Supplementary M aterial for "Data-driven selection of the number of change-points via error rate control"

Hui Chen ${ }^{1}$, Haojie Ren ${ }^{2}$, Fang Yao ${ }^{3 *}$ and Changliang Zou ${ }^{1}$
${ }^{1}$ School of Statistics and Data Science, Nankai University, China
${ }^{2}$ School of Mathematical Sciences, Shanghai J iao Tong University, China
${ }^{3}$ School of Mathematical Sciences, Peking University, China

This supplementary material contains the lemmas used in the proof of Theorem 1 (Appendix C), the proofs of Proposition 1, Theorems 1-3 and Corollaries 1-2 (Appendix D-F), and some additional simulation results (Appendix G).

Appendix B: Equivalence of definitions given by Eqs.(3) and (4)

- If there exists one $\tau_{k}^{*} \in\left[\frac{1}{2}\left(\tau_{j-1}+\tau_{j}\right), \frac{1}{2}\left(\tau_{j}+\tau_{j+1}\right)\right)$ as (3), we have $\tau_{k}^{*}-\tau_{j-1} \geq \tau_{j}-\tau_{k}^{*}$ when $\tau_{j} \geq \tau_{k}^{*}$ or $\tau_{j+1}-\tau_{k}^{*}>\tau_{k}^{*}-\tau_{j}$ when $\tau_{j}<\tau_{k}^{*}$, that is $\left|\tau_{j}-\tau_{k}^{*}\right|=\min _{\tau_{1} \in \mathcal{T}}\left|\tau_{\tau}-\tau_{k}^{*}\right|$ from which τ_{j} follows (4);
- On the contrary, if $\tau_{j}=\arg \min _{\boldsymbol{\tau} \in \mathcal{T}}\left|\tau_{\boldsymbol{T}}-\tau_{\mathrm{k}}^{*}\right|$ as the definition of (4), we have $\tau_{\mathrm{k}}^{*} \geq$ $\frac{1}{2}\left(\tau_{j-1}+\tau_{j}\right)$ due to $\tau_{k}^{*}-\tau_{j-1}>\tau_{k}^{*}-\tau_{j}$ if $\tau_{k}^{*}<\tau_{j}$; Similarly, $\tau_{k}^{*}<\frac{1}{2}\left(\tau_{j}+\tau_{j}-1\right)$ holds for $\tau_{k}^{*}>\tau_{j}$. Say, τ_{j} follows the definition of (3).

[^0]
A ppendix C: A uxiliary lemmas

Lemma S. 1 If the mode (1) and Assumption 1 hold, $\Omega_{n}^{-1}=\Sigma+\mathrm{O}_{\mathrm{p}}\left(\mathrm{K}_{\mathrm{n}} \mathrm{n}^{-1 / 2}\right)$, where Σ is some positive matrix depending on \sum_{k}^{*} 's.

This lemma can be proved using the similar arguments in the Proposition 1 of Zou et al. (2020), thus the details are omitted here.

Lemma S. 2 [Bernsten's inequality] Let X_{1}, \ldots, X_{n} be independent centered random variables a.s. bounded by $\mathrm{A}<\infty$ in absolute value. Let $\sigma^{2}=\mathrm{n}^{-1} \sum_{i=1}^{n} \mathbb{E}\left(\mathrm{X}_{\mathrm{i}}^{2}\right)$. Then for all $x>0$,

$$
\operatorname{Pr}\left(\sum_{i=1}^{n} X_{i} \geq x\right) \leq \exp \left(-\frac{x^{2}}{2 n \sigma^{2}+2 A x / 3}\right) .
$$

The third one is a moderate deviation result for the mean; See Petrov (2002).

Lemma S. 3 (M oderate Deviation for the Independent Sum)

Suppose that X_{1}, \ldots, X_{n} are independent random variables with mean zero, satisfying $\mathbb{E}\left(\left|X_{j}\right|^{2+q}\right)<\infty(j=1,2, \ldots)$ for some $q>0$. Let $B_{n}=\sum_{i=1}^{n} \mathbb{E}\left(X_{i}^{2}\right)$. Then

$$
\frac{\operatorname{Pr}\left(\sum_{i=1}^{n} \mathbf{X}_{i}>\mathbf{x} \sqrt{\mathbf{B}_{n}}\right)}{1-\Phi(\mathbf{x})} \rightarrow 1 \quad \text { and } \quad \frac{\operatorname{Pr}\left(\sum_{i=1}^{n} \mathbf{X}_{i}<-\mathbf{x} \sqrt{B_{n}}\right)}{\Phi(-\mathbf{x})} \rightarrow 1
$$

as $\mathrm{n} \rightarrow \infty$ uniformly in x in the domain $0 \leq \mathrm{x} . \quad\left\{\log \left(1 / L_{n}\right)\right\}^{1 / 2}$, where $\mathrm{L}_{\mathrm{n}}=\mathrm{B}_{\mathrm{n}}^{-1-\frac{\mathrm{q}}{2}} \sum_{\mathrm{i}=1}^{\mathrm{n}} \mathbb{E}\left(\left|\mathrm{X}_{\mathrm{i}}\right|^{2+\mathrm{q}}\right)$.

For notational convenience, we note that our estimation procedure can be reformulated as follows. Suppose we have two independent sets of d-dimensional observations $\left\{S_{1}^{\circ}, \ldots, S_{n}^{O}\right\}$ and $\left\{\mathrm{S}_{1}^{\mathrm{E}}, \ldots, \mathrm{S}_{\mathrm{n}}^{\mathrm{E}}\right\}$ collected from the following multiple change-point model

$$
S_{j}^{O}=\boldsymbol{\mu}_{\mathrm{k}}^{*}+\mathrm{U}_{\mathrm{j}}, \mathrm{~S}_{\mathrm{j}}^{\mathrm{E}}=\boldsymbol{\mu}_{\mathrm{k}}^{*}+\mathrm{V}_{\mathrm{j}}, \mathrm{j} \in\left(\tau_{\mathrm{k}}^{*}, \tau_{\mathrm{k}+1}^{*}\right], \mathrm{k}=0, \ldots, \mathrm{~K}_{\mathrm{n}},
$$

where $\mathbf{U}_{1}, \ldots, \mathbf{U}_{\mathrm{n}}, \mathrm{V}_{1}, \ldots, \mathrm{~V}_{\mathrm{n}}$ are independent standardized noises satisfying $\mathbb{E}\left(\mathrm{U}_{1}\right)=0$ and $\operatorname{Cov}\left(\mathrm{U}_{1}\right)=\operatorname{Cov}\left(\mathrm{V}_{1}\right)=\Sigma_{\mathrm{k}}^{*}$. Let $\$=\min _{0 \leq \mathrm{k} \leq \mathrm{K}_{\mathrm{n}}} \operatorname{Eig}_{\min }\left(\Sigma_{\mathrm{k}}^{*}\right)$ and $\$=\max _{0 \leq \mathrm{k} \leq \mathrm{K}_{\mathrm{n}}} \operatorname{Eig}_{\max }\left(\Sigma_{\mathrm{k}}^{*}\right)$,
where $\operatorname{Eig}_{\text {min }}(\mathrm{A})$ and $\operatorname{Eig}_{\text {max }}(\mathrm{A})$ denote the smallest and largest eigenvalues of a square matrix A. By Assumption 1, we know that $0<\$<\$<\infty$. To keep the subscript consistent with the main body, we roughly let $\mathrm{S}_{2 \mathrm{i}}^{\mathrm{O}}, \mathbf{U}_{2 \mathrm{i}}, \mathrm{S}_{2 \mathrm{i}-1}^{\mathrm{E}}, \mathrm{V}_{2 \mathrm{i}-1}$ as 0 for $\mathbf{i}=1, \ldots, \mathrm{~m}$.

The next one establishes an uniform bound for $\left\|\sum_{i=k_{1}+1}^{k_{2}} U_{i}\right\|$.

Lemma S. 4 Suppose Assumption 1 holds. Then we have as $\mathrm{n} \rightarrow \infty$,

$$
\operatorname{Pr}\left(\max _{\left(\mathrm{k}_{1}, \mathrm{k}_{2}\right) \in \mathcal{T}\left(\omega_{h}\right)}\left(\mathrm{k}_{2}-\mathrm{k}_{1}\right)^{-1}\left\|\sum_{\mathrm{i}=\mathrm{k}_{1}+1}^{\mathrm{k}_{2}} \mathrm{U}_{\mathrm{i}}\right\|^{2}>\mathrm{C} \log \mathrm{n}\right)=\mathrm{O}\left(\mathrm{n}^{1-\frac{\theta}{\theta-\mathrm{k}}}\right),
$$

for some large $\mathrm{C}>0$ and any $0<\mathrm{K}<\theta-2 \mathrm{\eta}^{-1}$.

