Supplementary Material for \Data-driven selection of the number of change-points via error rate control"

Hui Chen¹, Haojie Ren², Fang Yao^{3*} and Changliang Zou^1

¹School of Statistics and Data Science, Nankai University, China
 ²School of Mathematical Sciences, Shanghai Jiao Tong University, China
 ³School of Mathematical Sciences, Peking University, China

This supplementary material contains the lemmas used in the proof of Theorem 1 (Appendix C), the proofs of Proposition 1, Theorems 1–3 and Corollaries 1–2 (Appendix D–F), and some additional simulation results (Appendix G).

Appendix B: Equivalence of de nitions given by Eqs.(3) and (4)

- If there exists one ${}_{k}^{*} \in \left[\frac{1}{2}(_{j-1}+_{j}); \frac{1}{2}(_{j}+_{j+1})\right)$ as (3), we have ${}_{k}^{*}-_{j-1} \ge _{j}-_{k}^{*}$ when $_{j} \ge {}_{k}^{*}$ or $_{j+1}-_{k}^{*} > {}_{k}^{*}-_{j}$ when $_{j} < {}_{k}^{*}$, that is $|_{j}-_{k}^{*}| = \min_{j \in \mathcal{T}} |_{j}-_{k}^{*}|$ from which $_{j}$ follows (4);
- On the contrary, if $j = \arg \min_{i \in \mathcal{T}} |_{i} \frac{*}{k}|$ as the definition of (4), we have $\frac{*}{k} \geq \frac{1}{2}(j_{-1}+j)$ due to $\frac{*}{k} j_{-1} > \frac{*}{k} j$ if $\frac{*}{k} < j$; Similarly, $\frac{*}{k} < \frac{1}{2}(j+j_{-1})$ holds for $\frac{*}{k} > j$. Say, j follows the definition of (3).

^{*}Corresponding author: fyao@math.pku.edu.cn

Appendix C: Auxiliary lemmas

Lemma S.1 If the model (1) and Assumption 1 hold, ${}_{n}^{-1} = +O_{p}(K_{n}n^{-1=2})$, where is some positive matrix depending on ${}_{k}^{*}$'s.

This lemma can be proved using the similar arguments in the Proposition 1 of Zou et al. (2020), thus the details are omitted here.

Lemma S.2 [Bernstein's inequality] Let X_1 ; ...; X_n be independent centered random variables a.s. bounded by $A < \infty$ in absolute value. Let ${}^2 = n^{-1} \sum_{i=1}^{n} \mathbb{E}(X_i^2)$. Then for all x > 0,

$$\Pr\left(\sum_{i=1}^{n} X_i \ge x\right) \le \exp\left(-\frac{x^2}{2n^2 + 2Ax=3}\right)$$

The third one is a moderate deviation result for the mean; See Petrov (2002).

Lemma S.3 (Moderate Deviation for the Independent Sum)

Suppose that X_1 ; ...; X_n are independent random variables with mean zero, satisfying $\mathbb{E}(|X_j|^{2+q}) < \infty$ (j = 1, 2, ...) for some q > 0. Let $B_n = \sum_{i=1}^n \mathbb{E}(X_i^2)$. Then

$$\frac{\Pr\left(\sum_{i=1}^{n} X_i > x\sqrt{B_n}\right)}{1 - \Phi(x)} \to 1 \quad \text{and} \quad \frac{\Pr\left(\sum_{i=1}^{n} X_i < -x\sqrt{B_n}\right)}{\Phi(-x)} \to 1;$$

as $n \to \infty$ uniformly in x in the domain $0 \le x$. $\{\log(1=L_n)\}^{1=2}$, where $L_n = B_n^{-1-\frac{q}{2}} \sum_{i=1}^n \mathbb{E}(|X_i|^{2+q})$.

For notational convenience, we note that our estimation procedure can be reformulated as follows. Suppose we have two independent sets of *d*-dimensional observations $\{\mathbf{S}_{1}^{O}, \ldots, \mathbf{S}_{n}^{O}\}$ and $\{\mathbf{S}_{1}^{E}, \ldots, \mathbf{S}_{n}^{E}\}$ collected from the following multiple change-point model

$$\mathbf{S}_{j}^{O} = \boldsymbol{\mu}_{k}^{*} + \mathbf{U}_{j}; \ \mathbf{S}_{j}^{E} = \boldsymbol{\mu}_{k}^{*} + \mathbf{V}_{j}; \ j \in (\ k; \ k+1]; \ k = 0; \ldots; K_{n};$$

where $\mathbf{U}_1, \ldots, \mathbf{U}_n, \mathbf{V}_1, \ldots, \mathbf{V}_n$ are independent standardized noises satisfying $\mathbb{E}(\mathbf{U}_1) = \mathbf{0}$ and $\operatorname{Cov}(\mathbf{U}_1) = \operatorname{Cov}(\mathbf{V}_1) = \overset{*}{_k}$. Let $\underline{\mathscr{S}} = \min_{0 \le k \le \kappa_n} \operatorname{Eig}_{\min}(\overset{*}{_k})$ and $\mathfrak{S} = \max_{0 \le k \le \kappa_n} \operatorname{Eig}_{\max}(\overset{*}{_k})$, where $\operatorname{Eig}_{\min}(\mathbf{A})$ and $\operatorname{Eig}_{\max}(\mathbf{A})$ denote the smallest and largest eigenvalues of a square matrix \mathbf{A} . By Assumption 1, we know that $0 < \underline{\$} < \$ < \infty$. To keep the subscript consistent with the main body, we roughly let $\mathsf{S}_{2i}^O, \mathsf{U}_{2i}, \mathsf{S}_{2i-1}^E, \mathsf{V}_{2i-1}$ as 0 for $i = 1, \ldots, m$.

The next one establishes an uniform bound for $\|\sum_{i=k_1+1}^{k_2} \mathbf{U}_i\|$.

Lemma S.4 Suppose Assumption 1 holds. Then we have as $n \to \infty$,

$$\Pr\left(\max_{(k_1;k_2)\in\mathcal{T}(I_n)}(k_2-k_1)^{-1}\left\|\sum_{i=k_1+1}^{k_2}\mathsf{U}_i\right\|^2 > C\log n\right) = O(n^{1-\cdots}),$$

for some large C > 0 and any $0 < -2^{-1}$.

