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Appendix B: Equivalence of de�nitions given by Eqs.(3) and (4)

• If there exists one � ∗k ∈
[
1
2
(�j−1 + �j);

1
2
(�j + �j+1)

)
as (3), we have � ∗k − �j−1 ≥ �j − � ∗k

when �j ≥ � ∗k or �j+1 − � ∗k > � ∗k − �j when �j < � ∗k , that is |�j − � ∗k | = min�l∈T |�l − � ∗k |

from which �j follows (4);

• On the contrary, if �j = arg min�l∈T |�l − � ∗k | as the definition of (4), we have � ∗k ≥
1
2
(�j−1 + �j) due to � ∗k − �j−1 > � ∗k − �j if � ∗k < �j; Similarly, � ∗k <

1
2
(�j + �j−1) holds for

� ∗k > �j. Say, �j follows the definition of (3).
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Appendix C: Auxiliary lemmas

Lemma S.1 If the model (1) and Assumption 1 hold, 
−1n = � +Op(Knn
−1=2), where � is

some positive matrix depending on �∗k’s.

This lemma can be proved using the similar arguments in the Proposition 1 of Zou et al.

(2020), thus the details are omitted here.

Lemma S.2 [Bernstein’s inequality] Let X1; : : : ; Xn be independent centered random vari-

ables a.s. bounded by A < ∞ in absolute value. Let �2 = n−1
∑n

i=1 E(X2
i ). Then for all

x > 0,

Pr
( n∑
i=1

Xi ≥ x
)
≤ exp

(
− x2

2n�2 + 2Ax=3

)
:

The third one is a moderate deviation result for the mean; See Petrov (2002).

Lemma S.3 (Moderate Deviation for the Independent Sum)

Suppose that X1; : : : ; Xn are independent random variables with mean zero, satisfying

E(|Xj|2+q) <∞ (j = 1; 2; : : :) for some q > 0. Let Bn =
∑n

i=1 E(X2
i ). Then

Pr
(∑n

i=1Xi > x
√
Bn

)
1− Φ(x)

→ 1 and
Pr
(∑n

i=1Xi < −x
√
Bn

)
Φ(−x)

→ 1;

as n→∞ uniformly in x in the domain 0 ≤ x . {log(1=Ln)}1=2, where Ln = B
−1− q

2
n

∑n
i=1 E(|Xi|2+q).

For notational convenience, we note that our estimation procedure can be reformulated as

follows. Suppose we have two independent sets of d-dimensional observations {SO1 ; : : : ;SOn }

and {SE1 ; : : : ;SEn } collected from the following multiple change-point model

SOj = µ∗k + Uj; SEj = µ∗k + Vj; j ∈ (� ∗k ; �
∗
k+1]; k = 0; : : : ; Kn;

where U1; : : : ;Un;V1; : : : ;Vn are independent standardized noises satisfying E(U1) = 0 and

Cov(U1) = Cov(V1) = �∗k. Let$ = min0≤k≤Kn Eigmin(�∗k) and $̄ = max0≤k≤Kn Eigmax(�
∗
k),
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where Eigmin(A) and Eigmax(A) denote the smallest and largest eigenvalues of a square ma-

trix A. By Assumption 1, we know that 0 < $ < $̄ <∞. To keep the subscript consistent

with the main body, we roughly let SO2i, U2i, SE2i−1, V2i−1 as 0 for i = 1; : : : ;m.

The next one establishes an uniform bound for ‖
∑k2

i=k1+1 Ui‖.

Lemma S.4 Suppose Assumption 1 holds. Then we have as n→∞,

Pr

 max
(k1;k2)∈T (!n)

(k2 − k1)−1
∥∥∥∥∥

k2∑
i=k1+1

Ui

∥∥∥∥∥
2

> C log n

 = O(n1− �
��� );

for some large C > 0 and any 0 < � < � − 2�−1.

Proof. We shall show that the assertion holds when d = 1 and the case for d > 1 is

straightforward by using the Bonferroni inequality. Denote Mn = n1=(�−�) for some 0 < � <

�, and observe that

Ui = [UiI(|Ui| ≤Mn)− E{UiI(|Ui| ≤Mn)}] + [UiI(|Ui| > Mn)− E{UiI(|Ui| > Mn)}]

=: Ui1 + Ui2:

It suffices to prove that the assertion holds with Ui1 and Ui2 respectively. Let x =
√
C log n

with a sufficiently large C,

Pr

 max
(k1;k2)∈T (!n)

(k2 − k1)−1
(

k2∑
i=k1+1

Ui

)2

> x2


≤Pr

(
max

(k1;k2)∈T (!n)
(k2 − k1)−1=2

∣∣∣∣∣
k2∑

i=k1+1

Ui1

∣∣∣∣∣ > x=2

)

+ Pr

(
max

(k1;k2)∈T (!n)
(k2 − k1)−1=2

∣∣∣∣∣
k2∑

i=k1+1

Ui2

∣∣∣∣∣ > x=2

)

=:P1 + P2:

On one hand, by the Bernstein inequality in Lemma S.2, we have

P1 ≤ n2 Pr

(
(k2 − k1)−1=2

∣∣∣∣∣
k2∑

i=k1+1

Ui1

∣∣∣∣∣ > x=2

)
≤ 2n2 exp

{
− wnx

2

C1wn + C2Mnw
1=2
n x

}
= o(n1− �

��� );



where C1; C2 are some positive constants and we use the assumption that � < � − 2�−1.