Proof. We shall show that the assertion holds when $d=1$ and the case for $d>1$ is straightforward by using the Bonferroni inequality. Denote $M_{n}=n^{1 /(\theta-\kappa)}$ for some $0<k<$ θ, and observe that

$$
\begin{aligned}
U_{i} & =\left[U_{i} \mathbb{I}\left(\left|U_{i}\right| \leq M_{n}\right)-\mathbb{E}\left\{U_{i} \mathbb{I}\left(\left|U_{i}\right| \leq M_{n}\right)\right\}\right]+\left[U_{i} \mathbb{I}\left(\left|U_{i}\right|>M_{n}\right)-\mathbb{E}\left\{U_{i} \mathbb{I}\left(\left|U_{i}\right|>M_{n}\right)\right\}\right] \\
& =: U_{i 1}+U_{i 2} .
\end{aligned}
$$

It suffices to prove that the assertion holds with $\mathrm{U}_{\mathrm{i} 1}$ and $\mathrm{U}_{\mathrm{i} 2}$ respectively. Let $\mathrm{X}=\sqrt{\mathrm{C} \log \mathrm{n}}$ with a sufficiently large C,

$$
\begin{aligned}
& \operatorname{Pr}\left(\max _{\left(k_{1}, k_{2}\right) \in \mathcal{T}\left(\omega_{h}\right)}\left(k_{2}-k_{1}\right)^{-1}\left(\sum_{i=k_{1}+1}^{k_{2}} U_{i}\right)^{2}>x^{2}\right) \\
& \leq \operatorname{Pr}\left(\max _{\left(k_{1}, k_{2}\right) \in \mathcal{T}\left(\omega_{h}\right)}\left(k_{2}-k_{1}\right)^{-1 / 2}\left|\sum_{i=k_{1}+1}^{k_{2}} U_{i 1}\right|>x / 2\right) \\
& \quad+\operatorname{Pr}\left(\max _{\left(k_{1}, k_{2}\right) \in \mathcal{T}\left(\omega_{h}\right)}\left(k_{2}-k_{1}\right)^{-1 / 2}\left|\sum_{i=k_{1}+1}^{k_{2}} U_{i 2}\right|>x / 2\right) \\
& = \\
& =P_{1}+P_{2} .
\end{aligned}
$$

On one hand, by the Bernstein inequality in Lemma S.2, we have

$$
P_{1} \leq n^{2} \operatorname{Pr}\left(\left(k_{2}-k_{1}\right)^{-1 / 2}\left|\sum_{i=k_{1}+1}^{k_{2}} U_{i 1}\right|>x / 2\right) \leq 2 n^{2} \exp \left\{-\frac{w_{n} x^{2}}{C_{1} w_{n}+C_{2} M_{n} w_{n}^{1 / 2} x}\right\}=o\left(n^{1-\frac{\theta}{\theta-k}}\right),
$$

where C_{1}, C_{2} are some positive constants and we use the assumption that $\mathrm{K}<\theta-2 \boldsymbol{\eta}^{-1}$.
On the other hand, according to Cauchy inequality and Markov inequality, we note that

$$
\mathbb{E}^{2}\left\{\left|\mathrm{U}_{\mathrm{i}}\right| \mathbb{I}\left(\left|\mathrm{U}_{\mathrm{i}}\right|>\mathrm{M}_{\mathrm{n}}\right)\right\} \leq \mathbb{E}\left(\mathrm{U}_{\mathrm{i}}^{2}\right) \operatorname{Pr}\left(\left|\mathrm{U}_{\mathrm{i}}\right|>\mathrm{M}_{\mathrm{n}}\right) \leq \mathrm{C}_{3} \mathrm{n}^{-\frac{\theta}{\theta-\mathrm{k}}}
$$

for some constant $\mathrm{C}_{3}>0$. Further, it yields $\max _{\left(\mathrm{k}_{1}, \mathrm{k}_{2}\right) \in \mathcal{T}\left(\omega_{\mathrm{h}}\right)}\left(\mathrm{k}_{2}-\mathrm{k}_{1}\right)^{1 / 2} \mathbb{E}\left\{\left|\mathrm{U}_{\mathrm{i}}\right| \mathbb{I}\left(\left|\mathrm{U}_{\mathrm{i}}\right|>\mathrm{M}_{\mathrm{n}}\right)\right\}=$ O(1). Thus, by Assumption 1 and Markov inequality, we have

$$
\begin{aligned}
P_{2} & \leq \operatorname{Pr}\left(\max _{\left(\mathrm{k}_{1}, \mathrm{k}_{2}\right) \in \mathcal{T}\left(\omega_{h}\right)}\left(\mathrm{k}_{2}-\mathrm{k}_{1}\right)^{-1 / 2} \sum_{\mathrm{i}=\mathrm{k}_{1}+1}^{\mathrm{k}_{2}}\left|\mathrm{U}_{\mathrm{i}}\right| \mathbb{I}\left(\left|\mathrm{U}_{\mathrm{i}}\right|>\mathrm{M}_{\mathrm{n}}\right)>\mathrm{x} / 4\right) \\
& \leq \operatorname{Pr}\left(\max _{\left(\mathrm{k}_{1}, \mathrm{k}_{2}\right) \in \mathcal{T}\left(\omega_{\mathrm{h}}\right)}\left(\mathrm{k}_{2}-\mathrm{k}_{1}\right)^{-1 / 2} \sum_{\mathrm{i}=\mathrm{k}_{1}+1}^{\mathrm{k}_{2}}\left|\mathrm{U}_{\mathrm{i}}\right|>\mathrm{x} / 2\left|\max _{\mathrm{i}}\right| \mathrm{U}_{\mathrm{i}} \mid>\mathrm{M}_{\mathrm{n}}\right) \operatorname{Pr}\left(\max _{\mathrm{i}}\left|\mathrm{U}_{\mathrm{i}}\right|>\mathrm{M}_{\mathrm{n}}\right) \\
& \leq \mathrm{n} \operatorname{Pr}\left(\left|\mathrm{U}_{\mathrm{i}}\right|^{\theta}>\mathrm{M}_{\mathrm{n}}^{\theta}\right) \leq \mathrm{C}_{4} \mathrm{n}^{1-\frac{\theta}{\theta-\mathrm{K}}}
\end{aligned}
$$

for some positive constant C_{4}. The lemma is proved.
A direct corollary of Lemma S.4 is the following lemma. Denote $T_{1 j}=\sqrt{\frac{n_{j} n_{j+1}}{n_{j}+n_{j+1}}} \Omega_{n}\left(\bar{S}_{j}^{O}-\right.$ $\left.\bar{S}_{j+1}^{O}\right)$ and $T_{2 j}=\sqrt{\frac{n_{j} n_{j+1}}{n_{j}+n_{j+1}}}\left(\bar{S}_{j}^{E}-\bar{S}_{j+1}^{E}\right)$.

Lemma S. 5 Suppose Assumptions 1-2 hold. For those $\mathrm{j} \in \mathcal{I}_{0}$, then we have as $\mathrm{n} \rightarrow \infty$,

$$
\operatorname{Pr}\left\{\left\|\mathrm{T}_{\mathrm{kj}}\right\|^{2}>\mathrm{C}\left(\log \mathrm{n}+\boldsymbol{w}_{h}^{-1} \delta_{\mathrm{h}}^{2}\right)\right\}=\mathrm{O}\left(\mathrm{n}^{1-\frac{\theta}{\theta-\mathrm{k}}}\right), \mathrm{k}=1,2
$$

for some large $C>0$ and any $0<\kappa<\theta-2 \eta^{-1}$.

Proof. We take $T_{2 j}$ as example. By Assumption 2, if there exists a true change point τ_{k}^{*}

of generality, assume $0 \leq \tau_{k}^{*}-\widehat{\tau}_{j-1} \leq \delta_{h}$. Then we note that

$$
\begin{aligned}
& \left\|T_{2 j}\right\|=\left\|\sqrt{\frac{n_{j} n_{j+1}}{n_{j}+n_{j+1}}}\left\{\frac{1}{n_{j}} \sum_{i=\hat{\tau}_{j}-1+1}^{\hat{\tau}_{j}} V_{i}-\frac{1}{n_{j+1}} \sum_{i=\hat{\tau}_{j}+1}^{\hat{\tau}_{i+1}} V_{i}+\frac{\tau_{k}^{*}-\hat{\tau}_{j}-1}{n_{j}}\left(\boldsymbol{\mu}_{k}^{*}-\boldsymbol{\mu}_{k+1}^{*}\right)\right\}\right\| \\
& \leq \sqrt{\frac{n_{j}}{n_{j}+n_{j+1}}}\left\|n_{j}^{-1 / 2} \sum_{i=\tau_{j-1}+1}^{\hat{\tau}_{j}} V_{i}\right\|+\sqrt{\frac{n_{j+1}}{n_{j}+n_{j+1}}}\left\|n_{j+1}^{-1 / 2} \sum_{i=\hat{\tau}_{j}+1}^{\hat{\tau}_{j+1}} V_{i}\right\|+\left\|\frac{\tau_{k}^{*}-\hat{\mathrm{T}}_{j}-1}{n_{j}}\left(\boldsymbol{\mu}_{k}^{*}-\boldsymbol{\mu}_{k+1}^{*}\right)\right\| \\
& \leq \sqrt{\frac{n_{j}}{n_{j}+n_{j+1}}}\left\|n_{j}^{-1 / 2} \sum_{i=\tau_{j}+1}^{\hat{\tau}_{j}} V_{i}\right\|+\sqrt{\frac{n_{j+1}}{n_{j}+n_{j+1}}}\left\|n_{j+1}^{-1 / 2} \sum_{i=\tau_{j}+1}^{\hat{\tau}_{j+1}} V_{i}\right\|+\omega_{h}^{-1 / 2} \delta_{i}\left\|\boldsymbol{\mu}_{k}^{*}-\boldsymbol{\mu}_{k+1}^{*}\right\| \\
& \leq 2 \max _{\left(\mathrm{k}_{1}, \mathrm{k}_{2}\right) \in \mathcal{T}\left(\omega_{h}\right)}\left(\mathrm{k}_{2}-\mathrm{k}_{1}\right)^{-1 / 2}\left\|\sum_{\mathrm{i}=\mathrm{k}_{1}+1}^{\mathrm{k}_{2}} \mathrm{~V}_{\mathrm{i}}\right\|+\boldsymbol{w}_{\mathrm{h}}^{-1 / 2} \delta_{\mathrm{h}}\left\|\boldsymbol{\mu}_{\mathrm{k}}^{*}-\boldsymbol{\mu}_{\mathrm{k}+1}^{*}\right\| .
\end{aligned}
$$

The assertion is immediately verified by using Lemma S.4.

