DISTRIBUTION AND CORRELATION-FREE TWO-SAMPLE TEST OF HIGH-DIMENSIONAL MEANS

By Kaijie Xue ${ }^{1}$ and Fang YaO^{2}
${ }^{1}$ School of Statistics and Data Science, Nankai University, kaijie@ nankai.edu.cn
${ }^{2}$ Department of Probability and Statistics, School of Mathematical Sciences, Center for Statistical Science, Peking University, fyao@math.pku.edu.cn

We propose a two-sample test for high-dime sio al mea s that requires either distributio al or correlatio al assumptio s, besides some weak co ditio so the mome ts a d tail properties of the eleme ts i the ra dom vectors. This two-sample test based o a o trivial exte sio of the o e-sample ce tral limit theorem (Ann. Probab. 45 (2017) 2309 2352) provides a practicall useful procedure with rigorous theoretical guara tees o its si e a d power assessme t. I particular, the proposed test is eas to compute a d does ot require the i depe de tl a d ide ticall distributed assumptio, which is allowed to have differe t distributio s a d arbitrar correlatio structures. Further desired features i clude weaker mome ts a d tail co ditio stha existi g methods, allowa ce for highl u equal sample si es, co siste t power behavior u der fairl ge eral alter ative, data dime sio allowed to be expoe tiall high u der the umbrella of such ge eral co ditio s. Simulated a d real data examples have demo strated favorable umerical performa ce over existi g methods.

1. Introduction. Two-sample test of high dime sio al mea s as o e of the ke issues has attracted a great deal of atte tio due to its importa ce i various applicatio s , i cludi g [2 5, $1012,19,2426,29]$ a d [21], amo g others. I this article, we tackle this problem with the theoretical adva ce brought b a high-dime sio al two-sample ce tral limit theorem. Based o this, we propose a ew t pe of testi g procedure, called distributio a d correlatio -free (DCF) two-sample mea test, which requires either distributio al or correlatio al assumptio sa d greatl e ha ces its ge eralit i practice.

We de ote two samples b $X^{n}=\left\{X_{1}, \ldots, X_{n}\right\}$ a d $Y^{m}=\left\{Y_{1}, \ldots, Y_{m}\right\}$ respectivel, where X^{n} is a collectio of mutuall i depe de t (not necessarily identically distributed) ra dom vectors i \mathbb{R}^{p} with $X_{i}=\left(X_{i 1}, \ldots, X_{i p}\right)^{\prime}$ a d $E\left(X_{i}\right)=\mu^{X}=\left(\mu_{1}^{X}, \ldots, \mu_{p}^{X}\right)^{\prime}, i=1, \ldots, n$, a d Y^{m} is de ed i a similar fashio with $E\left(Y_{i}\right)=\mu^{Y}=\left(\mu_{1}^{Y}, \ldots, \mu_{p}^{Y}\right)^{\prime}$ for all $i=1, \ldots, m$. The ormali ed sums S_{n}^{X} a d S_{m}^{Y} are de oted b $S_{n}^{X}=n^{-1 / 2} \sum_{i=1}^{n} X_{i}=\left(S_{n 1}^{X}, \ldots, S_{n p}^{X}\right)^{\prime}$ a d $S_{m}^{Y}=m^{-1 / 2} \sum_{i=1}^{m} Y_{i}=\left(S_{m 1}^{Y}, \ldots, S_{m p}^{Y}\right)^{\prime}$, respectivel . Note that we o 1 assume i depe de t observatio s, a d each sample with a commo mea. The h pothesis of i terest is

$$
H_{0}: \mu^{X}=\mu^{Y} \quad \text { v.s. } \quad H_{a}: \mu^{X} \neq \mu^{Y},
$$

a d the proposed two-sample DCF mea test is such that we reject $H_{0}: \mu^{X}=\mu^{Y}$ at sig i ca ce level $\alpha \in(0,1)$, provided that

$$
T_{n}=\left\|S_{n}^{X}-n^{1 / 2} m^{-1 / 2} S_{m}^{Y}\right\|_{\infty} \geq c_{B}(\alpha)
$$

where $T_{n}=\left\|S_{n}^{X}-n^{1 / 2} m^{-1 / 2} S_{m}^{Y}\right\|_{\infty}$ is the test statistic that o 1 depe ds o the i it orm of the sample mea differe ce, a $\mathrm{d} c_{B}(\alpha)$ that pla s a ce tral role i this test is a datadrive critical value de ed i (5) of Theorem 3. It is worth me tio i g that $c_{B}(\alpha)$ is eas to