Proof. We shall show that the assertion holds when d = 1 and the case for d > 1 is straightforward by using the Bonferroni inequality. Denote $M_n = n^{1=(-)}$ for some 0 < <, and observe that

$$U_{i} = [U_{i}\mathbb{I}(|U_{i}| \le M_{n}) - \mathbb{E}\{U_{i}\mathbb{I}(|U_{i}| \le M_{n})\}] + [U_{i}\mathbb{I}(|U_{i}| > M_{n}) - \mathbb{E}\{U_{i}\mathbb{I}(|U_{i}| > M_{n})\}]$$

=: $U_{i1} + U_{i2}$:

It suffices to prove that the assertion holds with U_{i1} and U_{i2} respectively. Let $x = \sqrt{C \log n}$ with a sufficiently large C,

$$\Pr\left(\max_{\substack{(k_1;k_2)\in\mathcal{T}(!_n)}} (k_2 - k_1)^{-1} \left(\sum_{i=k_1+1}^{k_2} U_i\right)^2 > x^2\right)$$

$$\leq \Pr\left(\max_{\substack{(k_1;k_2)\in\mathcal{T}(!_n)}} (k_2 - k_1)^{-1-2} \left|\sum_{i=k_1+1}^{k_2} U_{i1}\right| > x-2\right)$$

$$+ \Pr\left(\max_{\substack{(k_1;k_2)\in\mathcal{T}(!_n)}} (k_2 - k_1)^{-1-2} \left|\sum_{i=k_1+1}^{k_2} U_{i2}\right| > x-2\right)$$

$$=: P_1 + P_2:$$

On one hand, by the Bernstein inequality in Lemma S.2, we have

$$P_{1} \leq n^{2} \Pr\left((k_{2} - k_{1})^{-1} \left| \sum_{i=k_{1}+1}^{k_{2}} U_{i1} \right| > x = 2 \right) \leq 2n^{2} \exp\left\{ -\frac{W_{n} x^{2}}{C_{1} W_{n} + C_{2} M_{n} W_{n}^{1} x} \right\} = o(n^{1-1}) x$$

where C_1 , C_2 are some positive constants and we use the assumption that $< -2^{-1}$.

On the other hand, according to Cauchy inequality and Markov inequality, we note that

$$\mathbb{E}^{2}\{|U_{i}|\mathbb{I}(|U_{i}| > M_{n})\} \leq \mathbb{E}(U_{i}^{2})\operatorname{Pr}(|U_{i}| > M_{n}) \leq C_{3}n^{-}$$

for some constant $C_3 > 0$. Further, it yields $\max_{(k_1:k_2)\in\mathcal{T}(!,n)}(k_2-k_1)^{1-2}\mathbb{E}\{|U_i|\mathbb{I}(|U_i| > M_n)\} = o(1)$: Thus, by Assumption 1 and Markov inequality, we have

$$P_{2} \leq \Pr\left(\max_{(k_{1};k_{2})\in\mathcal{T}(!_{n})}(k_{2}-k_{1})^{-1=2}\sum_{i=k_{1}+1}^{k_{2}}|U_{i}|\mathbb{I}(|U_{i}|>M_{n})>x=4\right)$$

$$\leq \Pr\left(\max_{(k_{1};k_{2})\in\mathcal{T}(!_{n})}(k_{2}-k_{1})^{-1=2}\sum_{i=k_{1}+1}^{k_{2}}|U_{i}|>x=2\mid\max_{i}|U_{i}|>M_{n}\right)\Pr\left(\max_{i}|U_{i}|>M_{n}\right)$$

$$\leq n\Pr\left(|U_{i}|>M_{n}\right)\leq C_{4}n^{1-\cdots};$$

for some positive constant C_4 . The lemma is proved.

A direct corollary of Lemma S.4 is the following lemma. Denote $\mathsf{T}_{1j} = \sqrt{\frac{n_j n_{j+1}}{n_j + n_{j+1}}} n(\bar{\mathsf{S}}_j^O - \bar{\mathsf{S}}_{j+1}^O)$ and $\mathsf{T}_{2j} = \sqrt{\frac{n_j n_{j+1}}{n_j + n_{j+1}}} (\bar{\mathsf{S}}_j^E - \bar{\mathsf{S}}_{j+1}^E)$.

Lemma S.5 Suppose Assumptions 1-2 hold. For those $j \in I_0$, then we have as $n \to \infty$,

$$\Pr\left\{\|\mathbf{T}_{kj}\|^2 > C(\log n + ! \frac{n}{n} \frac{2}{n})\right\} = O(n^{1-\cdots}); \ k = 1/2$$

for some large C > 0 and any $0 < -2^{-1}$.

Proof. We take T_{2j} as example. By Assumption 2, if there exists a true change point k^* between \hat{j}_{-1} and \hat{j}_{+1} , it can only be either close to \hat{j}_{-1} or \hat{j}_{+1} , but not \hat{j} . Without loss

of generality, assume $0 \leq {k \atop k} - \hat{j}_{j-1} \leq n$. Then we note that

$$\begin{aligned} \|\mathbf{T}_{2j}\| &= \left\| \sqrt{\frac{n_j n_{j+1}}{n_j + n_{j+1}}} \left\{ \frac{1}{n_j} \sum_{i=\hat{j}_{j-1}+1}^{\hat{j}} \mathbf{V}_i - \frac{1}{n_{j+1}} \sum_{i=\hat{j}_{j+1}+1}^{\hat{j}} \mathbf{V}_i + \frac{* - \hat{j}_{j-1}}{n_j} (\boldsymbol{\mu}_k^* - \boldsymbol{\mu}_{k+1}^*) \right\} \right\| \\ &\leq \sqrt{\frac{n_j}{n_j + n_{j+1}}} \left\| n_j^{-1=2} \sum_{i=\hat{j}_{j-1}+1}^{\hat{j}} \mathbf{V}_i \right\| + \sqrt{\frac{n_{j+1}}{n_j + n_{j+1}}} \left\| n_{j+1}^{-1=2} \sum_{i=\hat{j}_{j+1}+1}^{\hat{j}} \mathbf{V}_i \right\| + \left\| \frac{* - \hat{j}_{j-1}}{n_j} (\boldsymbol{\mu}_k^* - \boldsymbol{\mu}_{k+1}^*) \right\| \\ &\leq \sqrt{\frac{n_j}{n_j + n_{j+1}}} \left\| n_j^{-1=2} \sum_{i=\hat{j}_{j-1}+1}^{\hat{j}} \mathbf{V}_i \right\| + \sqrt{\frac{n_{j+1}}{n_j + n_{j+1}}} \left\| n_{j+1}^{-1=2} \sum_{i=\hat{j}_{j+1}+1}^{\hat{j}} \mathbf{V}_i \right\| + ! \frac{! - 1 - 2}{n} \| \boldsymbol{\mu}_k^* - \boldsymbol{\mu}_{k+1}^* \| \\ &\leq 2 \max_{(k_1, k_2) \in \mathcal{T}(! n)} (k_2 - k_1)^{-1=2} \left\| \sum_{i=k_1+1}^{k_2} \mathbf{V}_i \right\| + ! \frac{1 - 1 - 2}{n} \| \boldsymbol{\mu}_k^* - \boldsymbol{\mu}_{k+1}^* \| \vdots \end{aligned}$$

The assertion is immediately verified by using Lemma S.4.