Appendix D: Proof of Proposition 1

The proof of this proposition follows similarly to Theorem 2 in Barber et al. (2020) which shows that the Model-X knockoff selection procedure incurs an inflation of the false discovery rate that is proportional to the errors in estimating the distribution of each feature conditional on the remaining features. Fix >0 and for any threshold $\mathrm{t}>0$, define

$$
\mathrm{R}(\mathrm{t})=\frac{\sum_{\mathrm{j} \in \mathcal{I}_{0}} \mathbb{I}\left(\mathrm{~W}_{\mathrm{j}} \geq \mathrm{t}, \Delta_{\mathrm{j}} \leq\right)}{1+\sum_{\mathrm{j} \in \mathcal{I}_{0}} \mathbb{I}\left(\mathrm{~W}_{\mathrm{j}} \leq-\mathrm{t}\right)}
$$

Consider the event that $\mathcal{A}=\left\{\Delta:=\max _{\mathrm{j} \in \mathcal{I}_{0}} \Delta_{\mathrm{j}} \leq\right\}$. Furthermore, for a threshold rule
W $173 \psi T d \psi[(\quad)] T J \psi 0 \psi-755203 \psi f 38 \psi-21.669 \psi T(-203 \psi f 38 \psi-11978 \psi 0 \psi T d \psi[(T)] 73 \psi T d \psi[(\quad)] \psi T f 8$

It is crucial to get an upper bound for $\mathbb{E}\left\{R(\mathrm{~L}) \mid \mathcal{Z}_{\mathrm{O}}\right\}$. In what follows, all the " $\mathbb{E}(\cdot)$ " denote the expectations given \mathcal{Z}_{O}. We have

$$
\begin{align*}
\mathbb{E}\{R(\mathrm{~L})\} & =\sum_{\mathrm{j} \in \mathcal{I}_{0}} \mathbb{E}\left\{\frac{\mathbb{I}\left(\mathbf{W}_{\mathrm{j}} \geq \mathrm{L}, \Delta_{\mathrm{j}} \leq\right)}{1+\sum_{\mathrm{j} \in \mathcal{I}_{0}} \mathbb{I}\left(\mathrm{~W}_{\mathrm{j}} \leq-\mathrm{L}\right)}\right\} \\
& =\sum_{\mathrm{j} \in \mathcal{I}_{0}} \mathbb{E}\left\{\frac{\mathbb{I}\left(\mathbf{W}_{\mathrm{j}} \geq \mathrm{L}_{\mathrm{j}}, \Delta_{\mathrm{j}} \leq\right)}{1+\sum_{\mathrm{k} \in \mathcal{I}_{0}, \mathrm{k} \neq \mathrm{j}} \mathbb{I}\left(\mathbf{W}_{\mathrm{k}} \leq-\mathrm{L}_{\mathrm{j}}\right)}\right\} \\
& =\sum_{\mathrm{j} \in \mathcal{I}_{0}} \mathbb{E}\left[\mathbb{E}\left\{\left.\frac{\mathbb{I}\left(\mathbf{W}_{\mathrm{j}} \geq \mathrm{L}_{\mathrm{j}}, \Delta_{\mathrm{j}} \leq\right)}{1+\sum_{\mathrm{k} \in \mathcal{I}_{0}, \mathrm{k} \neq \mathrm{j}} \mathbb{I}\left(\mathbf{W}_{\mathrm{k}} \leq-\mathrm{L}_{\mathrm{j}}\right)}| | \mathbf{W}_{\mathrm{j}} \right\rvert\,, \mathbf{W}_{-\mathrm{j}}\right\}\right] \\
& =\sum_{\mathrm{j} \in \mathcal{I}_{0}} \mathbb{E}\left\{\frac{\operatorname{Pr}\left(\mathbf{W}_{\mathrm{j}}>0| | \mathbf{W}_{\mathrm{j}} \mid, \mathbf{W}_{\mathrm{j}-1}, \mathbf{W}_{\mathrm{j}+1}, \mathcal{Z}_{\mathrm{O}}\right) \mathbb{I}\left(\left|\mathbf{W}_{\mathrm{j}}\right| \geq \mathrm{L}_{\mathrm{j}}, \Delta_{\mathrm{j}} \leq\right)}{1+\sum_{\mathrm{k} \in \mathcal{I}_{0}, \mathrm{k} \neq \mathrm{j}} \mathbb{I}\left(\mathbf{W}_{\mathrm{k}} \leq-\mathrm{L}_{\mathrm{j}}\right)}\right\}, \tag{S.1}
\end{align*}
$$

where the last step holds since the only unknown is the sign of W_{j} after conditioning on $\left(\left|\mathrm{W}_{\mathrm{j}}\right|, \mathrm{W}_{\mathrm{j}-1}, \mathrm{~W}_{\mathrm{j}+1}\right)$. By definition of Δ_{j}, we have $\operatorname{Pr}\left(\mathrm{W}_{\mathrm{j}}>0| | \mathrm{W}_{\mathrm{j}} \mid, \mathrm{W}_{\mathrm{j}-1}, \mathrm{~W}_{\mathrm{j}+1}, \mathcal{Z}_{\mathrm{O}}\right) \leq 1 / 2+$ Δ_{j}.

Hence,
$\mathbb{E}\{\mathrm{R}(\mathrm{L})\}$

$$
\begin{aligned}
& \leq \sum_{j \in \mathcal{I}_{0}} \mathbb{E}\left\{\frac{\left(\frac{1}{2}+\Delta_{\mathrm{j}}\right) \mathbb{I}\left(\left|\mathbf{W}_{\mathrm{j}}\right| \geq \mathrm{L}_{\mathrm{j}}, \Delta_{\mathrm{j}} \leq\right)}{1+\sum_{\mathrm{k} \in \mathcal{I}_{0}, \mathrm{k} \neq \mathrm{j}} \mathbb{I}\left(\mathbf{W}_{\mathrm{k}} \leq-\mathrm{L}_{\mathrm{j}}\right)}\right\} \\
& \leq\left(\frac{1}{2}+\right)\left[\sum_{\mathrm{j} \in \mathcal{I}_{0}} \mathbb{E}\left\{\frac{\mathbb{I}\left(\mathbf{W}_{\mathrm{j}} \geq \mathrm{L}_{\mathrm{j}}, \Delta_{\mathrm{j}} \leq\right)}{1+\sum_{\mathrm{k} \in \mathcal{I}_{0}, \mathrm{k} \neq \mathrm{j}} \mathbb{I}\left(\mathbf{W}_{\mathrm{k}} \leq-\mathrm{L}_{\mathrm{j}}\right)}\right\}+\sum_{\mathrm{j} \in \mathcal{I}_{0}} \mathbb{E}\left\{\frac{\mathbb{I}\left(\mathbf{W}_{\mathrm{j}} \leq-\mathrm{L}_{\mathrm{j}}\right)}{1+\sum_{\mathrm{k} \in \mathcal{I}_{0}, \mathrm{k} \neq \mathrm{j}} \mathbb{I}\left(\mathbf{W}_{\mathrm{k}} \leq-\mathrm{L}_{\mathrm{j}}\right)}\right\}\right] \\
& =\left(\frac{1}{2}+\right)\left[\mathbb{E}\{R(\mathrm{~L})\}+\sum_{\mathrm{j} \in \mathcal{I}_{0}} \mathbb{E}\left\{\frac{\mathbb{I}\left(\mathbf{W}_{\mathrm{j}} \leq-\mathrm{L}_{\mathrm{j}}\right)}{1+\sum_{\mathrm{k} \in \mathcal{I}_{0}, \mathrm{k} \neq \mathrm{j}} \mathbb{I}\left(\mathbf{W}_{\mathrm{k}} \leq-\mathrm{L}_{\mathrm{j}}\right)}\right\}\right]
\end{aligned}
$$

Finally, the sum in the last expression can be simplified as: if for all null $j, W_{j}>-L_{j}$, then the sum is equal to zero, while otherwise,

$$
\sum_{j \in \mathcal{I}_{0}} \mathbb{E}\left\{\frac{\mathbb{I}\left(W_{j} \leq-L_{j}\right)}{1+\sum_{k \in \mathcal{I}_{0}, k \neq j} \mathbb{I}\left(W_{k} \leq-L_{j}\right)}\right\}=\sum_{j \in \mathcal{I}_{0}} \mathbb{E}\left\{\frac{\mathbb{I}\left(W_{j} \leq-L_{j}\right)}{1+\sum_{k \in \mathcal{I}_{0}, k \neq j} \mathbb{I}\left(W_{k} \leq-L_{k}\right)}\right\}=1
$$

where the first step comes from the fact: for any j, k, if $W_{j} \leq-\min \left(L_{j}, L_{k}\right)$ and $W_{k} \leq$ $-\min \left(L_{j}, L_{k}\right)$, then $L_{j}=L_{k}$; see Barber et al. (2020).

Accordingly, we have

$$
\mathbb{E}\{\mathrm{R}(\mathrm{~L})\} \leq \frac{1 / 2+}{1 / 2-} \leq 1+5
$$

Consequently, the assertion of this proposition holds.

A ppendix E: Proof of Lemmas A.1-A. 2

Note that both the candidate change-points set $\widehat{\mathcal{T}}_{p_{n}}$ and the statistics W_{j} are dependent with \mathcal{Z}_{O}. In fact, we derive the following two lemmas on the basis of conditional probability on \mathcal{Z}_{O}. To be specific, conditional on $\mathcal{Z}_{\mathrm{O}}, \widehat{\mathcal{T}}_{\mathrm{p}_{\mathrm{n}}}$ is fixed as well as $\left(\overline{\mathrm{S}}_{\mathrm{j}}^{\mathrm{O}}-\overline{\mathrm{S}}_{\mathrm{j}+1}^{\mathrm{O}}\right)^{\top} \Omega_{\mathrm{n}}$. Due to the independence between \mathcal{Z}_{E} and \mathcal{Z}_{O}, the standard results for independent sum such as Lemmas S.2 S.3 can be applied for $\bar{S}_{\mathrm{j}}^{\mathrm{E}}-\overline{\mathrm{S}}_{\mathrm{j}+1}^{\mathrm{E}}$ in the following arguments.