[^0]compute via a multiplier bootstrap based o a set of i depe de tl a dide ticall distributed (i.i.d.) sta dard ormal ra dom variables that are i depe de t of the data, where the explicit calculatio is described after (6). Note that the computatio of the proposed test is of a order $O\{n(p+N)\}$, more ef cie tha $O(N n p)$ that is usuall dema ded b a ge eral resampli g method. I spite of the simple structure of T_{n}, we shall illustrate its desirable theoretical properties a d superior umerical performa ce i the rest of the article.

We emphasi e that our main contributions reside o developi g a practicall useful test that is computatio all ef cie t with rigorous theoretical guara tees give i Theorem 3 5. We begi with derivi g o trivial two-sample exte sio s of the o e-sample ce tral limit theorems a d its correspo di g bootstrap approximatio theorems i high dime sio s [9], where we do ot require the ratio betwee sample si es $n /(n+m)$ to co verge but merel reside withi a ope i terval $\left(c_{1}, c_{2}\right), 0<c_{1} \leq c_{2}<1$, as $n, m \rightarrow \infty$. Further, Theorem 3 la s dow a fou datio for co ducti g the two-sample DCF mea test u iforml over all $\alpha \in(0,1)$. The power of the proposed test is assessed i Theorem 4 that establishes the as mptotic equivale ce betwee the estimated a d true versio s. Moreover, the as mptotic power is show co siste ti Theorem 5 u der some ge eral alter atives with o sparsit or correlatio co strai ts.

The proposed test sets itself apart from existi g methods b allowi g for o -i.i.d. ra dom vectors i both samples. The distributio -free feature is i the se se that, u der the umbrella of some mild assumptio s o the mome ts a d tail properties of the coordi ates, there is o other restrictio o the distributio s of those ra dom vectors. I co trast, existi g literature require the ra dom vectors withi sample to be i.i.d. [3 6], a d some methods further restrict the coordi ates to follow a certai t pe of distributio, such as Gaussia or sub-Gaussia $[26,29]$. This feature sets the proposed test free of maki g assumptio s such as i.i.d. or sub-Gaussia it , which is desirable as distributio s of real data are ofte co fou ded b umerous factors uk ow to researchers. A other ke feature is correlatio -free i the se se that i dividual ra dom vectors ma have differe ta d arbitrar correlatio structures. B co trast, most previous works assume ot o 1 a commo withi -sample correlatio matrix, but also some structural co ditio s, such as those o trace [5], mixi g co ditio s [21] or bou ded eige values from below [3]. It is worth oti g that our assumptio so the mome ts a d tail properties of the coordi ates i ra dom vectors are also weaker tha those adopted i literature, for example, $[3,11]$ a $d[21]$ assumed a commo xed upper bou d to those mome ts, [5] a d [19] allowed a portio of those mome ts to grow but paid a price o correlatio assumptio s.

We also stress that the proposed test possesses co siste t power behavior u der fairl ge eral alter ative (a mild separatio lower bou do $\mu^{X}-\mu^{Y}$ i Theorem 5) with either sparsit or correlatio co ditio s, while previous work requiri g either sparsit [26] or structural assumptio o sig al stre gth [5,11] or correlatio [21], or both [3]. Lastl , we poi tout that the data dime sio p ca be expo e tiall high relative to the sample si e u der the umbrella of such mild assumptio s . This is also favorable compared to previous work, as [3,5] a d [21] allowed such ultrahigh dime sio su der o trivial co ditio so either the distributio t pe (e.g., sub-Gaussia) or the correlatio structure (or both) as a tradeoff.