On the other hand, according to Cauchy inequality and Markov inequality, we note that

E2{|Ui|I(|Ui| > Mn)} ≤ E(U2
i ) Pr(|Ui| > Mn) ≤ C3n

− �
��� ;

for some constant C3 > 0. Further, it yields max(k1;k2)∈T (!n)(k2−k1)1=2E{|Ui|I(|Ui| > Mn)} =

o(1): Thus, by Assumption 1 and Markov inequality, we have

P2 ≤Pr
(

max
(k1;k2)∈T (!n)

(k2 − k1)−1=2
k2∑

i=k1+1

|Ui|I(|Ui| > Mn) > x=4
)

≤Pr
(

max
(k1;k2)∈T (!n)

(k2 − k1)−1=2
k2∑

i=k1+1

|Ui| > x=2 | max
i
|Ui| > Mn

)
Pr
(

max
i
|Ui| > Mn

)
≤nPr

(
|Ui|� > M �

n

)
≤ C4n

1− �
��� ;

for some positive constant C4. The lemma is proved. �

A direct corollary of Lemma S.4 is the following lemma. Denote T1j =
√

njnj+1

nj+nj+1

n(S̄Oj −

S̄Oj+1) and T2j =
√

njnj+1

nj+nj+1
(S̄Ej − S̄Ej+1).

Lemma S.5 Suppose Assumptions 1-2 hold. For those j ∈ I0, then we have as n→∞,

Pr
{
‖Tkj‖2 > C(log n+ !−1n �2n)

}
= O(n1− �

��� ); k = 1; 2

for some large C > 0 and any 0 < � < � − 2�−1.

Proof. We take T2j as example. By Assumption 2, if there exists a true change point � ∗k

between �̂j−1 and �̂j+1, it can only be either close to �̂j−1 or �̂j+1, but not �̂j. Without loss
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of generality, assume 0 ≤ � ∗k − �̂j−1 ≤ �n. Then we note that

‖T2j‖ =

∥∥∥∥∥∥
√

njnj+1

nj + nj+1

 1

nj

�̂j∑
i=�̂j�1+1

Vi −
1

nj+1

�̂j+1∑
i=�̂j+1

Vi +
� ∗k − �̂j−1

nj
(µ∗k − µ∗k+1)


∥∥∥∥∥∥

≤
√

nj
nj + nj+1

∥∥∥∥∥∥n−1=2j

�̂j∑
i=�̂j�1+1

Vi

∥∥∥∥∥∥+

√
nj+1

nj + nj+1

∥∥∥∥∥∥n−1=2j+1

�̂j+1∑
i=�̂j+1

Vi

∥∥∥∥∥∥+

∥∥∥∥� ∗k − �̂j−1nj
(µ∗k − µ∗k+1)

∥∥∥∥
≤
√

nj
nj + nj+1

∥∥∥∥∥∥n−1=2j

�̂j∑
i=�̂j�1+1

Vi

∥∥∥∥∥∥+

√
nj+1

nj + nj+1

∥∥∥∥∥∥n−1=2j+1

�̂j+1∑
i=�̂j+1

Vi

∥∥∥∥∥∥+ !−1=2n �n
∥∥µ∗k − µ∗k+1

∥∥
≤ 2 max

(k1;k2)∈T (!n)
(k2 − k1)−1=2

∥∥∥∥∥
k2∑

i=k1+1

Vi

∥∥∥∥∥+ !−1=2n �n
∥∥µ∗k − µ∗k+1

∥∥ :
The assertion is immediately verified by using Lemma S.4. �

Appendix D: Proof of Proposition 1

The proof of this proposition follows similarly to Theorem 2 in Barber et al. (2020) which

shows that the Model-X knockoff selection procedure incurs an inflation of the false dis-

covery rate that is proportional to the errors in estimating the distribution of each feature

conditional on the remaining features. Fix � > 0 and for any threshold t > 0, define

R�(t) =

∑
j∈I0 I (Wj ≥ t;∆j ≤ �)

1 +
∑

j∈I0 I (Wj ≤ −t)
:

Consider the event that A = {∆ := maxj∈I0 ∆j ≤ �}. Furthermore, for a threshold rule