Proof of Lemma A. 1

Define $\boldsymbol{\nu}_{\mathrm{n}}=\left\{\mathbf{C}\left(\log \mathbf{n}+\boldsymbol{w}_{\mathrm{n}}^{-1} \boldsymbol{\delta}_{\mathrm{n}}^{2}\right)\right\}^{1 / 2}$ for a large $\mathbf{C}>0$ specified in Lemma S.5. Let $\mathcal{A}_{\mathrm{n}}=\{\mathbf{u} \in$ $\left.\mathbb{R}^{\mathrm{d}}:\|\mathbf{u}\| \geq \mathrm{t} / \mathrm{v}_{\mathrm{n}}\right\}$. Then, we observe that

$$
\frac{\mathrm{G}(\mathrm{t})}{\mathrm{G}_{-}(\mathrm{t})}-1=\frac{\sum_{\mathrm{j} \in \mathcal{I}_{0}}\left\{\operatorname{Pr}\left(\mathbf{T}_{1 \mathrm{j}}^{\top} \mathbf{T}_{2 \mathrm{j}} \geq \mathrm{t} \mid \mathcal{Z}_{\mathrm{O}}\right)-\operatorname{Pr}\left(\mathbf{T}_{1 \mathrm{j}}^{\top} \mathbf{T}_{2 \mathrm{j}} \leq-\mathrm{t} \mid \mathcal{Z}_{\mathrm{O}}\right)\right\}}{\mathrm{p}_{0} \mathbf{G}_{-}(\mathrm{t})}
$$

Conditional on \mathcal{Z}_{O}, we have two cases. Firstly, for the case $\mathrm{T}_{1 \mathrm{j}} \in \mathcal{A}_{\mathrm{n}}^{\mathrm{c}}$, by Lemma S.5 we obtain that

$$
\frac{\mathrm{G}(\mathrm{t})}{\mathrm{G}_{-}(\mathrm{t})}-1 \leq \frac{\sum_{\mathrm{j} \in \mathcal{I}_{0}} \operatorname{Pr}\left(\mathrm{~T}_{1 \mathrm{j}}^{\top} \mathrm{T}_{2 \mathrm{j}} \geq \mathrm{t} \mid \mathcal{Z}_{\mathrm{O}}\right)}{\mathrm{p}_{0} \mathrm{G}_{-}(\mathrm{t})} \leq \frac{\sum_{\mathrm{j} \in \mathcal{I}_{0}} \operatorname{Pr}\left(\left\|\mathrm{~T}_{2 \mathrm{j}}\right\|>\nu_{\mathrm{n}} \mid \mathcal{Z}_{\mathrm{O}}\right)}{\mathrm{p}_{0} / \mathrm{p}_{\mathrm{n}}}=\mathrm{O}_{\mathrm{p}}\left(\mathrm{n}^{1-\frac{\theta}{\theta-\mathrm{K}}} \mathrm{p}_{\mathrm{n}}\right)
$$

where the first inequality is due to $t \leq G_{-}^{-1}\left(1 / p_{n}\right)$, and thus we claim that $\frac{G(t)}{G_{-}(t)}-1=$ $O_{p}\left(n^{1-\frac{\theta}{\theta-K}} p_{n}\right)$.

Next, we consider the case $\mathrm{T}_{1 \mathrm{j}} \in \mathcal{A}_{\mathrm{n}}$. We introduce a new sequence of independent random variables $\left\{B_{i}\right\}$ defined as follows:

$$
B_{i}= \begin{cases}\frac{\sqrt{n_{j} n_{j+1}}}{n_{j} \sqrt{n_{j}+n_{j+1}}} V_{i}, & \widehat{\tau}_{j-1}<i \leq \hat{\tau}_{j} \\ -\frac{\sqrt{n_{j} n_{j+1}}}{n_{j+1} \sqrt{n_{j}+n_{j+1}}} V_{i}, & \widehat{\tau}_{j}<i \leq \hat{\tau}_{j+1}\end{cases}
$$

By Lemma S.3, we firstly verify that for any given $\mathrm{u} \in \mathcal{A}_{\mathrm{n}}$,

$$
\frac{\operatorname{Pr}\left\{\sum_{i=\tau_{j-1}+1}^{\tau_{j+1}} u^{\top} \mathbf{B}_{\mathrm{i}} \geq \mathrm{t} \mid \mathcal{Z}_{\mathrm{O}}\right\}}{1-\Phi(\mathrm{t} / \sqrt{ }}
$$

Proof of Lemma A. 2

We only show the validity of the first formula and the second one hold similarly. Note that the $G(t)$ is a deceasing and continuous function. Let $Z_{0}<z_{1}<\cdots<Z_{d_{n}} \leq 1$ and $t_{i}=G^{-1}\left(z_{i}\right)$, where $z_{0}=a_{n} / p_{n}, z_{i}=a_{n} / p_{n}+a_{n} i^{\delta} / p_{n}, d_{n}=\left[\left\{\left(p_{n}-a_{n}\right) / a_{n}\right\}^{1 / \delta}\right]$ with $\delta>1$. Note that $\mathbf{G}\left(\mathrm{t}_{\mathrm{i}}\right) / \mathrm{G}\left(\mathrm{t}_{\mathrm{i}+1}\right)=1+\mathbf{o}(1)$ uniformly in \mathbf{i}. It is therefore enough to obtain the convergence rate of

$$
\mathrm{D}_{\mathrm{n}}=\sup _{0 \leq \mathrm{i} \leq \mathrm{d}_{\mathrm{n}}}\left|\frac{\sum_{\mathrm{j} \in \mathcal{I}_{0}}\left\{\mathbb{I}\left(\mathrm{~W}_{\mathrm{j}} \geq \mathrm{t}_{\mathrm{i}}\right)-\operatorname{Pr}\left(\mathrm{W}_{\mathrm{j}} \geq \mathrm{t}_{\mathrm{i}} \mid \mathcal{Z}_{\mathrm{o}}\right)\right\}}{\mathrm{p}_{0} \mathrm{G}\left(\mathrm{t}_{\mathrm{i}}\right)}\right|
$$

Define $\mathcal{S}_{\mathrm{j}}=\left\{\mathrm{k} \in \mathcal{I}_{0}: \mathrm{W}_{\mathrm{k}}\right.$ is dependent with $\left.\mathrm{W}_{\mathrm{j}}\right\}$ and further

$$
\mathrm{D}(\mathrm{t})=\mathbb{E}\left[\left\{\sum_{\mathrm{j} \in \mathcal{I}_{0}} \mathbb{I}\left(\mathrm{~W}_{\mathrm{j}} \geq \mathrm{t}\right)-\operatorname{Pr}\left(\mathrm{W}_{\mathrm{j}} \geq \mathrm{t} \mid \mathcal{Z}_{\mathrm{O}}\right)\right\}^{2} \mid \mathcal{Z}_{\mathrm{O}}\right]
$$

It is noted that
$\mathrm{D}(\mathrm{t})=\sum_{\mathrm{j} \in \mathcal{I}_{0}} \sum_{\mathrm{k} \in \mathcal{S}_{\mathrm{j}}} \mathbb{E}\left[\left\{\mathbb{I}\left(\mathbf{W}_{\mathrm{j}} \geq \mathrm{t}\right)-\operatorname{Pr}\left(\mathbf{W}_{\mathrm{j}} \geq \mathrm{t} \mid \mathcal{Z}_{\mathrm{O}}\right)\right\}\left\{\mathbb{I}\left(\mathbf{W}_{\mathrm{k}} \geq \mathrm{t}\right)-\operatorname{Pr}\left(\mathbf{W}_{\mathrm{k}} \geq \mathrm{t} \mid \mathcal{Z}_{\mathrm{O}}\right)\right\} \mid \mathcal{Z}_{\mathrm{O}}\right] \leq 2 \mathbf{p}_{0} \mathbf{G}(\mathrm{t})$.
Note that conditional on $\mathcal{Z}_{\mathrm{O}}, \mathrm{W}_{1}, \ldots, \mathrm{~W}_{\mathrm{p}_{\mathrm{n}}}$ is a 1-dependent sequence and so is $\mathbb{I}\left(\mathrm{W}_{\mathrm{j}} \geq \mathrm{t}_{\mathrm{i}}\right)$.
We can get

$$
\begin{aligned}
\operatorname{Pr}\left(D_{\mathrm{n}} \geq\right) & \leq \sum_{\mathrm{i}=0}^{\mathrm{d}_{\mathrm{n}}} \operatorname{Pr}\left(\left|\frac{\sum_{\mathrm{j} \in \mathcal{I}_{0}}\left\{\mathbb{I}\left(\mathrm{~W}_{\mathrm{j}} \geq \mathrm{t}_{\mathrm{i}}\right)-\operatorname{Pr}\left(\mathrm{W}_{\mathrm{j}} \geq \mathrm{t}_{\mathrm{i}} \mid \mathcal{Z}_{\mathrm{O}}\right)\right\}}{\operatorname{pog}_{0}\left(\mathrm{t}_{\mathrm{i}}\right)}\right| \geq\right) \\
& \leq \frac{1}{2} \sum_{\mathrm{i}=0}^{d_{n}} \frac{1}{\mathrm{p}_{0}^{2} \mathbf{G}^{2}\left(\mathrm{t}_{\mathrm{i}}\right)} \mathrm{D}\left(\mathrm{t}_{\mathrm{i}}\right) \leq \frac{2}{2} \sum_{\mathrm{i}=0}^{d_{n}} \frac{1}{\mathrm{p}_{0} \mathbf{G}\left(\mathrm{t}_{\mathrm{i}}\right)}
\end{aligned}
$$

Moreover, observe that

$$
\begin{aligned}
& \sum_{i=0}^{d_{n}} \frac{1}{p_{0} G\left(t_{i}\right)}=\frac{p_{n}}{p_{0}}\left(\frac{1}{a_{n}}+\sum_{i=1}^{d_{n}} \frac{1}{a_{n}+a_{n} i^{\delta}}\right) \\
\leq & c\left(\frac{1}{a_{n}}+a_{n}^{-1} \sum_{i=1}^{d_{n}} \frac{1}{1+i^{\delta}}\right) \leq a_{n}^{-1}\{1+O(1)\} .
\end{aligned}
$$

In sum, we can have $\operatorname{Pr}\left(\mathrm{D}_{\mathrm{n}} \geq\right) \rightarrow 0$ provided that $\mathrm{a}_{\mathrm{n}} \rightarrow \infty$.

