates of the covariance estimator465

under a regular design, where the optimal bandwidth hµ ≍ hC ≍ 1
m

leads to the same convergence rate as
that from Cai and Yuan (2011) in the Euclidean case.

Theorem S.5.1. Suppose that Assumptions 2.1, 2.2, 3.1, 4.4, 4.5 and 4.6 hold. Under either of Assumptions
S.5.1 or S.5.2, if hµ → 0, hC = O(hµ), mhµ > 1/c1, m2h2

C > 1/c1 and nhC ≳ 1, then

sup
(s,t)∈T 2

∥P(µ(s),µ(t))

(µ̂(s),µ̂(t))
Ĉ(s, t) − C(s, t)∥

2

G(µ(s),µ(t))
=Op (h4

µ + h4
C +

logn
n

) ,

and for any fixed s, t ∈ T ,

∥P(µ(s),µ(t))

(µ̂(s),µ̂(t))
Ĉ(s, t) − C(s, t)∥

2

G(µ(s),µ(t))
=Op (h4

µ + h4
C +

1
n
) .

The proof of Theorem S.5.1 is similar to that of Theorems 4.1 and 4.2, where Lemmas S.4.2, S.4.3
and S.4.7 are replaced by Lemma S.5.3 below to analyze the parts Sab and U . The proof of Lemma S.5.3 is
similar to that of Lemmas S.5.1 and S.5.2 and thus omitted.470

Lemma S.5.3 (covariance, regular). Suppose that Assumptions 2.1, 2.2, 3.1, 4.4, 4.5 and 4.6 hold. Define

U(s, t) ∶=∑
i

νi∑
j≠k

$(Tij , Tik) {C̃i,jk − C(s, t) − ∂sC(s, t)(Tij − s) − ∂tC(s, t)(Tik − t)} ,

where $(s′, t′) =KhC(s− s′)KhC(t− t′) for s′, t′ ∈ T . Under either of Assumptions S.5.1 or S.5.2, if hµ → 0,
hC = O(hµ), mhµ > 1/c1, m2h2

C > 1/c1, and nhC ≳ 1, then
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(a) sups,t∈T E{Sab(s, t)} = O(1);

(b) sups,t∈T ∣Sab(s, t) −E{Sab(s, t)} ∣ = oP (1);

(c) infs,t∈T {(S20S02 − S2
11)S00 − (S10S02 − S01S11)S10 + (S10S11 − S01S20)S01} ≍ 1 + oP (1);475

(d) sups,t∈T ∣U(s, t) −EU(s, t)∣ = Op (
√

1
n
).

S.6 Additional Illustration of Invariance

The covariance function and its estimator proposed in our paper are invariant to the manifold parameteri-
zation, choice of frame and embedding. This important invariance property is a consequence of the intrinsic
perspective we take, and below we demonstrate that it is not shared by non-intrinsic statistical methods.480

A method non-invariant to parameterization and frame selection. An “obvious” estimator for
C might be obtained by utilizing a frame along µ̂(⋅) and the coefficient process of Lin and Yao (2019).
Specifically, fix a frame along µ̂ which determines an orthonormal basis of Tµ̂(t)M for each t ∈ T . Then
Logµ̂(Tij)Yij can be represented by its coefficient vector ĉij with respect to the frame, and Ĉi,jk is also
represented by the observed coefficient matrix ĉij ĉ

⊺
ik. Local linear smoothing (Yao et al., 2005) or other485

smoothing methods can be applied on these matrices to yield an estimated coefficient matrix at any pair
(s, t) of time points, and the corresponding estimate Ĉ(s, t) is recovered from the estimated coefficient matrix
and the frame. However, this estimate is not invariant to the frame, i.e., different frames give rise to different
estimates Ĉ(s, t). As a simple example, consider two frames that coincide on all Tµ̂(Tij)M but not on Tµ̂(s)M
and Tµ̂(t)M, and assume that s, t /∈ {Tij ∶ i = 1, . . . , n, j = 1, . . . ,mi}. Then the coefficient matrices ĉij ĉ⊺ik with490

respect of the two frames are identical and thus this “obvious” estimator will produce identical estimated
coefficient matrix at the pair (s, t). However, since the two frames differ at s and t, the estimates Ĉ(s, t)
recovered from the estimated coefficient matrix under the two frames are different. In addition, smoothing
methods optimize certain objective function of the observations which are the frame-dependent coefficient
matrices ĉij ĉ⊺ik in this context, while most objective functions, like sum of squared errors, are not invariant495

to the frame, and consequently the corresponding estimate is frame-dependent.
We now numerically demonstrate that the above method based on Yao et al. (2005) is not invariant to

parameterization and frame selection. For this purpose, we generate data from the two-dimensional sphere
S2 = {(x, y, z) ∈ R3 ∶ x2+y2+z2 = 1} with the same setting in Section 5 with sample size n = 100 and sampling
rate m = 10. Consider the following three frames:500

• The frame (B1(t) = ∂φ
∂u
,B2(t) = ∂φ

∂v
) derived from the polar parameterization in Equation (12);

• The frame (B4π
1 (t),B4π

2 (t)) constructed by

B4π
1 (t) = cos(4πt)B1(t) + sin(kπt)B2(t), B4π

2 (t) = sin(4πt)B1(t) + cos(4πt)B2(t),

which is a rotated version of (B1(t),B2(t));

• The frame (B̃1(t) = ∂ϕ
∂u
, B̃2(t) = ∂ϕ

∂v
) derived from the parameterization in Equation (15).