It is crucial to get an upper bound for E{R�(L) | ZO}. In what follows, all the “E(·)” denote

the expectations given ZO. We have

E{R�(L)} =
∑
j∈I0

E

{
I (Wj ≥ L;∆j ≤ �)

1 +
∑

j∈I0 I (Wj ≤ −L)

}

=
∑
j∈I0

E

{
I (Wj ≥ Lj;∆j ≤ �)

1 +
∑

k∈I0;k 6=j I (Wk ≤ −Lj)

}

=
∑
j∈I0

E

[
E

{
I (Wj ≥ Lj;∆j ≤ �)

1 +
∑

k∈I0;k 6=j I (Wk ≤ −Lj)
| |Wj|;W−j

}]

=
∑
j∈I0

E

{
Pr (Wj > 0 | |Wj|;Wj−1;Wj+1;ZO) I (|Wj| ≥ Lj;∆j ≤ �)

1 +
∑

k∈I0;k 6=j I (Wk ≤ −Lj)

}
; (S.1)

where the last step holds since the only unknown is the sign of Wj after conditioning on

(|Wj|;Wj−1;Wj+1). By definition of ∆j, we have Pr (Wj > 0 | |Wj|;Wj−1;Wj+1;ZO) ≤ 1=2+

∆j.

Hence,

E{R�(L)}

≤
∑
j∈I0

E

{
(1
2

+ ∆j)I (|Wj| ≥ Lj;∆j ≤ �)

1 +
∑

k∈I0;k 6=j I (Wk ≤ −Lj)

}

≤ (
1

2
+ �)

[∑
j∈I0

E

{
I (Wj ≥ Lj;∆j ≤ �)

1 +
∑

k∈I0;k 6=j I (Wk ≤ −Lj)

}
+
∑
j∈I0

E

{
I (Wj ≤ −Lj)

1 +
∑

k∈I0;k 6=j I (Wk ≤ −Lj)

}]

= (
1

2
+ �)

[
E{R�(L)}+

∑
j∈I0

E

{
I (Wj ≤ −Lj)

1 +
∑

k∈I0;k 6=j I (Wk ≤ −Lj)

}]
:

Finally, the sum in the last expression can be simplified as: if for all null j, Wj > −Lj, then

the sum is equal to zero, while otherwise,

∑
j∈I0

E

{
I (Wj ≤ −Lj)

1 +
∑

k∈I0;k 6=j I (Wk ≤ −Lj)

}
=
∑
j∈I0

E

{
I (Wj ≤ −Lj)

1 +
∑

k∈I0;k 6=j I (Wk ≤ −Lk)

}
= 1;

where the first step comes from the fact: for any j; k, if Wj ≤ −min(Lj; Lk) and Wk ≤

−min(Lj; Lk), then Lj = Lk; see Barber et al. (2020).
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Accordingly, we have

E{R�(L)} ≤ 1=2 + �

1=2− �
≤ 1 + 5�:

Consequently, the assertion of this proposition holds. �

Appendix E: Proof of Lemmas A.1-A.2

Note that both the candidate change-points set T̂pn and the statistics Wj are dependent

with ZO. In fact, we derive the following two lemmas on the basis of conditional probability

on ZO. To be specific, conditional on ZO, T̂pn is fixed as well as (S̄Oj − S̄Oj+1)
>
n. Due to

the independence between ZE and ZO, the standard results for independent sum such as

Lemmas S.2-S.3 can be applied for S̄Ej − S̄Ej+1 in the following arguments.

Proof of Lemma A.1

Define �n = {C(log n+!−1n �2n)}1=2 for a large C > 0 specified in Lemma S.5. Let An = {u ∈

Rd : ‖u‖ ≥ t=�n}. Then, we observe that

G(t)

G−(t)
− 1 =

∑
j∈I0{Pr(T>1jT2j ≥ t | ZO)− Pr(T>1jT2j ≤ −t | ZO)}

p0G−(t)

Conditional on ZO, we have two cases. Firstly, for the case T1j ∈ Acn, by Lemma S.5 we

obtain that

G(t)

G−(t)
− 1 ≤

∑
j∈I0 Pr(T>1jT2j ≥ t | ZO)

p0G−(t)
≤
∑

j∈I0 Pr(‖T2j‖ > �n | ZO)

p0=pn
= Op(n

1− �
���pn);

where the first inequality is due to t ≤ G−1− (1=pn), and thus we claim that G(t)
G�(t)

− 1 =

Op(n
1− �

���pn).

Next, we consider the case T1j ∈ An. We introduce a new sequence of independent

random variables {Bi} defined as follows:

Bi =


√
njnj+1

nj
√
nj+nj+1

Vi; �̂j−1 < i ≤ �̂j;

−
√
njnj+1

nj+1

√
nj+nj+1

Vi; �̂j < i ≤ �̂j+1:
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By Lemma S.3, we firstly verify that for any given u ∈ An,

Pr
{∑�̂j+1

i=�̂j�1+1 u>Bi



Proof of Lemma A.2

We only show the validity of the first formula and the second one hold similarly. Note

that the G(t) is a deceasing and continuous function. Let z0 < z1 < · · · < zdn ≤ 1 and

ti = G−1(zi), where z0 = an=pn; zi = an=pn + ani
�=pn; dn = [{(pn − an)=an}1=�] with � > 1.