Appendix D: Proof of Proposition 1

The proof of this proposition follows similarly to Theorem 2 in Barber et al. (2020) which shows that the Model-X knockoff selection procedure incurs an inflation of the false discovery rate that is proportional to the errors in estimating the distribution of each feature conditional on the remaining features. Fix > 0 and for any threshold t > 0, define

$$R(t) = \frac{\sum_{j \in \mathcal{I}_0} \mathbb{I}(W_j \ge t; \Delta_j \le)}{1 + \sum_{j \in \mathcal{I}_0} \mathbb{I}(W_j \le -t)}:$$

Consider the event that $\mathcal{A} = \{\Delta := \max_{j \in \mathcal{I}_0} \Delta_j \leq \}$. Furthermore, for a threshold rule $L_{0j-T}d\mu f(+1) \]TJ/F48 \ 11.956 \ 2 \ Tff38 \ -21.669 \ T(-2 \ Tff38 \ -11978 \ 0 \ Td \ [(-T) \]Td \ [(+1) \]$ It is crucial to get an upper bound for $\mathbb{E}\{R(L) \mid \mathcal{Z}_O\}$. In what follows, all the " $\mathbb{E}(\cdot)$ " denote the expectations given \mathcal{Z}_O . We have

$$\mathbb{E}\{R\left(L\right)\} = \sum_{j\in\mathcal{I}_{0}} \mathbb{E}\left\{\frac{\mathbb{I}\left(W_{j}\geq L;\Delta_{j}\leq 0\right)}{1+\sum_{j\in\mathcal{I}_{0}}\mathbb{I}\left(W_{j}\leq -L\right)}\right\}$$
$$= \sum_{j\in\mathcal{I}_{0}} \mathbb{E}\left\{\frac{\mathbb{I}\left(W_{j}\geq L_{j};\Delta_{j}\leq 0\right)}{1+\sum_{k\in\mathcal{I}_{0};k\neq j}\mathbb{I}\left(W_{k}\leq -L_{j}\right)}\right\}$$
$$= \sum_{j\in\mathcal{I}_{0}} \mathbb{E}\left[\mathbb{E}\left\{\frac{\mathbb{I}\left(W_{j}\geq L_{j};\Delta_{j}\leq 0\right)}{1+\sum_{k\in\mathcal{I}_{0};k\neq j}\mathbb{I}\left(W_{k}\leq -L_{j}\right)}\mid |W_{j}|; W_{-j}\right\}\right]$$
$$= \sum_{j\in\mathcal{I}_{0}} \mathbb{E}\left\{\frac{\Pr\left(W_{j}>0\mid |W_{j}|; W_{j-1}; W_{j+1}; \mathcal{Z}_{0}\right)\mathbb{I}\left(|W_{j}|\geq L_{j};\Delta_{j}\leq 0\right)}{1+\sum_{k\in\mathcal{I}_{0};k\neq j}\mathbb{I}\left(W_{k}\leq -L_{j}\right)}\right\}; \quad (S.1)$$

where the last step holds since the only unknown is the sign of W_j after conditioning on $(|W_j|, W_{j-1}, W_{j+1})$. By definition of Δ_j , we have $\Pr(W_j > 0 | |W_j|, W_{j-1}, W_{j+1}, Z_O) \leq 1=2 + \Delta_j$.

Hence,

$$\mathbb{E}\{R(L)\}$$

$$\leq \sum_{j\in\mathcal{I}_{0}} \mathbb{E}\left\{\frac{(\frac{1}{2}+\Delta_{j})\mathbb{I}\left(|W_{j}|\geq L_{j};\Delta_{j}\leq \right)}{1+\sum_{k\in\mathcal{I}_{0};k\neq j}\mathbb{I}\left(W_{k}\leq -L_{j}\right)}\right\}$$

$$\leq (\frac{1}{2}+)\left[\sum_{j\in\mathcal{I}_{0}} \mathbb{E}\left\{\frac{\mathbb{I}\left(W_{j}\geq L_{j};\Delta_{j}\leq \right)}{1+\sum_{k\in\mathcal{I}_{0};k\neq j}\mathbb{I}\left(W_{k}\leq -L_{j}\right)}\right\}+\sum_{j\in\mathcal{I}_{0}} \mathbb{E}\left\{\frac{\mathbb{I}\left(W_{j}\leq -L_{j}\right)}{1+\sum_{k\in\mathcal{I}_{0};k\neq j}\mathbb{I}\left(W_{k}\leq -L_{j}\right)}\right\}\right]$$

$$= (\frac{1}{2}+)\left[\mathbb{E}\{R(L)\}+\sum_{j\in\mathcal{I}_{0}} \mathbb{E}\left\{\frac{\mathbb{I}\left(W_{j}\leq -L_{j}\right)}{1+\sum_{k\in\mathcal{I}_{0};k\neq j}\mathbb{I}\left(W_{k}\leq -L_{j}\right)}\right\}\right]:$$

Finally, the sum in the last expression can be simplified as: if for all null j, $W_j > -L_j$, then the sum is equal to zero, while otherwise,

$$\sum_{j \in \mathcal{I}_0} \mathbb{E} \left\{ \frac{\mathbb{I} \left(W_j \le -L_j \right)}{1 + \sum_{k \in \mathcal{I}_0; k \neq j} \mathbb{I} \left(W_k \le -L_j \right)} \right\} = \sum_{j \in \mathcal{I}_0} \mathbb{E} \left\{ \frac{\mathbb{I} \left(W_j \le -L_j \right)}{1 + \sum_{k \in \mathcal{I}_0; k \neq j} \mathbb{I} \left(W_k \le -L_k \right)} \right\} = 1;$$

where the first step comes from the fact: for any j;k, if $W_j \leq -\min(L_j;L_k)$ and $W_k \leq -\min(L_j;L_k)$, then $L_j = L_k$; see Barber et al. (2020).

Accordingly, we have

$$\mathbb{E}\{R(L)\} \le \frac{1=2+}{1=2-} \le 1+5 :$$

Consequently, the assertion of this proposition holds.

Appendix E: Proof of Lemmas A.1-A.2

Note that both the candidate change-points set $\widehat{\mathcal{T}}_{\rho_n}$ and the statistics W_j are dependent with \mathcal{Z}_O . In fact, we derive the following two lemmas on the basis of conditional probability on \mathcal{Z}_O . To be specific, conditional on \mathcal{Z}_O , $\widehat{\mathcal{T}}_{\rho_n}$ is fixed as well as $(\bar{\mathbf{S}}_j^O - \bar{\mathbf{S}}_{j+1}^O)^\top$ n. Due to the independence between \mathcal{Z}_E and \mathcal{Z}_O , the standard results for independent sum such as Lemmas S.2-S.3 can be applied for $\bar{\mathbf{S}}_j^E - \bar{\mathbf{S}}_{j+1}^E$ in the following arguments.

Proof of Lemma A.1

Define $_{n} = \{C(\log n + ! \frac{1}{n} \frac{2}{n})\}^{1=2}$ for a large C > 0 specified in Lemma S.5. Let $\mathcal{A}_{n} = \{\mathbf{u} \in \mathbb{R}^{d} : \|\mathbf{u}\| \ge t_{n}\}$. Then, we observe that

$$\frac{G(t)}{G_{-}(t)} - 1 = \frac{\sum_{j \in \mathcal{I}_0} \{ \Pr(\mathsf{T}_{1j}^{\top} \mathsf{T}_{2j} \ge t \mid \mathcal{Z}_O) - \Pr(\mathsf{T}_{1j}^{\top} \mathsf{T}_{2j} \le -t \mid \mathcal{Z}_O) \}}{\rho_0 G_{-}(t)}$$

Conditional on \mathcal{Z}_O , we have two cases. Firstly, for the case $\mathsf{T}_{1j} \in \mathcal{A}_n^c$, by Lemma S.5 we obtain that

$$\frac{G(t)}{G_{-}(t)} - 1 \le \frac{\sum_{j \in \mathcal{I}_0} \Pr(\mathbf{T}_{1j}^{\top} \mathbf{T}_{2j} \ge t \mid \mathcal{Z}_O)}{p_0 G_{-}(t)} \le \frac{\sum_{j \in \mathcal{I}_0} \Pr(\|\mathbf{T}_{2j}\| > n \mid \mathcal{Z}_O)}{p_0 = p_n} = O_p(n^{1 - \dots} p_n);$$

where the first inequality is due to $t \leq G_{-}^{-1}(1=p_n)$, and thus we claim that $\frac{G(t)}{G(t)} - 1 = O_p(n^{1-p_n})$.