For each of these frames, we apply the method described above to estimate C under the identical conditions,
e.g., with the same logarithmically equidistant grid of bandwidths hC = 0.20,0.28,0.40,0.56,0.80 and known505
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mean function. If the method were invariant to frames, then we would expect to observe identical relative
root mean integral square error (rRMISE) quantified by

rRMISE ∶=
{E ∫T 2 ∥Ĉ(s, t) − C(s, t)∥2

Gdsdt}1/2

{∫T 2 ∥C(s, t)∥2
Gdsdt}1/2 (S.22)

for any fixed bandwidth. The results, presented in Table S.1 and based on 100 independent Monte Carlo
replicates, however, show that different frames lead to distinct rRMISE for a fixed bandwidth and distinct
minimum rRMISE over a grid of bandwidths, and thus clearly show that the above method based on Yao510

et al. (2005) is not invariant to frames.

Table S.1: rRMISE under different frames and bandwidths
rRMISE hC = 0.20 hC = 0.28 hC = 0.40 hC = 0.56 hC = 0.80

(B1(t),B2(t)) 25.48% (20.20%) 22.71% (19.38%) 20.69% (18.86%) 19.44% (18.29%) 19.94% (17.36%)
(B4π

1 (t),B4π
2 (t)) 116.32% (34.57%) 109.13% (30.08%) 98.24% (23.31%) 91.38% (24.19%) 93.07% (23.65%)

(B̃1(t), B̃2(t)) 49.19% (21.77%) 46.63% (20.59%) 43.52% (19.38%) 39.78% (18.04%) 36.67% (16.83%)

A method non-invariant to embedding. We demonstrate that different embeddings for the method
of Dai et al. (2020) yield distinct estimates of the covariance function. Consider a plane M = (0,1) × [0,1]
with the metric inherited from R2. The underlying population X on M is X(t) = (0.25+ 0.5t+Z1,0.5+Z2)
where Z1, Z2 ∼ Uniform(−0.1,0.1) and µ(t) = (0.25 + 0.5t,0.5). We generate n = 100 paths from X and for
each path we randomly sample Poisson(10) + 2 observations, where Poisson(10) is the Poisson distribution
with mean parameter 10. Consider the following three isometric embeddings of M into R3:

ι1 ∶ (x, y)→ (x, y,0) plane;

ι2 ∶ (x, y)→ ( 1
π

sin(πx), 1
π

cos(πx), y) half cylindrical surface;

ι3 ∶ (x, y)→ ( 1
2π

sin(2πx), 1
2π

cos(2πx), y) cylindrical surface.

For each of these embeddings, we apply the method of Dai et al. (2020) to produce an estimate of C and
calculate rRMISE (S.22) of these estimates, where for illustration, we consider logarithmically equidistant
grid of bandwidths hC = 0.10,0.14,0.22,0.33,0.50 and the known true mean function µ(t). If the method of
Dai et al. (2020) were invariant to embeddings, then we would expect to observe identical rRMISE for these515

embeddings for each bandwidth. Table S.2 with the rRMISE results based on 100 Monte Carlo simulation
replicates, suggesting the opposite, clearly shows that the method of Dai et al. (2020) is not invariant to
choices of the frame.

Table S.2: rRMISE under different embeddings and bandwidths
rRMISE hC = 0.10 hC = 0.14 hC = 0.22 hC = 0.33 hC = 0.50

ι1 26.91% (17.21%) 22.38% (15.72%) 19.50% (14.76%) 17.85% (14.49%) 19.25% (31.40%)
ι2 51.52% (21.16%) 49.22% (19.54%) 47.88% (18.48%) 47.10% (17.92%) 54.57% (90.06%)
ι3 81.83% (29.78%) 79.97% (28.08%) 78.49% (26.78%) 77.15% (25.40%) 90.01% (150.56%)

A real data example. We now demonstrate that different choices of the frame for the extrinsic method
based on Yao et al. (2005) lead to distinct statistical results for the real data analyzed in Section 6. Consider
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the frame {(Bk)}1≤k≤6 induced from the parameterization

φ ∶ (x1, x2, x3, x4, x5, x6) ∈ R6 →
⎛
⎜⎜
⎝

ex1 0 0
x4 ex2 0
x5 x6 ex3

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

ex1 x4 x5

0 ex2 x6

0 0 ex3

⎞
⎟⎟
⎠
∈ Sym+

LC

and the frame {(B̃k)}1≤k≤6 derived from a rotation of {(Bk)}1≤k≤6 on each tangent space Tµ̂(Tij)Sym+
LC by

{(B̃k)}1≤k≤6 = {(Bk)}1≤k≤6×

diag
⎧⎪⎪⎨⎪⎪⎩

⎛
⎝

cos(4πTij) − sin(4πTij)
sin(4πTij) cos(4πTij)

⎞
⎠
,
⎛
⎝

cos(4πTij) − sin(4πTij)
sin(4πTij) cos(4πTij)

⎞
⎠
,
⎛
⎝

cos(4πTij) − sin(4πTij)
sin(4πTij) cos(4πTij)

⎞
⎠

⎫⎪⎪⎬⎪⎪⎭
,

where diag(M1,M2,M3) for matrices M1,M2,M3 denotes the block diagonal matrix formed by M1,M2,M3.
For each of these two frames, we apply the extrinsic method based on Yao et al. (2005) to estimate the520

covariance function and its eigenfunctions under identical conditions, e.g., with the same estimated mean
function (with hµ = 10) and the same choice of bandwidth hC = 20. Figure S.4, depicting the first three
functional principal components obtained from the two frames, clearly shows that the two frames yield
distinct estimates. This demonstrates that the above method based on Yao et al. (2005) is not invariant to
frames.525
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