Note that G(ti)=G(ti+1) = 1 + o(1) uniformly in i. It is therefore enough to obtain the

convergence rate of

Dn = sup
0≤i≤dn

∣∣∣∣
∑

j∈I0 {I(Wj ≥ ti)− Pr(Wj ≥ ti | ZO)}
p0G(ti)

∣∣∣∣ :
Define Sj = {k ∈ I0 : Wk is dependent with Wj} and further

D(t) = E

{∑
j∈I0

I(Wj ≥ t)− Pr(Wj ≥ t | ZO)

}2

| ZO

 :
It is noted that

D(t) =
∑
j∈I0

∑
k∈Sj

E [{I(Wj ≥ t)− Pr(Wj ≥ t | ZO)} {I(Wk ≥ t)− Pr(Wk ≥ t | ZO)} | ZO] ≤ 2p0G(t):

Note that conditional on ZO, W1; : : : ;Wpn is a 1-dependent sequence and so is I(Wj ≥ ti).

We can get

Pr(Dn ≥ �) ≤
dn∑
i=0

Pr

(∣∣∣∣
∑

j∈I0{I(Wj ≥ ti)− Pr(Wj ≥ ti | ZO)}
p0G(ti)

∣∣∣∣ ≥ �

)

≤ 1

�2

dn∑
i=0

1

p20G
2(ti)

D(ti) ≤
2

�2

dn∑
i=0

1

p0G(ti)
:

Moreover, observe that

dn∑
i=0

1

p0G(ti)
=
pn
p0

(
1

an
+

dn∑
i=1

1

an + ani�

)

≤ c

(
1

an
+ a−1n

dn∑
i=1

1

1 + i�

)
≤ ca−1n {1 +O(1)}:

In sum, we can have Pr(Dn ≥ �)→ 0 provided that an →∞. �
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Appendix F: Proof of Theorems 1-3 and Corollaries 1-2

Proof of Corollary 1

(i) By Assumption 2, we know that the event that |I1| = Kn and for each �̂j ∈ I1, |�̂j−� ∗j | ≤

�n occur with probability approaching one as n→∞. Therefore, in what follows we always

implicitly work with the occurrence of this event. From the proof of Theorem 1, we know

that L . �2n. Hence

Pr (Wj < L; for some �̂j ∈ I1 | ZO)

≤Kn Pr

(
njnj+1

nj + nj+1

(S̄Oj − S̄Oj+1)
>
n(S̄Ej − S̄Ej+1) < L | ZO

)
≤Kn Pr

(
njnj+1

nj + nj+1

(Ūj − Ūj+1)
>
n(V̄j − V̄j+1) +O+

p (!n min
1≤k≤Kn

‖µ∗k+1 − µ∗k‖2) < L | ZO
)

≤Kn Pr

(
O+
p (!n min

1≤k≤Kn
‖µ∗k+1 − µ∗k‖2) ≤ L

)
+Kn Pr

(
njnj+1

nj + nj+1

(Ūj − Ūj+1)
>
n(V̄j − V̄j+1) > O+

p (!n min
1≤k≤Kn

‖µ∗k+1 − µ∗k‖2) | ZO
)
→ 0

in probability, where we use Lemma S.4. The result immediately holds. �

(ii) From (i), we have limn→∞ Pr(M⊇ I1) = 1. Here, we only need to prove limn→∞ Pr(M⊆

I1) = 1, which is equivalent to show that limn→∞ Pr(M∩ I0 = ∅) = 1.

It is noted that

Pr(Wj ≥ L; for some j ∈ I0 | ZO) ≤
∑
j∈I0

Pr(Wj ≥ L | ZO) ∼ p0
� n
pn
. Kn�;

By using the condition Kn�→ 0, the corollary is proved. �

Proof of Theorem 1

Following the notations in Section 2, assume �̂j ∈ M is an informative point and � ∗j0 is

its corresponding true change-point such that |�̂j − � ∗j0 | ≤ �n by Assumption 2. Note that

�̃k ∈ M̃ is the selected one such that |�̃k − �̂j| = min�̃l∈T̃pn |�̃l − �̂j|. BecauseM and M̃ have
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the same cardinality, we only need to show that �̃k ∈ I1(T̃pn), say

|�̃k − � ∗j0 |



(ii) Let an = (Clog n)1=2, where C > 0 is specified in Lemma S.5. Define Bn = {u ∈ Rd :

‖u‖ ≥ t=an}. Let C =
⋂
j∈I0{|W̃j| ≤ �j}, where �j satisfies Pr(|W̃j| > �j | ZO) = bn and bn

be a sequence satisfies the conditions that bn → 0, pnbn → 0 and n�=2bn → ∞. According

to the condition pnn
−�=2 → 0 in the theorem, such bn is well defined. By the definition of

W̃j, we know that E(W̃j) = 0 for all �̂j ∈ I0. Moreover, by Lemma S.5, we have �j . a2n

uniformly in j.