Next, we consider the case $\mathsf{T}_{1j} \in \mathcal{A}_n$. We introduce a new sequence of independent random variables $\{\mathsf{B}_i\}$ defined as follows:

$$\mathsf{B}_{i} = \begin{cases} \frac{\sqrt{n_{j} n_{j+1}}}{n_{j} \sqrt{n_{j} + n_{j+1}}} \mathsf{V}_{i}; & \hat{j}_{-1} < i \leq \hat{j}; \\ -\frac{\sqrt{n_{j} n_{j+1}}}{n_{j+1} \sqrt{n_{j} + n_{j+1}}} \mathsf{V}_{i}; & \hat{j}_{j} < i \leq \hat{j}_{+1}; \end{cases}$$

By Lemma S.3, we firstly verify that for any given $\mathbf{u} \in \mathcal{A}_n$,

$$\frac{\Pr\left\{\sum_{i=\hat{j}-1+1}^{\hat{j}+1} \mathbf{u}^{\top} \mathbf{B}_{i} \geq t \mid \mathcal{Z}_{O}\right\}}{1 - \Phi(t = \sqrt{1 - \Phi(t)})}$$

Proof of Lemma A.2

We only show the validity of the first formula and the second one hold similarly. Note that the G(t) is a deceasing and continuous function. Let $z_0 < z_1 < \cdots < z_{d_n} \leq 1$ and $t_i = G^{-1}(z_i)$, where $z_0 = a_n = p_n$; $z_i = a_n = p_n + a_n i = p_n$; $d_n = [\{(p_n - a_n) = a_n\}^{1=}]$ with > 1. Note that $G(t_i) = G(t_{i+1}) = 1 + o(1)$ uniformly in *i*. It is therefore enough to obtain the convergence rate of

$$D_n = \sup_{0 \le i \le d_n} \left| \frac{\sum_{j \in \mathcal{I}_0} \left\{ \mathbb{I}(W_j \ge t_i) - \Pr(W_j \ge t_i \mid \mathcal{Z}_O) \right\}}{p_0 G(t_i)} \right| :$$

Define $S_j = \{k \in \mathcal{I}_0 : W_k \text{ is dependent with } W_j\}$ and further

$$D(t) = \mathbb{E}\left[\left\{\sum_{j\in\mathcal{I}_0}\mathbb{I}(W_j\geq t) - \Pr(W_j\geq t\mid \mathcal{Z}_O)\right\}^2\mid \mathcal{Z}_O\right]:$$

It is noted that

$$D(t) = \sum_{j \in \mathcal{I}_0} \sum_{k \in \mathcal{S}_j} \mathbb{E} \left[\{ \mathbb{I}(W_j \ge t) - \Pr(W_j \ge t \mid \mathcal{Z}_O) \} \{ \mathbb{I}(W_k \ge t) - \Pr(W_k \ge t \mid \mathcal{Z}_O) \} \mid \mathcal{Z}_O \right] \le 2p_0 G(t)$$

Note that conditional on \mathcal{Z}_O , W_1 ; ...; W_{p_n} is a 1-dependent sequence and so is $\mathbb{I}(W_j \ge t_i)$. We can get

$$\begin{aligned} \Pr(D_n \ge \) &\leq \sum_{i=0}^{d_n} \Pr\left(\left| \frac{\sum_{j \in \mathcal{I}_0} \{\mathbb{I}(W_j \ge t_i) - \Pr(W_j \ge t_i \mid \mathcal{Z}_O)\}}{\rho_0 G(t_i)} \right| \ge \ \right) \\ &\leq \frac{1}{2} \sum_{i=0}^{d_n} \frac{1}{\rho_0^2 G^2(t_i)} D(t_i) \le \frac{2}{2} \sum_{i=0}^{d_n} \frac{1}{\rho_0 G(t_i)}.\end{aligned}$$

Moreover, observe that

$$\sum_{i=0}^{d_n} \frac{1}{p_0 G(t_i)} = \frac{p_n}{p_0} \left(\frac{1}{a_n} + \sum_{i=1}^{d_n} \frac{1}{a_n + a_n i} \right)$$

$$\leq C \left(\frac{1}{a_n} + a_n^{-1} \sum_{i=1}^{d_n} \frac{1}{1+i} \right) \leq C a_n^{-1} \{ 1 + O(1) \}:$$

In sum, we can have $\Pr(D_n \geq) \to 0$ provided that $a_n \to \infty$.

Appendix F: Proof of Theorems 1-3 and Corollaries 1-2

Proof of Corollary 1

(i) By Assumption 2, we know that the event that $|\mathcal{I}_1| = K_n$ and for each $\hat{j} \in \mathcal{I}_1$, $|\hat{j} - \hat{j}| \leq n$ occur with probability approaching one as $n \to \infty$. Therefore, in what follows we always implicitly work with the occurrence of this event. From the proof of Theorem 1, we know that $\mathcal{L} = \frac{2}{n}$. Hence

$$\begin{aligned} &\Pr\left(W_{j} < L; \text{ for some } \widehat{j} \in \mathcal{I}_{1} \mid \mathcal{Z}_{O}\right) \\ &\leq \mathcal{K}_{n} \Pr\left(\frac{n_{j}n_{j+1}}{n_{j} + n_{j+1}} (\bar{\mathbf{S}}_{j}^{O} - \bar{\mathbf{S}}_{j+1}^{O})^{\top} \quad {}_{n}(\bar{\mathbf{S}}_{j}^{E} - \bar{\mathbf{S}}_{j+1}^{E}) < L \mid \mathcal{Z}_{O}\right) \\ &\leq \mathcal{K}_{n} \Pr\left(\frac{n_{j}n_{j+1}}{n_{j} + n_{j+1}} (\bar{\mathbf{U}}_{j} - \bar{\mathbf{U}}_{j+1})^{\top} \quad {}_{n}(\bar{\mathbf{V}}_{j} - \bar{\mathbf{V}}_{j+1}) + O_{p}^{+}(! n \min_{1 \leq k \leq K_{n}} \|\boldsymbol{\mu}_{k+1}^{*} - \boldsymbol{\mu}_{k}^{*}\|^{2}) < L \mid \mathcal{Z}_{O}\right) \\ &\leq \mathcal{K}_{n} \Pr\left(O_{p}^{+}(! n \min_{1 \leq k \leq K_{n}} \|\boldsymbol{\mu}_{k+1}^{*} - \boldsymbol{\mu}_{k}^{*}\|^{2}) \leq L\right) \\ &+ \mathcal{K}_{n} \Pr\left(\frac{n_{j}n_{j+1}}{n_{j} + n_{j+1}} (\bar{\mathbf{U}}_{j} - \bar{\mathbf{U}}_{j+1})^{\top} \quad {}_{n}(\bar{\mathbf{V}}_{j} - \bar{\mathbf{V}}_{j+1}) > O_{p}^{+}(! n \min_{1 \leq k \leq K_{n}} \|\boldsymbol{\mu}_{k+1}^{*} - \boldsymbol{\mu}_{k}^{*}\|^{2}) \mid \mathcal{Z}_{O}\right) \rightarrow 0 \end{aligned}$$

in probability, where we use Lemma S.4. The result immediately holds.