A ppendix F: Proof of Theorems 1-3 and Corollaries 1-2

Proof of Corollary 1

(i) By Assumption 2, we know that the event that $\left|\mathcal{I}_{1}\right|=K_{n}$ and for each $\widehat{\mathrm{T}}_{\mathrm{j}} \in \mathcal{I}_{1},\left|\hat{\mathrm{~T}}_{\mathrm{j}}-\tau_{\mathrm{j}}^{*}\right| \leq$ δ_{n} occur with probability approaching one as $\mathrm{n} \rightarrow \infty$. Therefore, in what follows we always implicitly work with the occurrence of this event. From the proof of Theorem 1, we know that L. v_{n}^{2}. Hence

$$
\begin{aligned}
& \operatorname{Pr}\left(\mathbf{W}_{\mathrm{j}}<\mathrm{L}, \text { for some } \widehat{\mathrm{T}}_{\mathrm{j}} \in \mathcal{I}_{1} \mid \mathcal{Z}_{\mathrm{O}}\right) \\
& \leq \mathrm{K}_{\mathrm{n}} \operatorname{Pr}\left(\left.\frac{\mathrm{n}_{\mathrm{j}} \mathrm{n}_{\mathrm{j}+1}}{\mathrm{n}_{\mathrm{j}}+\mathrm{n}_{\mathrm{j}+1}}\left(\overline{\mathrm{~S}}_{\mathrm{j}}^{\mathrm{O}}-\overline{\mathrm{S}}_{\mathrm{j}+1}^{\mathrm{O}}\right)^{\top} \Omega_{\mathrm{n}}\left(\overline{\mathrm{~S}}_{\mathrm{j}}^{\mathrm{E}}-\overline{\mathrm{S}}_{\mathrm{j}+1}^{\mathrm{E}}\right)<\mathrm{L} \right\rvert\, \mathcal{Z}_{\mathrm{O}}\right) \\
& \leq \mathrm{K}_{\mathrm{n}} \operatorname{Pr}\left(\left.\frac{\mathrm{n}_{\mathrm{j}} \mathrm{n}_{\mathrm{j}+1}}{\mathrm{n}_{\mathrm{j}}+\mathrm{n}_{\mathrm{j}+1}}\left(\overline{\mathrm{U}}_{\mathrm{j}}-\overline{\mathrm{U}}_{\mathrm{j}+1}\right)^{\top} \Omega_{\mathrm{n}}\left(\overline{\mathrm{~V}}_{\mathrm{j}}-\overline{\mathrm{V}}_{\mathrm{j}+1}\right)+\mathrm{O}_{\mathrm{p}}^{+}\left(\boldsymbol{\omega}_{\mathrm{h}_{1 \leq \mathrm{k} \leq \mathrm{K}}} \min _{\mathrm{n}}\left\|\boldsymbol{\mu}_{\mathrm{k}+1}^{*}-\boldsymbol{\mu}_{\mathrm{k}}^{*}\right\|^{2}\right)<\mathrm{L} \right\rvert\, \mathcal{Z}_{\mathrm{O}}\right) \\
& \leq \mathrm{K}_{\mathrm{n}} \operatorname{Pr}\left(\mathrm { O } _ { \mathrm { p } } ^ { + } \left(\boldsymbol{\omega}_{\left.\left.h_{1 \leq \mathrm{k} \leq \mathrm{K}_{\mathrm{n}}} \min _{\mathrm{k}+1}-\boldsymbol{\mu}_{\mathrm{k}}^{*} \|^{2}\right) \leq \mathrm{L}\right), ~\left(\boldsymbol{\mu}_{\mathrm{N}}^{*}\right)}\right.\right. \\
& +K_{n} \operatorname{Pr}\left(\left.\frac{n_{j} n_{j+1}}{n_{j}+n_{j+1}}\left(\bar{U}_{j}-\bar{U}_{j+1}\right)^{\top} \Omega_{\mathrm{n}}\left(\overline{\mathrm{~V}}_{\mathrm{j}}-\overline{\mathrm{V}}_{\mathrm{j}+1}\right)>\mathrm{O}_{\mathrm{p}}^{+}\left(\omega_{h_{1 \leq \mathrm{K} \leq \mathrm{K}}} \min _{\mathrm{n}}\left\|\boldsymbol{\mu}_{\mathrm{k}+1}^{*}-\boldsymbol{\mu}_{\mathrm{k}}^{*}\right\|^{2}\right) \right\rvert\, \mathcal{Z}_{\mathrm{O}}\right) \rightarrow 0
\end{aligned}
$$

in probability, where we use Lemma S.4. The result immediately holds.
(ii) From (i), we have $\lim _{n \rightarrow \infty} \operatorname{Pr}\left(\mathcal{M} \supseteq \mathcal{I}_{1}\right)=1$. Here, we only need to prove $\lim _{n \rightarrow \infty} \operatorname{Pr}(\mathcal{M} \subseteq$ $\left.\mathcal{I}_{1}\right)=1$, which is equivalent to show that $\lim _{n \rightarrow \infty} \operatorname{Pr}\left(\mathcal{M} \cap \mathcal{I}_{0}=\emptyset\right)=1$.

It is noted that

$$
\operatorname{Pr}\left(W_{j} \geq L, \text { for some } j \in \mathcal{I}_{0} \mid \mathcal{Z}_{0}\right) \leq \sum_{j \in \mathcal{I}_{0}} \operatorname{Pr}\left(W_{j} \geq L \mid \mathcal{Z}_{0}\right) \sim p_{0} \frac{\alpha \Psi_{\mathrm{n}}}{p_{\mathrm{n}}} \cdot \mathrm{~K}_{\mathrm{n}} \alpha
$$

By using the condition $\mathrm{K}_{\mathrm{n}} \boldsymbol{\alpha} \rightarrow 0$, the corollary is proved.

Proof of Theorem 1

Following the notations in Section 2, assume $\hat{\tau}_{j} \in \mathcal{M}$ is an informative point and τ_{j}^{*} is its corresponding true change-point such that $\left|\hat{\mathrm{j}}_{\mathrm{j}}-\tau_{j}^{*}\right| \leq \boldsymbol{\delta}_{\mathrm{h}}$ by Assumption 2. Note that $\widetilde{\tau}_{k} \in \widetilde{\mathcal{M}}$ is the selected one such that $\left|\widetilde{\tau}_{k}-\widehat{\tau}_{j}\right|=\min _{\widetilde{\boldsymbol{u}}_{\in} \in \widetilde{\mathcal{T}}_{n}}\left|\widetilde{\tau}_{\boldsymbol{u}}-\widehat{\tau}_{j}\right|$. Because \mathcal{M} and $\widetilde{\mathcal{M}}$ have
the same cardinality, we only need to show that $\widetilde{\mathbb{q}}_{\mathrm{k}} \in \mathcal{I}_{1}\left(\widetilde{\mathcal{T}}_{\mathrm{p}_{\mathrm{n}}}\right)$, say

$$
\begin{equation*}
\left|\widetilde{\tau}_{k}-\tau_{j 0}^{*}\right|=\min _{\widetilde{\tau}_{1} \in \widetilde{\mathcal{T}}_{\mathrm{p}_{\mathrm{n}}}}\left|\widetilde{\tau}_{\mathrm{u}}-\tau_{\mathrm{j}}^{*}\right| \tag{S.2}
\end{equation*}
$$

(ii) Let $\mathrm{a}_{\mathrm{n}}=(\mathrm{C} \log \mathrm{n})^{1 / 2}$, where $\mathrm{C}>0$ is specified in Lemma S.5. Define $\mathcal{B}_{\mathrm{n}}=\left\{\mathrm{u} \in \mathbb{R}^{\mathrm{d}}\right.$: $\left.\|\mathbf{u}\| \geq \mathrm{t} / \mathrm{a}_{\mathrm{n}}\right\}$. Let $\mathcal{C}=\bigcap_{\mathrm{j} \in \mathcal{I}_{0}}\left\{\left|\tilde{W}_{\mathrm{j}}\right| \leq \lambda_{\mathrm{j}}\right\}$, where λ_{j} satisfies $\operatorname{Pr}\left(\left|\tilde{W}_{\mathrm{j}}\right|>\lambda_{\mathrm{j}} \mid \mathcal{Z}_{\mathrm{O}}\right)=\mathrm{b}_{\mathrm{n}}$ and b_{n} be a sequence satisfies the conditions that $\mathbf{b}_{\mathrm{h}} \rightarrow 0, \mathrm{p}_{\mathrm{n}} \mathbf{b}_{\mathrm{h}} \rightarrow 0$ and $\mathrm{n}^{\mathrm{n} / 2} \mathbf{b}_{n} \rightarrow \infty$. According to the condition $p_{n} n^{-\eta / 2} \rightarrow 0$ in the theorem, such b_{n} is well defined. By the definition of \tilde{W}_{j}, we know that $\mathbb{E}\left(\tilde{W}_{\mathrm{j}}\right)=0$ for all $\widehat{\mathrm{T}}_{\mathrm{j}} \in \mathcal{I}_{0}$. Moreover, by Lemma S.5, we have λ_{j}. a_{n}^{2} uniformly in \mathbf{j}.