According to Proposition 1, we have

Pr

(
max
j∈I0

∆j > � | ZO
)

= Pr

(
max
j∈I0

∆j > � | C;ZO
)

Pr(C | ZO) + Pr

(
max
j∈I0

∆j > �; Cc | ZO
)

≤ Pr

(
max
j∈I0

∆j > � | C;ZO
)

+ Pr(Cc | ZO) := A1 + A2:

By the definition of bn, A2 = op(1). It remains to handle A1.

Notice that conditional on C,

max
j∈I0

∆j ≤ max
j∈I0

sup
0≤t≤�j

|fj(−t)=fj(t)− 1| ; (S.3)

where fj(·) is the density of W̃j conditional on ZO. It remains to prove that the right-hand

side of (S.3) goes to zero as n→∞.

Denote T̃1j =
√

njnj+1

nj+nj+1

n(S̃OLj − S̃ORj) = u given ZO. In a similar way to the proof

of Lemma A.1, we consider two cases for u. As to the case u ∈ Bcn, maxj∈I0 ∆j =

Op{(n�=2bn)−1} by the definition of �j and 0 ≤ t ≤ �j. On the other hand, we consider

the case u ∈ Bn. Then, for j ∈ I0 by Lemma S.3, we have

fj(t) = {Φ̃(t=s)− Φ̃(t=s−)}{1 + op(1)} =
1

s
�(t=s){1 + op(1)};

where s =
√

u>�u. Similarly, we also have fj(−t) = 1
s
�(−t=s){1 + op(1)}, which yields

that the right-hand side of (S.3) goes to zero since �(−t=s) = �(t=s) and �(t=s) is bounded.

Then, the result (ii) in the theorem holds. �
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Appendix G: Additional simulation results

Selection of pn and !n

Table S1 reports the FDR, TPR and K̂ of MOPS in conjunction with OP, PELT and

WBS detection algorithms with different pn and !n under Example I. We consider the error

from N(0; 1) and fix n = 4096, Kn = 15 and SNR=0.5. We observe that different values of

c ∈ (1; 2] for pn = bcn2=5c and � ∈ [0:3; 0:5] for !n = n� present similar results and their FDRs

are not significantly different. Thus we recommend pn = b2n2=5c and !n = min(bn0:5c; 60)

in the simulation studies.

Table S1: FDR(%), TPR(%) and K̂ of MOPS in conjunction with OP, PELT and WBS detection

algorithms when error follows N(0; 1), n = 4096, Kn = 15 and SNR=0.5 under Example I. The pn

is chosen as pn = bcn2=5c with c = 1:2; 1:5; 2 and !n = n� with � = 0:3; 0:4; 0:5.

� = 0:3 � = 0:4 � = 0:5

pn Method FDR TPR K̂ FDR TPR K̂ FDR TPR K̂

M-OP 19:8 91:3 17:7 19:1 92:7 17:9 18:9 95:2 18:3

1:2n2=5 M-PELT 19:5 91:2 17:5 19:4 93:1 18:0 19:9 95:7 18:8

M-WBS 16:9 91:8 17:3 17:2 92:3 17:5 19:5 95:3 18:5

M-OP 18:6 90:0 17:2 21:0 92:9 18:6 20:5 93:7 18:4

1:5n2=5 M-PELT 16:6 89:3 16:7 20:8 93:1 18:6 21:2 94:1 18:9

M-WBS 17:3 85:9 16:3 18:3 86:3 16:6 16:4 90:9 17:0

M-OP 20:5 79:5 17:4 19:5 82:1 16:5 20:4 85:3 17:0

2n2=5 M-PELT 20:2 80:3 17:1 20:0 82:7 16:7 19:7 85:5 17:0

M-WBS 19:6 76:7 15:9 17:8 77:8 15:8 18:1 83:1 16:5

Next, we investigate the performance of our methods in the case that pn > 2n2=5. Figure

S1 presents the FDR and TPR curves of MOPS, R-MOPS and M-MOPS when pn varies in

(2n2=5; n=10) and the WBS algorithm is employed under Example I. Here we fix !n = 10

and the true change-point number Kn = 30 and consider the error comes from N(0; 1) and

standardized �2(3). The FDR values of MOPS vary in an acceptable range of the target level
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no matter the choice of pn under normal error, but are slightly distorted under standardized

�2(3) error. The R-MOPS is able to improve TPR and yield smaller FDR levels than MOPS

due to the use of full sample information. We also observe that the M-MOPS leads to more

conservative FDR levels and smaller TPR than R-MOPS because of only using half of the

observations around each candidate point. That is consistent with our theoretical analysis

in Proposition 1 and Theorem 3. Similar results can also be found in Figure S2.
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Figure S1: FDR and TPR curves against pn ∈ (2n2=5; n=10) of MOPS, R-MOPS and M-MOPS

in conjunction with WBS algorithm when n = 4096, Kn = 30 and SNR=1 under Example I. The

!n is �xed as 10.

