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(b̂1, b̂2) = arg min
(b1,b2)∈R2

1

mi

mi∑
j=1

{
X ∗

ij − b1 − b2(Tij − t)
}2K

(
Tij − t

hi

)
,

where K is a compactly supported symmetric density function and hi is the bandwidth. It can be
shown that b̂1 = (R0S2 − R1S1)/(S0S2 − S2

1 ), where

Sr(t) = 1

mihi

mi∑
j=1

K

(
Tij − t

hi

)(
Tij − t

hi

)r

,

Rr(t) = 1

mihi

mi∑
j=1

K

(
Tij − t

hi

)(
Tij − t

hi

)r

X ∗
ij

for r = 0, 1 and 2.
The estimate b̂1 does not have a finite mean squared error, as its denominator is zero with

positive probability for a finite sample. To overcome this issue, we adopt the technique of ridging
(Fan, 1993; Seifert & Gasser, 1996; Hall & Marron, 1997) to estimate Xi(t) by the following
ridged local linear estimate:

X̂i(t) = R0S2 − R1S1

S0S2 − S2
1 + δ1{|S0S2−S2

1 |<δ}
, (2)

where δ > 0 is a sufficiently small constant that depends on mi, such as δ = m−2
i .

When supi mi is relatively small or bounded by a constant, a scenario commonly referred to as
the sparse design, the procedure proposed by Yao et al. (2005a) can be used to recover individual
Xi. We refer readers to the Supplementary Material for details of such a procedure.

2.2. Step II: estimation of the manifold dimension and tangent space

To characterize the manifold structure, we first estimate the intrinsic dimension d of the
manifold M. We adopt the maximum likelihood estimator proposed by Levina & Bickel (2004),
replacing the unobservable Xi with the contaminated version X̂i. For a given x ∈ M, define
Ĝi(x) = ‖x − X̂i‖L2 and let Ĝ(k)(x) be the kth order statistic of Ĝ1(x), . . . , Ĝn(x). Then the
intrinsic dimension d is estimated by

d̂ = 1

k2 − k1 + 1

k2∑
k=k1

d̂k (3)

with

d̂k = 1

n

n∑
i=1

d̂k(X̂i), d̂k(x) =
⎧⎨
⎩ 1

k − 1

k−1∑
j=1

log
Ĝ(k)(x) + �

Ĝ(j)(x) + �

⎫⎬
⎭

−1

, (4)

where � is a positive constant depending on n, and k1 and k2 are tuning parameters. The constant
� regularizes d̂k(x) to overcome the additional variability introduced by the contamination of
the predictor. We conveniently set � = 1/ log m̄ with m̄ = n−1∑n

i=1 mi and refer readers
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contamination dominates, the convergence is slightly slower for boundary points than for interior
points. This is the price we pay for the boundary effect when the predictor is contaminated, which
is in contrast with the classical result on the local linear estimator (Fan, 1993).

4. Simulation study

To demonstrate the performance of our method, we conduct simulation studies for three dif-
ferent manifolds, namely, the three-dimensional rotation group SO(3), the Klein bottle and the
mixture of two Gaussian densities.

For the SO(3) manifold we set Xi(t) = ∑9
k=1 zikbk(t), where b2
−1(t) = cos{(2
 −

1)π t/10}/51/2 and b2
(t) = sin{(2
 − 1)π t/10}/51/2. To generate the random variables zik ,
for a vector r = (r1, r2, r3) and a variable θ ∈ R we define

R(r, θ) = (1 − cos θ)rrT +
⎛
⎝ cos θ −r3 sin θ r2 sin θ

r3 sin θ cos θ −r1 sin θ

−r2 sin θ r1 sin θ cos θ

⎞
⎠ .

Writing e2 = (0, 1, 0)T and e3 = (0, 0, 1)T, we set (zi1, . . . , zi9)
T = vec(Zi) with Euler angle

parameterization Zi = R(e3, ui)R(e2, vi)R(e3, wi), where the (ui, vi) are uniformly sampled from
the two-dimensional sphere S2 = [0, 2π) × [0, π ] and the wi are uniformly sampled from the
unit circle S1 = [0, 2π).

For the Klein bottle we set Xi(t) = ∑4
k=1 zikbk(t) with bk(t) as in the SO(3) setting. We

set zi1 = (2 cos vi + 1) cos ui, zi2 = (2 cos vi + 1) sin ui, zi3 = 2 sin vi cos(ui/2) and zi4 =
2 sin vi sin(ui/2), where ui and vi are independently sampled from the uniform distribution on
(0, 2π). Here (u, v) �→ (z1, z2, z3, z4) is a parameterization of the Klein bottle with intrinsic
dimension d = 2.

For the Gaussian mixture we set Xi(t) = exp{−(t − ui)
2/2}/(2π)1/2 + exp{−(t −

vi)
2/2}/(2π)1/2 with (v1, v2)

T uniformly sampled from a circle with diameter 0.5, similar to
the form used in Chen & Müller (2012).

The functional predictor Xi is observed at mi points Ti1, . . . , Timi in the interval [0, 1] with
heteroscedastic measurement errors ζij ∼ N (0, σ 2

ij ), where σij is determined by the signal-to-noise

ratio snrX = var{X (Tij) | Tij}/σ 2
ij = 4. The response is generated by Yi = 4 sin(4Zi) cos(Z2

i ) +
2�(1 + Zi/2) + εi with Zi = ∫ 1

0 X 2
i (t)t dt and �(α) = ∫∞

0 sα−1 exp(−s) ds. The noise εi added
to the response Y is a centred Gaussian variable with variance σ 2

ε that is determined by the signal-
to-noise ratio snrY = var(Y )/σ 2

ε = 2. To see the effect of the manifold structure on regression,
we normalize the functional predictor in all settings to the unit scale, i.e., we multiply X by the
constant c = 1/{E(‖X ‖2)}1/2 so that the result satisfies E(‖X ‖2) = 1. Such a scaling does not
change the geometric structure of the manifolds except for their size. We find empirically that
to account for at least 95% of the variance of the data, more than 10 principal components are
needed in all settings, i.e., the dimensions of the contaminated data are considerably larger than
their intrinsic dimensions.

For evaluation, we generate independent test data of size 5000 and compute the root mean
squared error using the test data. In the test data, each predictor is also discretely measured and
contaminated by noise in the same way as in the training sample. We compare our method with
nonparametric estimators based on functional Nadaraya–Watson smoothing, functional condi-
tional expectation, the functional mode, the functional conditional median, and a multi-method
that averages estimates from the methods of functional conditional expectation, the functional
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