According to Proposition 1, we have

$$
\begin{aligned}
\operatorname{Pr}\left(\max _{\mathrm{j} \in \mathcal{I}_{0}} \Delta_{\mathrm{j}}>\mid \mathcal{Z}_{\mathrm{O}}\right) & =\operatorname{Pr}\left(\max _{\mathrm{j} \in \mathcal{I}_{0}} \Delta_{\mathrm{j}}>\mid \mathcal{C}, \mathcal{Z}_{\mathrm{O}}\right) \operatorname{Pr}\left(\mathcal{C} \mid \mathcal{Z}_{\mathrm{O}}\right)+\operatorname{Pr}\left(\max _{\mathrm{j} \in \mathcal{I}_{0}} \Delta_{\mathrm{j}}>, \mathcal{C}^{\mathrm{c}} \mid \mathcal{Z}_{\mathrm{O}}\right) \\
& \leq \operatorname{Pr}\left(\max _{\mathrm{j} \in \mathcal{I}_{0}} \Delta_{\mathrm{j}}>\mid \mathcal{C}, \mathcal{Z}_{\mathrm{O}}\right)+\operatorname{Pr}\left(\mathcal{C}^{\mathrm{c}} \mid \mathcal{Z}_{\mathrm{O}}\right):=\mathrm{A}_{1}+\mathrm{A}_{2} .
\end{aligned}
$$

By the definition of $b_{p}, A_{2}=o_{p}(1)$. It remains to handle A_{1}.
Notice that conditional on \mathcal{C},

$$
\begin{equation*}
\max _{\mathrm{j} \in \mathcal{I}_{0}} \Delta_{\mathrm{j}} \leq \max _{\mathrm{j} \in \mathcal{I}_{0}} \sup _{0 \leq \mathrm{t} \leq \lambda_{\mathrm{j}}}\left|\mathrm{f}_{\mathrm{j}}(-\mathrm{t}) / \mathrm{f}_{\mathrm{j}}(\mathrm{t})-1\right|, \tag{S.3}
\end{equation*}
$$

where $f_{j}(\cdot)$ is the density of \tilde{W}_{j} conditional on \mathcal{Z}_{0}. It remains to prove that the right-hand side of (S.3) goes to zero as $\mathrm{n} \rightarrow \infty$.

Denote $\tilde{T}_{1 j}=\sqrt{\frac{n_{j} n_{j+1}}{n_{j}+n_{j+1}}} \Omega_{\mathrm{n}}\left(\tilde{S}_{\mathrm{Lj}}^{O}-\tilde{S}_{\mathrm{Rj}}^{O}\right)=\mathrm{u}$ given \mathcal{Z}_{O}. In a similar way to the proof of Lemma A.1, we consider two cases for u. As to the case $u \in \mathcal{B}_{n}^{c}, \max _{j \in \mathcal{I}_{0}} \Delta_{j}=$ $\mathrm{O}_{\mathrm{p}}\left\{\left(\mathrm{n}^{\eta / 2} \mathrm{~b}_{\mathrm{n}}\right)^{-1}\right\}$ by the definition of λ_{j} and $0 \leq \mathrm{t} \leq \lambda_{\mathrm{j}}$. On the other hand, we consider the case $\mathbf{u} \in \mathcal{B}_{\mathrm{n}}$. Then, for $\mathrm{j} \in \mathcal{I}_{0}$ by Lemma S.3, we have

$$
\mathbf{f}_{\mathrm{j}}(\mathrm{t})=\{\tilde{\Phi}(\mathrm{t} / \mathbf{s})-\tilde{\Phi}(\mathrm{t} / \mathrm{s}-)\}\left\{1+\mathbf{o}_{\mathbf{p}}(1)\right\}=\frac{1}{\mathbf{s}} \boldsymbol{\varphi}(\mathrm{t} / \mathrm{s})\left\{1+\mathbf{o}_{\mathbf{p}}(1)\right\}
$$

where $\mathbf{s}=\sqrt{\mathbf{u}^{\top} \boldsymbol{\Sigma} \mathbf{u}}$. Similarly, we also have $\mathbf{f}_{\mathbf{j}}(-\mathbf{t})=\frac{1}{\mathbf{s}} \boldsymbol{\varphi}(-\mathbf{t} / \mathbf{s})\left\{1+\mathbf{o}_{\mathbf{p}}(1)\right\}$, which yields that the right-hand side of (S.3) goes to zero since $\varphi(-\mathrm{t} / \mathrm{s})=\varphi(\mathrm{t} / \mathrm{s})$ and $\varphi(\mathrm{t} / \mathrm{s})$ is bounded. Then, the result (ii) in the theorem holds.

Appendix G: Additional simulation results

Selection of p_{n} and ω_{h}

Table S1 reports the FDR, TPR and \widehat{K} of MOPS in conjunction with OP, PELT and WBS detection algorithms with different p_{n} and ω_{h} under Example I. We consider the error from $\mathrm{N}(0,1)$ and fix $\mathrm{n}=4096, \mathrm{~K}_{\mathrm{n}}=15$ and $\mathrm{SNR}=0.5$. We observe that different values of $c \in(1,2]$ for $p_{n}=\left\lfloor\mathrm{cn}^{2 / 5}\right\rfloor$ and $\eta \in[0.3,0.5]$ for $\omega_{h}=\mathrm{n}^{\eta}$ present similar results and their FDRs are not significantly different. Thus we recommend $p_{n}=\left\lfloor 2 n^{2 / 5}\right\rfloor$ and $\omega_{h}=\min \left(\left\lfloor n^{0.5}\right\rfloor, 60\right)$ in the simulation studies.

Table S1: FDR(\%), TPR(\%) and \widehat{K} of MOPS in conjunction with OP, PELT and WBS detection algorithms when error follows $N(0,1), n=4096, K_{n}=15$ and $S N R=0.5$ under Example I. The p_{n} is chosen as $p_{n}=\left\lfloor\mathrm{cn}^{2 / 5}\right\rfloor$ with $\mathrm{c}=1.2,1.5,2$ and $\omega_{h}=n^{\eta}$ with $\eta=0.3,0.4,0.5$.

p_{n}	Method	$\eta=0.3$			$\eta=0.4$			$\eta=0.5$		
		FDR	TPR	K	FDR	TPR	K	FDR	TPR	K
$1.2 \mathrm{n}^{2 / 5}$	M-OP	19.8	91.3	17.7	19.1	92.7	17.9	18.9	95.2	18.3
	M-PELT	19.5	91.2	17.5	19.4	93.1	18.0	19.9	95.7	18.8
	M-WBS	16.9	91.8	17.3	17.2	92.3	17.5	19.5	95.3	18.5
$1.5 \mathrm{n}^{2 / 5}$	M-OP	18.6	90.0	17.2	21.0	92.9	18.6	20.5	93.7	18.4
	M-PELT	16.6	89.3	16.7	20.8	93.1	18.6	21.2	94.1	18.9
	M-WBS	17.3	85.9	16.3	18.3	86.3	16.6	16.4	90.9	17.0
$2 \mathrm{n}^{2 / 5}$	M-OP	20.5	79.5	17.4	19.5	82.1	16.5	20.4	85.3	17.0
	M-PELT	20.2	80.3	17.1	20.0	82.7	16.7	19.7	85.5	17.0
	M-WBS	19.6	76.7	15.9	17.8	77.8	15.8	18.1	83.1	16.5

Next, we investigate the performance of our methods in the case that $p_{n}>2 n^{2 / 5}$. Figure S1 presents the FDR and TPR curves of MOPS, R-MOPS and M-MOPS when p_{n} varies in $\left(2 n^{2 / 5}, n / 10\right)$ and the WBS algorithm is employed under Example I. Here we fix $\omega_{h}=10$ and the true change-point number $\mathbf{K}_{\mathrm{n}}=30$ and consider the error comes from $\mathbf{N}(0,1)$ and standardized $\boldsymbol{\chi}^{2}(3)$. The FDR values of MOPS vary in an acceptable range of the target level
no matter the choice of p_{n} under normal error, but are slightly distorted under standardized $\chi^{2}(3)$ error. The R-MOPS is able to improve TPR and yield smaller FDR levels than MOPS due to the use of full sample information. We also observe that the M-MOPS leads to more conservative FDR levels and smaller TPR than R-MOPS because of only using half of the observations around each candidate point. That is consistent with our theoretical analysis in Proposition 1 and Theorem 3. Similar results can also be found in Figure S2,

Figure S1: FDR and TPR curves against $p_{n} \in\left(2 n^{2 / 5}, n / 10\right)$ of MOPS, R-MOPS and M-MOPS in conjunction with WBS algorithm when $n=4096, K_{n}=30$ and $S N R=1$ under Example I. The ω_{h} is fixed as 10 .

Figure S2 shows the FDR and TPR curves against ω_{h} of the MOPS, R-MOPS and MMOPS in conjunction with WBS algorithm when $\mathrm{n}=4096, \mathrm{~K}_{\mathrm{n}}=10$ and p_{n} is fixed as $\left\lfloor 2 \mathrm{n}^{2 / 5}\right\rfloor$ under Example I. It implies that all the procedures are not sensitive to the choice of ω_{h} in terms of FDR control. Meanwhile, a large ω_{h} could improve the detection power due
to more observations in each segment.