Figure S2 shows the FDR and TPR curves against !n of the MOPS, R-MOPS and M-

MOPS in conjunction with WBS algorithm when n = 4096, Kn = 10 and pn is fixed as

b2n2=5c under Example I. It implies that all the procedures are not sensitive to the choice of

!n in terms of FDR control. Meanwhile, a large !n could improve the detection power due
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to more observations in each segment.
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Figure S2: FDR and TPR curves against !n of MOPS, R-MOPS and M-MOPS in conjunction

with WBS algorithm when n = 4096, Kn = 10 and SNR=0.7 under Example I. The pn is �xed as

b2n2=5c.

Comparison under other models

Three other MCP models are considered, reflecting changes in different aspects such as the

location and scale. Table S2 gives a summary of all three simulated models along with the

associated statistics S̄Oj in constructing Wj.

Under multivariate mean change model (Example III), we examine the performance

of the refined MOPS in conjunction with the OP and PELT algorithms. For simplicity,

each dimension of the signals µi’s is set as the same as the signals �i’s in Example I. Two

scenarios for the error distribution are considered: (i) εi
iid∼ N(0;�) with � = (0:5|i−j|)d×d;
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Table S2: Preview of simulated models and the sample mean �SOj of the j-th segment for the odd

part. Change-points �̂j’s are estimated on the basis of ZO.

NO. Model �SOj

III Xi = µi + �εi �XO
�̂j�1;�̂j

IV Xi ∼ Multinomial(m;qi) �XO
�̂j�1;�̂j

V Xi = �i"i �V O
�̂j�1;�̂j

, Vi = logX2
i

(ii) εi = ("i1; : : : ; "id)
>, where "i1; : : : ; "id

iid∼ (�2
5−5)=

√
10. We consider the dimension d = 5,

10 and adjust the scale parameter to � = 9
√
d. Table S3 presents the results when the

sample size n = 3072 and the number of change-points Kn = 27. The R-MOPS-based

methods perform reasonably well in terms of FDR control and reliable TPR. In contrast,

the CV-PELT results in overly conservative FDR levels across all the settings and its Pa’s

are much smaller than those of R-MOPS.

Table S3: Comparison results of FDR(%), TPR(%), Pa(%) and K̂ when Kn = 27 and n = 3072

under Example III (multivariate mean shift).

d = 5 d = 10

errors Method FDR TPR Pa K̂ FDR TPR Pa K̂

RM-OP 18.5 97.1 53.5 32.9 18.9 92.9 35.0 32.1

εi ∼ N(0;�) RM-PELT 18.7 97.5 54.0 32.8 18.5 92.5 33.5 31.9

CV-PELT 0.9 91.3 18.0 24.9 0.6 86.7 4.0 23.6

RM-OP 19.7 99.1 87.0 33.0 20.3 95.9 68.5 33.1

"ij ∼
�2
5−5√
10

RM-PELT 19.5 99.0 85.5 32.7 20.8 96.2 69.5 33.3

CV-PELT 0.8 85.9 4.5 23.4 1.7 84.1 0.0 23.1

Further, we consider the MCP problem for multinomial distributions (Example IV), i.e.

Xi ∼ Multinom(n0;qi), where the variance of the observation relies on their mean. Braun

et al. (2000) integrated the problem into quasi-likelihood framework in combination with

BIC to determine the number of change-points. In particular, they aimed to identify the
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breaks in the probability vectors qi’s and recommended the BIC with a penalty �n = 0:5n0:23,

which will be seen as a benchmark for comparison in this example. To implement MOPS, we

apply their algorithm in our training step, i.e., given a candidate model size pn, we obtain

the estimated change-points by constructing the statistics Wj in (5). We follow the same

mechanism in Braun et al. (2000) to generate qi’s. To be specific, the initial mean vector

q = (q1; : : : ; qd)
> is given as qj = Uj=

∑d
l=1 Ul for j = 1; : : : ; d where Uj ∼ Uniform(0; 1).

The jump mean vector q∗k = (q∗1; : : : ; q
∗
d)
> for change point k is obtained by normalizing

expit(logitq∗l + U∗l ) for l = 1; : : : ; d where U∗l ∼ Uniform(−J; J) with J = 0:8=
√
d. Table

S4 reports the simulation results when n = 2048, Kn = 20, n0 ∈ (80; 100; 120) and d is

chosen as 5 or 10. Again, our R-MOPS can successfully control the FDR at the nominal

level in most cases. The BIC method appears to result in a slightly underfitting model on

average. Accordingly, the BIC method delivers conservative FDR levels and it may miss

some change-points due to relatively low Pa.