(ii) From (i), we have $\lim_{n\to\infty} \Pr(\mathcal{M} \supseteq \mathcal{I}_1) = 1$. Here, we only need to prove $\lim_{n\to\infty} \Pr(\mathcal{M} \subseteq \mathcal{I}_1) = 1$, which is equivalent to show that $\lim_{n\to\infty} \Pr(\mathcal{M} \cap \mathcal{I}_0 = \emptyset) = 1$.

It is noted that

$$\Pr(W_j \ge L; \text{ for some } j \in \mathcal{I}_0 \mid \mathcal{Z}_0) \le \sum_{j \in \mathcal{I}_0} \Pr(W_j \ge L \mid \mathcal{Z}_0) \sim p_0 \frac{n}{p_n} \quad K_n ;$$

By using the condition $K_n \to 0$, the corollary is proved.

Proof of Theorem 1

Following the notations in Section 2, assume $\hat{j} \in \mathcal{M}$ is an informative point and \hat{j}^{θ} is its corresponding true change-point such that $|\hat{j} - \hat{j}^{\theta}| \leq n$ by Assumption 2. Note that $\tilde{k} \in \widetilde{\mathcal{M}}$ is the selected one such that $|\tilde{k} - \hat{j}| = \min_{\ell \in \widetilde{\mathcal{T}}_{\rho_n}} |\tilde{\ell}_{\ell} - \hat{j}|$. Because \mathcal{M} and $\widetilde{\mathcal{M}}$ have the same cardinality, we only need to show that $\widetilde{k} \in \mathcal{I}_1(\widetilde{\mathcal{T}}_{p_n})$, say

$$|\widetilde{k}_{k} - \widetilde{j}_{\ell}| = \min_{\widetilde{j}_{\ell} \in \widetilde{\mathcal{T}}_{p_{\ell}}} |\widetilde{j}_{\ell} - \widetilde{j}_{\ell}| \qquad (S_{k} \mathcal{T} \mathcal{T})$$

(ii) Let $a_n = (C \log n)^{1=2}$, where C > 0 is specified in Lemma S.5. Define $\mathcal{B}_n = \{\mathbf{u} \in \mathbb{R}^d : \|\mathbf{u}\| \ge t=a_n\}$. Let $\mathcal{C} = \bigcap_{j \in \mathcal{I}_0} \{|\tilde{W}_j| \le j\}$, where j satisfies $\Pr(|\tilde{W}_j| > j \mid \mathcal{Z}_0) = b_n$ and b_n be a sequence satisfies the conditions that $b_n \to 0$, $p_n b_n \to 0$ and $n = b_n \to \infty$. According to the condition $p_n n^{-2} \to 0$ in the theorem, such b_n is well defined. By the definition of \tilde{W}_j , we know that $\mathbb{E}(\tilde{W}_j) = 0$ for all $\hat{j} \in \mathcal{I}_0$. Moreover, by Lemma S.5, we have $j = a_n^2$ uniformly in j.

According to Proposition 1, we have

$$\Pr\left(\max_{j\in\mathcal{I}_{0}}\Delta_{j} > | \mathcal{Z}_{O}\right) = \Pr\left(\max_{j\in\mathcal{I}_{0}}\Delta_{j} > | \mathcal{C};\mathcal{Z}_{O}\right)\Pr(\mathcal{C} | \mathcal{Z}_{O}) + \Pr\left(\max_{j\in\mathcal{I}_{0}}\Delta_{j} > |;\mathcal{C}^{c} | \mathcal{Z}_{O}\right)$$
$$\leq \Pr\left(\max_{j\in\mathcal{I}_{0}}\Delta_{j} > | \mathcal{C};\mathcal{Z}_{O}\right) + \Pr(\mathcal{C}^{c} | \mathcal{Z}_{O}) := A_{1} + A_{2}:$$

By the definition of b_n , $A_2 = o_p(1)$. It remains to handle A_1 .

Notice that conditional on \mathcal{C} ,

$$\max_{j \in \mathcal{I}_0} \Delta_j \le \max_{j \in \mathcal{I}_0} \sup_{0 \le t \le j} |f_j(-t) = f_j(t) - 1|;$$
(S.3)

where $f_j(\cdot)$ is the density of \tilde{W}_j conditional on \mathcal{Z}_O . It remains to prove that the right-hand side of (S.3) goes to zero as $n \to \infty$.

Denote $\tilde{\mathsf{T}}_{1j} = \sqrt{\frac{n_j n_{j+1}}{n_j + n_{j+1}}} \quad {}_{n}(\tilde{\mathsf{S}}_{Lj}^O - \tilde{\mathsf{S}}_{Rj}^O) = \mathsf{u}$ given \mathcal{Z}_O . In a similar way to the proof of Lemma A.1, we consider two cases for u . As to the case $\mathsf{u} \in \mathcal{B}_n^c$, $\max_{j \in \mathcal{I}_0} \Delta_j = O_p\{(n^{-2}b_n)^{-1}\}$ by the definition of j and $0 \leq t \leq j$. On the other hand, we consider the case $\mathsf{u} \in \mathcal{B}_n$. Then, for $j \in \mathcal{I}_0$ by Lemma S.3, we have

$$f_j(t) = \{\tilde{\Phi}(t=s) - \tilde{\Phi}(t=s-)\}\{1 + o_p(1)\} = \frac{1}{s} \ (t=s)\{1 + o_p(1)\}\}$$

where $s = \sqrt{\mathbf{u}^{\top} \mathbf{u}}$. Similarly, we also have $f_j(-t) = \frac{1}{s} (-t=s)\{1 + o_p(1)\}$, which yields that the right-hand side of (S.3) goes to zero since (-t=s) = (t=s) and (t=s) is bounded. Then, the result (ii) in the theorem holds.

Appendix G: Additional simulation results

Selection of p_n and $!_n$

Table S1 reports the FDR, TPR and \hat{K} of MOPS in conjunction with OP, PELT and WBS detection algorithms with different p_n and $!_n$ under Example I. We consider the error from N(0,1) and fix n = 4096, $K_n = 15$ and SNR=0.5. We observe that different values of $c \in (1,2]$ for $p_n = \lfloor cn^{2=5} \rfloor$ and $\in [0.3, 0.5]$ for $!_n = n$ present similar results and their FDRs are not significantly different. Thus we recommend $p_n = \lfloor 2n^{2=5} \rfloor$ and $!_n = \min(\lfloor n^{0.5} \rfloor; 60)$ in the simulation studies.