Figure S2: FDR and TPR curves against ω_{h} of MOPS, R-MOPS and M-MOPS in conjunction with WBS algorithm when $n=4096, K_{n}=10$ and $S N R=0.7$ under Example I. The p_{n} is fixed as $\left\lfloor 2 n^{2 / 5}\right\rfloor$.

Comparison under other models

Three other MCP models are considered, reflecting changes in different aspects such as the location and scale. Table S 2 gives a summary of all three simulated models along with the associated statistics \bar{S}_{j}^{O} in constructing W_{j}.

Under multivariate mean change model (Example III), we examine the performance of the refined MOPS in conjunction with the OP and PELT algorithms. For simplicity, each dimension of the signals $\boldsymbol{\mu}_{\mathrm{i}}$'s is set as the same as the signals μ_{i} 's in Example I. Two scenarios for the error distribution are considered: (i) $\varepsilon_{\mathrm{i}} \stackrel{\mathrm{iid}}{\sim} \mathrm{N}(0, \Sigma)$ with $\Sigma=\left(0.5^{|\mathrm{i}-\mathrm{j}|}\right) \mathrm{d} \times \mathrm{d}$;

Table S2: Preview of simulated models and the sample mean \bar{S}_{j}^{O} of the j-th segment for the odd part. Change-points $\hat{\tau}_{j}$'s are estimated on the basis of \mathcal{Z}_{0}.

NO.	Mode	\bar{S}_{j}^{O}
III	$\mathrm{X}_{\mathrm{i}}=\mu_{\mathrm{i}}+\sigma \varepsilon_{\mathrm{i}}$	$\bar{X}_{\hat{\tau}_{j}-1, \hat{\mathrm{~T}}_{\mathrm{i}}}^{O}$
IV	$\mathrm{X}_{\mathrm{i}} \sim \operatorname{Multinomial}\left(\mathrm{m}, \mathrm{q}_{\mathrm{i}}\right)$	$\bar{X}_{\widehat{\tau}_{j}-1, \hat{\mathrm{~T}}_{1}^{\prime}}^{O}$
V	$X_{i}=\sigma_{i} \varepsilon_{i}$	$\overline{\mathrm{V}}_{\widehat{\mathrm{T}}_{\mathrm{j}-1}, \mathrm{~T}_{\mathrm{i}}}^{\mathrm{O}}, \mathrm{V}_{\mathrm{i}}=\log \mathrm{X}_{\mathrm{i}}^{2}$

(ii) $\varepsilon_{\mathrm{i}}=\left(\varepsilon_{\mathrm{i} 1}, \ldots, \varepsilon_{\mathrm{id}}\right)^{\top}$, where $\varepsilon_{\mathrm{i} 1}, \ldots, \varepsilon_{\mathrm{id}} \stackrel{\text { iid }}{\sim}\left(\chi_{5}^{2}-5\right) / \sqrt{10}$. We consider the dimension $\mathrm{d}=5$, 10 and adjust the scale parameter to $\sigma=9 \sqrt{\mathrm{~d}}$. Table S 3 presents the results when the sample size $\mathrm{n}=3072$ and the number of change-points $\mathrm{K}_{\mathrm{n}}=27$. The R-MOPS-based methods perform reasonably well in terms of FDR control and reliable TPR. In contrast, the CV-PELT results in overly conservative FDR levels across all the settings and its P_{a} 's are much smaller than those of R-MOPS.

Table S3: Comparison results of FDR(\%), TPR(\%), $\mathrm{P}_{\mathrm{a}}(\%)$ and \widehat{K} when $\mathrm{K}_{\mathrm{n}}=27$ and $\mathrm{n}=3072$ under Example III (multivariate mean shift).

errors	Method	$\mathrm{d}=5$				$d=10$			
		FDR	TPR	Pa	\widehat{K}	FDR	TPR	Pa_{a}	\widehat{K}
$\varepsilon_{\mathrm{i}} \sim \mathrm{N}(0, \Sigma)$	RM-OP	18.5	97.1	53.5	32.9	18.9	92.9	35.0	32.1
	RM-PELT	18.7	97.5	54.0	32.8	18.5	92.5	33.5	31.9
	CV-PELT	0.9	91.3	18.0	24.9	0.6	86.7	4.0	23.6
$\varepsilon_{\mathrm{ij}} \sim \frac{\chi_{5}^{2}-5}{\sqrt{10}}$	RM-OP	19.7	99.1	87.0	33.0	20.3	95.9	68.5	33.1
	RM-PELT	19.5	99.0	85.5	32.7	20.8	96.2	69.5	33.3
	CV-PELT	0.8	85.9	4.5	23.4	1.7	84.1	0.0	23.1

Further, we consider the MCP problem for multinomial distributions (Example IV), i.e. $X_{i} \sim \operatorname{Multinom}\left(n_{0}, q_{i}\right)$, where the variance of the observation relies on their mean. Braun et al. (2000) integrated the problem into quasi-likelihood framework in combination with BIC to determine the number of change-points. In particular, they aimed to identify the
breaks in the probability vectors q_{i} 's and recommended the BIC with a penalty $\zeta_{\mathrm{n}}=0.5 \mathrm{n}^{0.23}$, which will be seen as a benchmark for comparison in this example. To implement MOPS, we apply their algorithm in our training step, i.e., given a candidate model size P_{n}, we obtain the estimated change-points by constructing the statistics W_{j} in (5). We follow the same mechanism in Braun et al. (2000) to generate q_{i} 's. To be specific, the initial mean vector $\mathrm{q}=\left(\mathrm{q}_{\mathbf{l}}, \ldots, \mathbf{q}_{\mathrm{d}}\right)^{\top}$ is given as $\mathrm{q}=\mathrm{U}_{\mathrm{j}} / \sum_{\mathrm{l}=1}^{\mathrm{d}} \mathrm{U}_{\mathrm{l}}$ for $\mathrm{j}=1, \ldots, \mathrm{~d}$ where $\mathrm{U}_{\mathrm{j}} \sim \operatorname{Uniform}(0,1)$. The jump mean vector $q_{k}^{*}=\left(q_{i}^{*}, \ldots, q_{d}^{*}\right)^{\top}$ for change point k is obtained by normalizing $\operatorname{expit}\left(\operatorname{logitq}{ }^{*}+\mathrm{U}_{\mathbf{1}}^{*}\right)$ for $\mathrm{I}=1, \ldots, \mathrm{~d}$ where $\mathrm{U}_{\mathbf{1}}^{*} \sim \operatorname{Uniform}(-\boldsymbol{J}, \mathrm{J})$ with $\mathrm{J}=0.8 / \sqrt{\mathrm{d}}$. Table 54 reports the simulation results when $n=2048, \mathrm{~K}_{\mathrm{n}}=20, \mathrm{n}_{0} \in(80,100,120)$ and d is chosen as 5 or 10 . Again, our R-MOPS can successfully control the FDR at the nominal level in most cases. The BIC method appears to result in a slightly underfitting model on average. Accordingly, the BIC method delivers conservative FDR levels and it may miss some change-points due to relatively low P_{a}.

Table S4: Comparison results of FDR(\%), TPR(\%), P_{a} (\%) and \widehat{K} betwen R-MOPS and BIC in conjunction with Braun et al. (2000)'s algorithm when $K_{n}=20$ and $n=2048$ under Example IV.

		$\mathrm{d}=5$						$\mathrm{~d}=10$			
n_{0}	Method	FDR	TPR	P_{a}	\widehat{K}		FDR	TPR	P_{a}	$\widehat{\mathrm{K}}$	
80	R-MOPS	20.2	98.1	85.5	25.2		17.1	92.8	45.0	23.1	
	BIC	1.8	92.2	41.0	19.4		1.9	89.2	32.0	19.3	
100	R-MOPS	21.1	99.2	92.0	26.0		20.1	98.3	75.5	25.2	
	BIC	1.6	94.7	62.5	19.6		1.5	93.2	55.5	19.5	
120	R-MOPS	21.5	99.8	97.5	26.2		21.2	99.0	85.0	26.0	
	BIC	1.3	97.2	73.5	19.7		1.1	96.4	69.0	19.6	

At last, we investigate the performance of R-MOPS in conjunction with PELT under Example V when the scale signal function of σ_{i} 's is chosen as a piecewise constant function with values alternating between 1 and 0.5 . We fix $\mathrm{n}=4096$ and show the curves of FDR, TPR and P_{a} when $K_{n} \in[28,35]$ in Figure S3. We observe that the FDRs of R-MOPS
with PELT get closer to the target level as K_{n} increases, which is in accordance with the theoretical justification. Meanwhile, the CV-PELT method usually results in an underfitting model because some true change-points are not selected.

Figure S3: FDR, TPR and P_{a} curves against K_{n} between R-MOPS and CV criterion based on PELT when $\mathrm{n}=4096$ and errors are i.i.d from standardized t_{5} under Example V .

Extension on controlling PFER

Table 55 reports some PFER results of the MOPS in conjunction with OP and PELT when the target PFER level $\mathrm{k}_{0}=1,5$ or 10 . We fix the sample size $\mathrm{n}=4096$, the dimension $\mathrm{d}=5$ for multivariate data and consider that all errors are distributed from $\mathbf{N}(0,1)$. The validity of our MOPS approach in terms of PFER control is clear.

Others

Figure $\$ 4$ displays the performance comparison under Example I with the same model setting as Section 5.1 when the target FDR level is $\alpha=0.1$. The comparison results are analogous to those in nominal level $\alpha=0.2$.