Table S4: Comparison results of FDR(%), TPR(%), Pa(%) and K̂ between R-MOPS and BIC in

conjunction with Braun et al. (2000)’s algorithm when Kn = 20 and n = 2048 under Example IV.

d = 5 d = 10

n0 Method FDR TPR Pa K̂ FDR TPR Pa K̂

80 R-MOPS 20.2 98.1 85.5 25.2 17.1 92.8 45.0 23.1

BIC 1.8 92.2 41.0 19.4 1.9 89.2 32.0 19.3

100 R-MOPS 21.1 99.2 92.0 26.0 20.1 98.3 75.5 25.2

BIC 1.6 94.7 62.5 19.6 1.5 93.2 55.5 19.5

120 R-MOPS 21.5 99.8 97.5 26.2 21.2 99.0 85.0 26.0

BIC 1.3 97.2 73.5 19.7 1.1 96.4 69.0 19.6

At last, we investigate the performance of R-MOPS in conjunction with PELT under

Example V when the scale signal function of �i’s is chosen as a piecewise constant function

with values alternating between 1 and 0.5. We fix n = 4096 and show the curves of FDR,

TPR and Pa when Kn ∈ [28; 35] in Figure S3. We observe that the FDRs of R-MOPS
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with PELT get closer to the target level as Kn increases, which is in accordance with the

theoretical justification. Meanwhile, the CV-PELT method usually results in an underfitting

model because some true change-points are not selected.
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Figure S3: FDR, TPR and Pa curves against Kn between R-MOPS and CV criterion based on

PELT when n = 4096 and errors are i.i.d from standardized t5 under Example V.

Extension on controlling PFER

Table S5 reports some PFER results of the MOPS in conjunction with OP and PELT when

the target PFER level k0 = 1; 5 or 10. We fix the sample size n = 4096, the dimension d = 5

for multivariate data and consider that all errors are distributed from N(0; 1). The validity

of our MOPS approach in terms of PFER control is clear.

Others

Figure S4 displays the performance comparison under Example I with the same model setting

as Section 5.1 when the target FDR level is � = 0:1. The comparison results are analogous

to those in nominal level � = 0:2.

Table S6 presents the comparisons between our R-SaRa and dFDR-SaRa under Example

I. Following the recommendation in Hao et al. (2013), we choose four thresholds h1 =

b3 log nc, h2 = b5 log nc, h3 = b7 log nc and h4 = b9 log nc as simple competitors. It is
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Table S5: PFER performance of MOPS in conjunction with OP and PELT when the target PFER

level k0 = 1; 5 and 10 under Examples I-V.

Kn = 5 Kn = 10 Kn = 15

Example
Method

k0 1 5 10 1 5 10 1 5 10

I M-OP 1.08 5.07 9.83 0.98 5.13 9.73 0.92 4.96 10.56
M-PELT 0.86 4.94 9.86 0.91 5.23 10.18 1.06 5.07 10.90

II M-OP 0.79 4.86 10.03 0.69 4.72 10.25 0.89 4.97 10.04
M-PELT 0.74 4.14 9.57 0.77 4.93 10.36 0.66 5.05 8.58

III M-OP 0.65 5.04 10.05 1.06 5.10 10.13 0.94 5.01 10.72
M-PELT 0.67 4.78 9.83 0.83 4.87 10.27 0.72 4.91 10.60

IV M-OP 0.81 4.13 9.18 1.01 5.16 9.93 0.97 5.13 9.75
M-PELT 0.68 4.22 9.00 1.02 4.74 9.74 0.83 5.09 10.08

V M-OP 0.78 5.10 9.93 0.89 5.09 10.08 1.13 5.07 10.89
M-PELT 0.62 4.97 10.21 0.77 4.89 10.38 0.72 5.02 11.12
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Figure S4: FDR, Pa and the average number of estimated change-points K̂ curves against SNR

among RM-PELT, CV-PELT and FDRseg when Kn = 20, n = 2048 and the target FDR level

� = 0:1 under Example I.

clear that the R-MOPS performs well in terms of FDR control, but the performance of

dFDR-SaRa depends on the choice of h to a large extent.

For the frequent change-point setting, Fryzlewicz (2020) proposed WBS2 detection algo-
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Table S6: Comparison results of FDR(%), TPR(%), Pa(%) and K̂ between RM-Sara and dFDR-

SaRa-h in Hao et al. (2013) when n = 10240 and SNR=0.7 under Example I.