Table S1: FDR(%), TPR(%) and \hat{K} of MOPS in conjunction with OP, PELT and WBS detection algorithms when error follows N(0;1), n = 4096, $K_n = 15$ and SNR=0.5 under Example I. The p_n is chosen as $p_n = \lfloor cn^{2=5} \rfloor$ with c = 1:2;1:5;2 and $!_n = n$ with = 0:3;0:4;0:5.

			= 0:3			= 0:4			= 0:5	
p _n	Method	FDR	TPR	Ŕ	FDR	TPR	Ŕ	 FDR	TPR	Ŕ
	M-OP	19 <i>:</i> 8	91 <i>:</i> 3	17 <i>:</i> 7	19 <i>:</i> 1	92 <i>:</i> 7	17 <i>:</i> 9	18 <i>:</i> 9	95 <i>:</i> 2	18 <i>:</i> 3
1 <i>:</i> 2 <i>n</i> ²⁼⁵	M-PELT	19 <i>:</i> 5	91 <i>:</i> 2	17 <i>:</i> 5	19 <i>:</i> 4	93 <i>:</i> 1	18 <i>:</i> 0	19 <i>:</i> 9	95 <i>:</i> 7	18 <i>:</i> 8
	M-WBS	16 <i>:</i> 9	91 <i>:</i> 8	17 <i>:</i> 3	17 <i>:</i> 2	92 <i>:</i> 3	17 <i>:</i> 5	19 <i>:</i> 5	95 <i>:</i> 3	18 <i>:</i> 5
	M-OP	18 <i>:</i> 6	90 <i>:</i> 0	17 <i>:</i> 2	21 <i>:</i> 0	92 <i>:</i> 9	18 <i>:</i> 6	20 <i>:</i> 5	93 <i>:</i> 7	18 <i>:</i> 4
1 <i>:</i> 5 <i>n</i> ²⁼⁵	M-PELT	16 <i>:</i> 6	89:3	16 <i>:</i> 7	20 <i>:</i> 8	93 <i>:</i> 1	18 <i>:</i> 6	21 <i>:</i> 2	94 <i>:</i> 1	18 <i>:</i> 9
	M-WBS	17 <i>:</i> 3	85 <i>:</i> 9	16 <i>:</i> 3	18 <i>:</i> 3	86 <i>:</i> 3	16 <i>:</i> 6	16 <i>:</i> 4	90 <i>:</i> 9	17 <i>:</i> 0
	M-OP	20 <i>:</i> 5	79 <i>:</i> 5	17 <i>:</i> 4	19 <i>:</i> 5	82 <i>:</i> 1	16 <i>:</i> 5	20 <i>:</i> 4	85 <i>:</i> 3	17 <i>:</i> 0
2 <i>n</i> ²⁼⁵	M-PELT	20 <i>:</i> 2	80 <i>:</i> 3	17 <i>:</i> 1	20 <i>:</i> 0	82 <i>:</i> 7	16 <i>:</i> 7	19 <i>:</i> 7	85 <i>:</i> 5	17 <i>:</i> 0
	M-WBS	19 <i>:</i> 6	76 <i>:</i> 7	15 <i>:</i> 9	17 <i>:</i> 8	77 <i>:</i> 8	15 <i>:</i> 8	18 <i>:</i> 1	83 <i>:</i> 1	16 <i>:</i> 5

Next, we investigate the performance of our methods in the case that $p_n > 2n^{2=5}$. Figure S1 presents the FDR and TPR curves of MOPS, R-MOPS and M-MOPS when p_n varies in $(2n^{2=5}; n=10)$ and the WBS algorithm is employed under Example I. Here we fix $!_n = 10$ and the true change-point number $K_n = 30$ and consider the error comes from N(0,1) and standardized 2(3). The FDR values of MOPS vary in an acceptable range of the target level

no matter the choice of p_n under normal error, but are slightly distorted under standardized

 $^{2}(3)$ error. The R-MOPS is able to improve TPR and yield smaller FDR levels than MOPS due to the use of full sample information. We also observe that the M-MOPS leads to more conservative FDR levels and smaller TPR than R-MOPS because of only using half of the observations around each candidate point. That is consistent with our theoretical analysis in Proposition 1 and Theorem 3. Similar results can also be found in Figure S2.

Method - MOPS - R-MOPS · M-MOPS

Figure S1: FDR and TPR curves against $p_n \in (2n^{2=5}; n=10)$ of MOPS, R-MOPS and M-MOPS in conjunction with WBS algorithm when n = 4096, $K_n = 30$ and SNR=1 under Example I. The $!_n$ is xed as 10.

Figure S2 shows the FDR and TPR curves against $!_n$ of the MOPS, R-MOPS and M-MOPS in conjunction with WBS algorithm when n = 4096, $K_n = 10$ and p_n is fixed as $\lfloor 2n^{2-5} \rfloor$ under Example I. It implies that all the procedures are not sensitive to the choice of $!_n$ in terms of FDR control. Meanwhile, a large $!_n$ could improve the detection power due

to more observations in each segment.

Method - MOPS - R-MOPS · · M-MOPS

Figure S2: FDR and TPR curves against ! $_n$ of MOPS, R-MOPS and M-MOPS in conjunction with WBS algorithm when n = 4096, $K_n = 10$ and SNR=0.7 under Example I. The p_n is xed as $\lfloor 2n^{2=5} \rfloor$.

Comparison under other models

Three other MCP models are considered, reflecting changes in different aspects such as the location and scale. Table S2 gives a summary of all three simulated models along with the associated statistics $\bar{\mathbf{S}}_{j}^{O}$ in constructing W_{j} .

Under multivariate mean change model (Example III), we examine the performance of the refined MOPS in conjunction with the OP and PELT algorithms. For simplicity, each dimension of the signals μ_i 's is set as the same as the signals $_i$'s in Example I. Two scenarios for the error distribution are considered: (i) $\varepsilon_i \stackrel{\text{iid}}{\sim} N(\mathbf{0}; \)$ with $= (0.5^{|i-j|})_{d \times d};$

Table S2: Preview of simulated models and the sample mean S_j^O of the *j*-th segment for the odd part. Change-points \hat{j} 's are estimated on the basis of Z_O .

NO.	Model	S_j^O
111	$X_i = \mu_i + \varepsilon_i$	$X^{O}_{\widehat{j}=1,\widehat{j}}$
IV	$\mathbf{X}_i \sim \text{Multinomial}(m; \mathbf{q}_i)$	$X^{O}_{\widehat{j}=1,\widehat{j}}$
V	$X_i = i''_i$	$V^O_{\hat{j}=1,\hat{j}'}, V_i = \log X_i^2$

(ii) $\boldsymbol{\varepsilon}_{l} = ("_{i1}, \ldots, "_{id})^{\top}$, where $"_{i1}, \ldots, "_{id} \stackrel{\text{iid}}{\sim} (\frac{2}{5} - 5) = \sqrt{10}$. We consider the dimension d = 5, 10 and adjust the scale parameter to $= 9\sqrt{d}$. Table S3 presents the results when the sample size n = 3072 and the number of change-points $K_n = 27$. The R-MOPS-based methods perform reasonably well in terms of FDR control and reliable TPR. In contrast, the CV-PELT results in overly conservative FDR levels across all the settings and its P_a 's are much smaller than those of R-MOPS.