Table 56 presents the comparisons between our R-SaRa and dFDR-SaRa under Example I. Following the recommendation in Hao et al. (2013), we choose four thresholds $h_{1}=$ $\lfloor 3 \log \mathrm{n}\rfloor, \mathrm{h}_{2}=\lfloor 5 \log \mathrm{n}\rfloor, \mathrm{h}_{3}=\lfloor 7 \log \mathrm{n}\rfloor$ and $\mathrm{h}_{4}=\lfloor 9 \log \mathrm{n}\rfloor$ as simple competitors. It is

Table S5: PFER performance of MOPS in conjunction with OP and PELT when the target PFER level $k_{0}=1,5$ and 10 under Examples $I-V$.

Example	k_{0}	$K_{n}=5$			$\mathrm{K}_{\mathrm{n}}=10$			$\mathrm{K}_{\mathrm{n}}=15$		
		1	5	10	1	5	10	1	5	10
I	M-OP	1.08	5.07	9.83	0.98	5.13	9.73	0.92	4.96	10.56
	M-PELT	0.86	4.94	9.86	0.91	5.23	10.18	1.06	5.07	10.90
11	M-OP	0.79	4.86	10.03	0.69	4.72	10.25	0.89	4.97	10.04
	M-PELT	0.74	4.14	9.57	0.77	4.93	10.36	0.66	5.05	8.58
III	M-OP	0.65	5.04	10.05	1.06	5.10	10.13	0.94	5.01	10.72
	M-PELT	0.67	4.78	9.83	0.83	4.87	10.27	0.72	4.91	10.60
IV	M-OP	0.81	4.13	9.18	1.01	5.16	9.93	0.97	5.13	9.75
	M-PELT	0.68	4.22	9.00	1.02	4.74	9.74	0.83	5.09	10.08
V	M-OP	0.78	5.10	9.93	0.89	5.09	10.08	1.13	5.07	10.89
	M-PELT	0.62	4.97	10.21	0.77	4.89	10.38	0.72	5.02	11.12

Figure S4: FDR, P_{a} and the average number of estimated change-points $\widehat{\mathrm{K}}$ curves against SNR among RM-PELT, CV-PELT and FDRseg when $K_{n}=20, n=2048$ and the target FDR level $\alpha=0.1$ under Example I.
clear that the R-MOPS performs well in terms of FDR control, but the performance of dFDR-SaRa depends on the choice of h to a large extent.

For the frequent change-point setting, Fryzlewicz (2020) proposed WBS2 detection algo-

Table S6: Comparison results of FDR(\%), TPR(\%), $\mathrm{Pa}_{\mathrm{a}}(\%)$ and $\widehat{\mathrm{K}}$ between RM-Sara and dFDR-SaRa-h in Hao et al. (2013) when $\mathrm{n}=10240$ and SNR $=0.7$ under Example I.

Errors	Method	$K_{n}=20$				$\mathrm{K}_{\mathrm{n}}=40$			
		FDR	TPR	Pa_{a}	\widehat{K}	FDR	TPR	Pa_{a}	\widehat{K}
N (0, 1)	RM-SaRa	19.5	99.2	84.0	25.4	22.2	99.8	92.0	52.2
	dFDR-SaRa-h	17.1	78.2	6.5	19.2	10.7	83.9	1.0	37.8
	dFDR-SaRa-h	10.2	94.3	44.0	21.0	3.0	95.9	29.0	39.6
	dFDR-SaRa-h ${ }_{3}$	9.6	97.3	70.5	21.6	0.2	98.3	49.5	39.4
	dFDR-SaRa-h	3.4	99.1	90.0	20.5	0.0	95.8	1.0	38.3
$\chi^{2}(3)$	RM-SaRa	18.6	99.7	94.5	25.3	20.9	99.9	96.5	51.1
	dFDR-SaRa-h ${ }_{1}$	16.8	89.2	18.5	21.6	11.0	92.8	13.5	41.9
	dFDR-SaRa-h ${ }_{2}$	12.8	98.1	74.0	22.7	2.0	99.3	81.0	40.5
	dFDR-SaRa-h ${ }_{3}$	7.2	99.7	96.5	21.6	0.3	99.8	92.0	40.0
	dFDR-SaRa-h	2.6	100.0	100.0	20.6	0.0	95.3	0.0	39.0

rithm with threshold-based model selection criterion "Steepest Drop to Low Levels" (SDLL). We compare our procedure R-MOPS in conjunction with WBS2 to the WBS2.SDLL criterion when the "extreme.teeth" example of the univariate changes in Fryzlewicz (2020) is considered. Specially, in the "extreme.teeth" example, the mean μ_{i} 's for each observation are defined as follows: $\mu_{i}=0$ if $1 \leq \bmod (i, 10) \leq 5$ and $\mu_{i}=1$ if $\bmod (i, 10) \in\{0,6,7,8,9\}$, and the sample size n is 1000 . Two values of SNR and three error distributions including $\mathbf{N}(0,1)$, standardized $t(3)$ and standardized $\chi^{2}(3)$ are considered. We fix $\omega_{h}=4$ and $p_{\mathrm{n}}=250$ for the R-MOPS. From Table 57, we can see that the FDRs of R-MOPS with WBS2 are still controlled, though they appear to be overly conservative. The WBS2.SDLL generally has better performances in terms of \widehat{K} estimation in the most settings.

A nother real-data example: OPEC oil price

We analyze the daily Organisation of the Petroleum Exporting Countries (OPEC) Reference Basket oil prices from Jan. 6, 2003 to Dec. 16, 2020 with sample size $\mathrm{n}=4610$, which is available from https://www.quandl.com. As the raw oil price series tend to ex-

Table S7: Comparisons of \widehat{K}, FDR(\%) and TPR(\%) between R-MOPS and SDLL in conjunction with WBS2 Fryzlewicz (2020)'s "extreme.teth" example when $n=1000, K_{n}=199$ and three error distributions are considered. The target FDR level is $\alpha=0.2$ and σ^{2} is the error variance.

		$\sigma=0.3$					$\sigma=0.5$		
Error	Method	\widehat{K}	FDR	TPR		\widehat{K}	FDR	TPR	
$\mathrm{N}(0,1)$	RMOPS	193.7	7.1	90.4		160.6	10.0	72.6	
	SDLL	199.4	3.8	96.4		71.6	9.0	29.3	
$\mathrm{t}(3)$	RMOPS	193.9	7.1	90.5		176.5	8.0	81.6	
	SDLL	209.8	7.1	97.8		221.8	19.6	89.0	
$\chi^{2}(3)$	RMOPS	193.1	7.1	90.2		167.9	8.9	76.8	
	SDLL	211.0	8.1	97.2		200.5	22.8	77.3	

hibit strong autocorrelation (Baranowski et al. 2019), we consider analyzing the log-returns $100 \log \left(P_{i} / P_{i-1}\right)$, where P_{i} is the daily oil price. Figure $S 5$ presents the data sequence of log-returns and its autocorrelation, indicating the correlations of log-returns are relatively weak. As Baranowski et al. (2019) pointed out that both mean and scale changes exist in the sequence, we build $\mathrm{S}_{\mathrm{i}}=\left(\mathbb{Z}_{\mathbf{i}}, \log \left(\mathbb{Z}_{\mathbf{i}}^{2}\right)\right)^{\top}$ in \mathbf{W}_{j} for the proposed MOPS procedure to detect changes in both the mean and variance when PELT algorithm is applied. In this study, we use the function cpt.meanvar() in R package changepoint to implement the PELT algorithm and also report change-points detected by the BIC for comparison.

The BIC results in 33 change-points, while the R-MOPS with PELT yields 36 and 55 change-points when the target FDR level is 0.05 and 0.1 , respectively. The locations of the change-points identified by BIC and R-MOPS with $\alpha=0.05$ are given in the left panel of Figure S5. The estimated change-points of both methods largely agree each other. However, the BIC does not indicate any changes in late 2004 and early 2005 and meanwhile R-MOPS has several estimated change-points in that period. This period could potentially be related to a noticeable expansion of the production volume in the late 2004, which leads to a significant change of oil price elasticity. Thus, Murray and King (2012) called the early
(a) log-returns of oil prices

Figure S5: (a): Scatter plots of the log-returns of daily OPEC oil prices, where the blue dash and red solid lines represent the estimated change-points detected by BIC and R-MOPS with PELT algorithm under $\alpha=0.05$; (b) Autocorrelation of log-returns.

2005 was oil's tipping point.

R eferences

Baranowski, R., Chen, Y., and Fryzlewicz, P. (2019), "Narrowest-over-threshold detection of multiple change points and changepoint-like features," J ournal of the Royal Statistical Society: Series B (Statistical Methodology), 81, 649-672.

Barber, R. F., Candès, E. J., and Samworth, R. J. (2020), "Robust inference with knockoffs," The Annals of Statistics, 48, 1409-1431.

Braun, J. V., Braun, R. K., and Müller, H. G. (2000), "Multiple changepoint fitting via quasilike lihood, with application to DNA sequence segmentation," Biometrika, 87, 301-314.

Fryzlewicz, P. (2020), "Detecting possibly frequent changepoints: Wild Binary Segmentation 2 and steepest-drop model selection," J ournal of the K orean Statistical Society, 1-44.

Hao, N., Niu, Y. S., and Zhang, H. (2013), "Multiple change-point detection via a screening and ranking algorithm," Statistica Sinica, 23, 1553-1572.
Murray, J. and King, D. (2012), "Oil's tipping point has passed," Nature, 481, 433-435.
Petrov, V. (2002), "On probabilities of moderate deviations," J ournal of Mathematical Sciences, 109, 2189-2191.

Zou, C., Wang, G., and Li, R. (2020), "Consistent selection of the number of changepoints via sample-splitting," The Annals of Statistics, 48, 413-439.

[^0]: *Corresponding author: fyao@math.pku.edu.cn