Kn = 20 Kn = 40

Errors Method FDR TPR Pa K̂ FDR TPR Pa K̂

RM-SaRa 19.5 99.2 84.0 25.4 22.2 99.8 92.0 52.2

dFDR-SaRa-h1 17.1 78.2 6.5 19.2 10.7 83.9 1.0 37.8

N(0; 1) dFDR-SaRa-h2 10.2 94.3 44.0 21.0 3.0 95.9 29.0 39.6

dFDR-SaRa-h3 9.6 97.3 70.5 21.6 0.2 98.3 49.5 39.4

dFDR-SaRa-h4 3.4 99.1 90.0 20.5 0.0 95.8 1.0 38.3

RM-SaRa 18.6 99.7 94.5 25.3 20.9 99.9 96.5 51.1

dFDR-SaRa-h1 16.8 89.2 18.5 21.6 11.0 92.8 13.5 41.9

�2(3) dFDR-SaRa-h2 12.8 98.1 74.0 22.7 2.0 99.3 81.0 40.5

dFDR-SaRa-h3 7.2 99.7 96.5 21.6 0.3 99.8 92.0 40.0

dFDR-SaRa-h4 2.6 100.0 100.0 20.6 0.0 95.3 0.0 39.0

rithm with threshold-based model selection criterion “Steepest Drop to Low Levels” (SDLL).

We compare our procedure R-MOPS in conjunction with WBS2 to the WBS2.SDLL crite-

rion when the “extreme.teeth” example of the univariate changes in Fryzlewicz (2020) is

considered. Specially, in the “extreme.teeth” example, the mean �i’s for each observation

are defined as follows: �i = 0 if 1 ≤ mod(i; 10) ≤ 5 and �i = 1 if mod(i; 10) ∈ {0; 6; 7; 8; 9},

and the sample size n is 1000. Two values of SNR and three error distributions includ-

ing N(0; 1), standardized t(3) and standardized �2(3) are considered. We fix !n = 4 and

pn = 250 for the R-MOPS. From Table S7, we can see that the FDRs of R-MOPS with

WBS2 are still controlled, though they appear to be overly conservative. The WBS2.SDLL

generally has better performances in terms of K̂ estimation in the most settings.

Another real-data example: OPEC oil price

We analyze the daily Organisation of the Petroleum Exporting Countries (OPEC) Refer-

ence Basket oil prices from Jan. 6, 2003 to Dec. 16, 2020 with sample size n = 4610,

which is available from https://www.quandl.com. As the raw oil price series tend to ex-
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Table S7: Comparisons of K̂, FDR(%) and TPR(%) between R-MOPS and SDLL in conjunction

with WBS2 Fryzlewicz (2020)’s \extreme.teeth" example when n = 1000, Kn = 199 and three error

distributions are considered. The target FDR level is � = 0:2 and �2 is the error variance.

� = 0:3 � = 0:5

Error Method K̂ FDR TPR K̂ FDR TPR

N(0; 1) RMOPS 193.7 7.1 90.4 160.6 10.0 72.6

SDLL 199.4 3.8 96.4 71.6 9.0 29.3

t(3) RMOPS 193.9 7.1 90.5 176.5 8.0 81.6

SDLL 209.8 7.1 97.8 221.8 19.6 89.0

�2(3) RMOPS 193.1 7.1 90.2 167.9 8.9 76.8

SDLL 211.0 8.1 97.2 200.5 22.8 77.3

hibit strong autocorrelation (Baranowski et al., 2019), we consider analyzing the log-returns

100 log(Pi=Pi−1), where Pi is the daily oil price. Figure S5 presents the data sequence of

log-returns and its autocorrelation, indicating the correlations of log-returns are relatively

weak. As Baranowski et al. (2019) pointed out that both mean and scale changes exist in the

sequence, we build Si = (Zi; log(Z2
i ))
> in Wj for the proposed MOPS procedure to detect

changes in both the mean and variance when PELT algorithm is applied. In this study,

we use the function cpt.meanvar() in R package changepoint to implement the PELT

algorithm and also report change-points detected by the BIC for comparison.

The BIC results in 33 change-points, while the R-MOPS with PELT yields 36 and

55 change-points when the target FDR level is 0.05 and 0.1, respectively. The locations

of the change-points identified by BIC and R-MOPS with � = 0:05 are given in the left

panel of Figure S5. The estimated change-points of both methods largely agree each other.

However, the BIC does not indicate any changes in late 2004 and early 2005 and meanwhile

R-MOPS has several estimated change-points in that period. This period could potentially

be related to a noticeable expansion of the production volume in the late 2004, which leads

to a significant change of oil price elasticity. Thus, Murray and King (2012) called the early
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Figure S5: (a): Scatter plots of the log-returns of daily OPEC oil prices, where the blue dash

and red solid lines represent the estimated change-points detected by BIC and R-MOPS with PELT

algorithm under � = 0:05; (b) Autocorrelation of log-returns.

2005 was oil’s tipping point.
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