Table S3: Comparison results of FDR(%), TPR(%), $P_a(\%)$ and \hat{K} when $K_n = 27$ and n = 3072 under Example III (multivariate mean shift).

			<i>d</i> =	5			<i>d</i> = 10				
errors	Method	FDR	TPR	Pa	Ŕ	_	FDR	TPR	Pa	Ŕ	
	RM-OP	18.5	97.1	53.5	32.9		18.9	92.9	35.0	32.1	
$arepsilon_{i} \sim N(0;$)	RM-PELT	18.7	97.5	54.0	32.8		18.5	92.5	33.5	31.9	
	CV-PELT	0.9	91.3	18.0	24.9		0.6	86.7	4.0	23.6	
	RM-OP	19.7	99.1	87.0	33.0		20.3	95.9	68.5	33.1	
"ij $\sim rac{2}{5} - 5}{\sqrt{10}}$	RM-PELT	19.5	99.0	85.5	32.7		20.8	96.2	69.5	33.3	
v =	CV-PELT	0.8	85.9	4.5	23.4		1.7	84.1	0.0	23.1	

Further, we consider the MCP problem for multinomial distributions (Example IV), i.e. $X_i \sim \text{Multinom}(n_0; \mathbf{q}_i)$, where the variance of the observation relies on their mean. Braun et al. (2000) integrated the problem into quasi-likelihood framework in combination with BIC to determine the number of change-points. In particular, they aimed to identify the

breaks in the probability vectors \mathbf{q}_i 's and recommended the BIC with a penalty $_n = 0.5 n^{0.23}$, which will be seen as a benchmark for comparison in this example. To implement MOPS, we apply their algorithm in our training step, i.e., given a candidate model size p_n , we obtain the estimated change-points by constructing the statistics W_j in (5). We follow the same mechanism in Braun et al. (2000) to generate \mathbf{q}_i 's. To be specific, the initial mean vector $\mathbf{q} = (q_1; \ldots; q_d)^{\top}$ is given as $q_j = U_j = \sum_{l=1}^d U_l$ for $j = 1; \ldots; d$ where $U_j \sim \text{Uniform}(0,1)$. The jump mean vector $\mathbf{q}_k^* = (q_1^*; \ldots; q_d^*)^{\top}$ for change point k is obtained by normalizing expit(logit $q_l^* + U_l^*$) for $l = 1; \ldots; d$ where $U_l^* \sim \text{Uniform}(-J; J)$ with $J = 0.8 = \sqrt{d}$. Table S4 reports the simulation results when n = 2048, $\mathcal{K}_n = 20$, $n_0 \in (80; 100; 120)$ and d is chosen as 5 or 10. Again, our R-MOPS can successfully control the FDR at the nominal level in most cases. The BIC method delivers conservative FDR levels and it may miss some change-points due to relatively low P_a .

			<i>d</i> =	5			<i>d</i> = 10					
n_0	Method	FDR	TPR	Pa	Ŕ	-	FDR	TPR	Pa	Ŕ		
80	R-MOPS	20.2	98.1	85.5	25.2		17.1	92.8	45.0	23.1		
	BIC	1.8	92.2	41.0	19.4		1.9	89.2	32.0	19.3		
100	R-MOPS	21.1	99.2	92.0	26.0		20.1	98.3	75.5	25.2		
	BIC	1.6	94.7	62.5	19.6		1.5	93.2	55.5	19.5		
120	R-MOPS	21.5	99.8	97.5	26.2		21.2	99.0	85.0	26.0		
	BIC	1.3	97.2	73.5	19.7		1.1	96.4	69.0	19.6		

Table S4: Comparison results of FDR(%), TPR(%), $P_a(\%)$ and \hat{K} between R-MOPS and BIC in conjunction with Braun et al. (2000)'s algorithm when $K_n = 20$ and n = 2048 under Example IV.

At last, we investigate the performance of R-MOPS in conjunction with PELT under Example V when the scale signal function of $_i$'s is chosen as a piecewise constant function with values alternating between 1 and 0.5. We fix n = 4096 and show the curves of FDR, TPR and P_a when $K_n \in [28;35]$ in Figure S3. We observe that the FDRs of R-MOPS with PELT get closer to the target level as K_n increases, which is in accordance with the theoretical justification. Meanwhile, the CV-PELT method usually results in an underfitting model because some true change-points are not selected.

Figure S3: FDR, TPR and P_a curves against K_n between R-MOPS and CV criterion based on PELT when n = 4096 and errors are i.i.d from standardized t_5 under Example V.

Extension on controlling PFER

Table S5 reports some PFER results of the MOPS in conjunction with OP and PELT when the target PFER level $k_0 = 1/5$ or 10. We fix the sample size n = 4096, the dimension d = 5for multivariate data and consider that all errors are distributed from N(0/1). The validity of our MOPS approach in terms of PFER control is clear.

Others

Figure S4 displays the performance comparison under Example I with the same model setting as Section 5.1 when the target FDR level is = 0.1. The comparison results are analogous to those in nominal level = 0.2.

Table S6 presents the comparisons between our R-SaRa and dFDR-SaRa under Example I. Following the recommendation in Hao et al. (2013), we choose four thresholds $h_1 = \lfloor 3 \log n \rfloor$, $h_2 = \lfloor 5 \log n \rfloor$, $h_3 = \lfloor 7 \log n \rfloor$ and $h_4 = \lfloor 9 \log n \rfloor$ as simple competitors. It is

		$K_n = 5$		_		$K_{n} = 1$	0	_	<i>K_n</i> = 15			
Example	Method k ₀	1	5	10		1	5	10		1	5	10
	M-OP	1.08	5.07	9.83		0.98	5.13	9.73		0.92	4.96	10.56
	M-PELT	0.86	4.94	9.86		0.91	5.23	10.18		1.06	5.07	10.90
П	M-OP	0.79	4.86	10.03		0.69	4.72	10.25		0.89	4.97	10.04
	M-PELT	0.74	4.14	9.57		0.77	4.93	10.36		0.66	5.05	8.58
111	M-OP	0.65	5.04	10.05		1.06	5.10	10.13		0.94	5.01	10.72
	M-PELT	0.67	4.78	9.83		0.83	4.87	10.27		0.72	4.91	10.60
IV	M-OP	0.81	4.13	9.18		1.01	5.16	9.93		0.97	5.13	9.75
	M-PELT	0.68	4.22	9.00		1.02	4.74	9.74		0.83	5.09	10.08
V	M-OP	0.78	5.10	9.93		0.89	5.09	10.08		1.13	5.07	10.89
-	M-PELT	0.62	4.97	10.21		0.77	4.89	10.38		0.72	5.02	11.12

Table S5: *PFER performance of MOPS in conjunction with OP and PELT when the target PFER level* $k_0 = 1$; 5 and 10 under Examples I-V.

Figure S4: FDR, P_a and the average number of estimated change-points \hat{K} curves against SNR among RM-PELT, CV-PELT and FDRseg when $K_n = 20$, n = 2048 and the target FDR level = 0.1 under Example I.

clear that the R-MOPS performs well in terms of FDR control, but the performance of dFDR-SaRa depends on the choice of h to a large extent.

For the frequent change-point setting, Fryzlewicz (2020) proposed WBS2 detection algo-

			K _n =	= 20		$K_n = 40$				
Errors	Method	FDR	TPR	Pa	Ŕ	FDR	TPR	Pa	Ŕ	
	RM-SaRa	19.5	99.2	84.0	25.4	22.2	99.8	92.0	52.2	
	dFDR-SaRa- <i>h</i> 1	17.1	78.2	6.5	19.2	10.7	83.9	1.0	37.8	
N(0;1)	dFDR-SaRa- <i>h</i> 2	10.2	94.3	44.0	21.0	3.0	95.9	29.0	39.6	
	dFDR-SaRa- <i>h</i> 3	9.6	97.3	70.5	21.6	0.2	98.3	49.5	39.4	
	dFDR-SaRa- <i>h</i> 4	3.4	99.1	90.0	20.5	0.0	95.8	1.0	38.3	
	RM-SaRa	18.6	99.7	94.5	25.3	20.9	99.9	96.5	51.1	
	dFDR-SaRa- <i>h</i> 1	16.8	89.2	18.5	21.6	11.0	92.8	13.5	41.9	
² (3)	dFDR-SaRa- <i>h</i> 2	12.8	98.1	74.0	22.7	2.0	99.3	81.0	40.5	
	dFDR-SaRa- <i>h</i> 3	7.2	99.7	96.5	21.6	0.3	99.8	92.0	40.0	
	dFDR-SaRa- <i>h</i> 4	2.6	100.0	100.0	20.6	0.0	95.3	0.0	39.0	

Table S6: Comparison results of FDR(%), TPR(%), $P_a(\%)$ and \hat{K} between RM-Sara and dFDR-SaRa-h in Hao et al. (2013) when n = 10240 and SNR=0.7 under Example I.

rithm with threshold-based model selection criterion "Steepest Drop to Low Levels" (SDLL). We compare our procedure R-MOPS in conjunction with WBS2 to the WBS2.SDLL criterion when the "extreme.teeth" example of the univariate changes in Fryzlewicz (2020) is considered. Specially, in the "extreme.teeth" example, the mean $_i$'s for each observation are defined as follows: $_i = 0$ if $1 \leq \text{mod}(i/10) \leq 5$ and $_i = 1$ if $\text{mod}(i/10) \in \{0/6/7/8/9\}$, and the sample size n is 1000. Two values of SNR and three error distributions including N(0/1), standardized t(3) and standardized $^2(3)$ are considered. We fix $l_n = 4$ and $p_n = 250$ for the R-MOPS. From Table S7, we can see that the FDRs of R-MOPS with WBS2 are still controlled, though they appear to be overly conservative. The WBS2.SDLL generally has better performances in terms of \hat{K} estimation in the most settings.

Another real-data example: OPEC oil price

We analyze the daily Organisation of the Petroleum Exporting Countries (OPEC) Reference Basket oil prices from Jan. 6, 2003 to Dec. 16, 2020 with sample size n = 4610, which is available from https://www.quandl.com. As the raw oil price series tend to ex-

Table S7: Comparisons of \hat{K} , FDR(%) and TPR(%) between R-MOPS and SDLL in conjunction with WBS2 Fryzlewicz (2020)'s \extreme.teeth" example when n = 1000, $K_n = 199$ and three error distributions are considered. The target FDR level is = 0.2 and 2 is the error variance.

			= 0:3			= 0:5				
Error	Method	Ŕ	FDR	TPR	Ŕ	FDR	TPR			
N(0;1)	RMOPS	193.7	7.1	90.4	160.	.6 10.0	72.6			
	SDLL	199.4	3.8	96.4	71.0	6 9.0	29.3			
<i>t</i> (3)	RMOPS	193.9	7.1	90.5	176.	5 8.0	81.6			
	SDLL	209.8	7.1	97.8	221.	.8 19.6	89.0			
² (3)	RMOPS	193.1	7.1	90.2	167.	9 8.9	76.8			
	SDLL	211.0	8.1	97.2	200.	5 22.8	77.3			

hibit strong autocorrelation (Baranowski et al., 2019), we consider analyzing the log-returns $100 \log(P_i = P_{i-1})$, where P_i is the daily oil price. Figure S5 presents the data sequence of log-returns and its autocorrelation, indicating the correlations of log-returns are relatively weak. As Baranowski et al. (2019) pointed out that both mean and scale changes exist in the sequence, we build $\mathbf{S}_i = (\mathbb{Z}_i / \log(\mathbb{Z}_i^2))^{\top}$ in W_j for the proposed MOPS procedure to detect changes in both the mean and variance when PELT algorithm is applied. In this study, we use the function cpt.meanvar() in R package changepoint to implement the PELT algorithm and also report change-points detected by the BIC for comparison.

The BIC results in 33 change-points, while the R-MOPS with PELT yields 36 and 55 change-points when the target FDR level is 0.05 and 0.1, respectively. The locations of the change-points identified by BIC and R-MOPS with = 0.05 are given in the left panel of Figure S5. The estimated change-points of both methods largely agree each other. However, the BIC does not indicate any changes in late 2004 and early 2005 and meanwhile R-MOPS has several estimated change-points in that period. This period could potentially be related to a noticeable expansion of the production volume in the late 2004, which leads to a significant change of oil price elasticity. Thus, Murray and King (2012) called the early

Figure S5: (a): Scatter plots of the log-returns of daily OPEC oil prices, where the blue dash and red solid lines represent the estimated change-points detected by BIC and R-MOPS with PELT algorithm under = 0.05; (b) Autocorrelation of log-returns.

2005 was oil's tipping point.

References

- Baranowski, R., Chen, Y., and Fryzlewicz, P. (2019), \Narrowest-over-threshold detection of multiple change points and change-point-like features," *Journal of the Royal Statistical Society: Series B* (*Statistical Methodology*), 81, 649{672.
- Barber, R. F., Candes, E. J., and Samworth, R. J. (2020), \Robust inference with knocko s," *The Annals of Statistics*, 48, 1409(1431.
- Braun, J. V., Braun, R. K., and Muller, H. G. (2000), \Multiple changepoint tting via quasilikelihood, with application to DNA sequence segmentation," *Biometrika*, 87, 301{314.
- Fryzlewicz, P. (2020), \Detecting possibly frequent change-points: Wild Binary Segmentation 2 and steepest-drop model selection," *Journal of the Korean Statistical Society*, 1{44.
- Hao, N., Niu, Y. S., and Zhang, H. (2013), \Multiple change-point detection via a screening and ranking algorithm," *Statistica Sinica*, 23, 1553{1572.
- Murray, J. and King, D. (2012), \Oil's tipping point has passed," Nature, 481, 433{435.
- Petrov, V. (2002), \On probabilities of moderate deviations," *Journal of Mathematical Sciences*, 109, 2189{2191.
- Zou, C., Wang, G., and Li, R. (2020), \Consistent selection of the number of change-points via sample-splitting," *The Annals of Statistics*, 48, 413(439.