We co clude the I troductio b oti g releva t work o o e-sample high-dime sio al mea test, such as [14 18, 20, 23, 27, 28] a d [1], amo g others. It is relativel easier to develop a o e-sample DCF mea test with similar adva tages based o results i [9], thus is ot pursued here. The rest of the article is orga i ed as follows. I Sectio 2, we prese t the two-sample high-dime sio al ce tral limit theorem, a d the result o multiplier bootstrap for evaluati g the Gaussia approximatio .I Sectio 3, we establish the mai result Theorem 3 for co ducti g the proposed test, a d Theorem 4 to approximate its power fu ctio, followed b Theorem 5 to a al e its as mptotic power u der alter atives. Simulatio stud is carried
out i Sectio 4 to compare with existi g methods, a da applicatio to a real data example is prese ted i Sectio 5 . We collect the auxiliar lemmas a d the proofs of the mai results, Theorems 35 i the Appe dix, a d delegate the proofs of Theorems 12 , Corollar 1 a d the auxiliar lemmas to a o li e Suppleme tar Material [22] for space eco om .
2. Two-sample central limit theorem and multiplier bootstrap in high dimensions. I this sectio, we rst prese t a i telligible two-sample ce tral limit theorem i high dime sio s, which is derived from its more abstract versio i Lemma 4 i the Appe dix. The the result o the as mptotic equivale ce betwee the Gaussia approximatio appearedi the two-sample ce tral limit theorem a d its multiplier bootstrap term is also elaborated, whose abstract versio ca be referred to Lemma 5.

We rst list some otatio used throughout the paper. For two vectors $x=\left(x_{1}, \ldots, x_{p}\right) \in$ \mathbb{R}^{p} a d $y=\left(y_{1}, \ldots, y_{p}\right)^{\prime} \in \mathbb{R}^{p}$, write $x \leq y$ if $x_{j} \leq y_{j}$ for all $j=1, \ldots, p$. For a $\quad x=$ $\left(x_{1}, \ldots, x_{p}\right)^{\prime} \in \mathbb{R}^{p}$ a $\mathrm{d} a \in \mathbb{R}$, de ote $x+a=\left(x_{1}+a, \ldots, x_{p}+a\right)^{\prime}$. For a $a, b \in \mathbb{R}$, use the otatio $a \vee b=\max \{a, b\}$ a d $a \wedge b=\operatorname{mi}\{a, b\}$. For a two seque ces of co sta ts a_{n} a d b_{n}, write $a_{n} \lesssim b_{n}$ if $a_{n} \leq C b_{n}$ up to a u iversal co sta $\mathrm{t} C>0$, a d $a_{n} \sim b_{n}$ if $a_{n} \lesssim b_{n}$ a d $b_{n} \lesssim a_{n}$. For a matrix $A=\left(a_{i j}\right)$, de $\quad \mathrm{e}\|A\|_{\infty}=\max _{i, j}\left|a_{i j}\right|$. For a fu ctio $f: \mathbb{R} \rightarrow \mathbb{R}$, write $\|f\|_{\infty}=\sup _{z \in \mathbb{R}}|f(z)|$. For a smooth fu ctio $g: \mathbb{R}^{p} \rightarrow \mathbb{R}$, we adopt i dices to represe t the partial derivatives for brevit, for example, $\partial_{j} \partial_{k} \partial_{l} g=g_{j k l}$. For a $\alpha>0$, de e the fu ctio $\psi_{\alpha}(x)=\exp \left(x^{\alpha}\right)-1$ for $x \in[0, \infty)$, the for a ra dom variable X, de e

$$
\begin{equation*}
\|X\|_{\psi_{\alpha}}=\mathrm{if}\left\{\lambda>0: E\left\{\psi_{\alpha}(|X| / \lambda)\right\} \leq 1\right\} \tag{1}
\end{equation*}
$$

which is a Orlic orm for $\alpha \in[1, \infty)$ a d a quasi- orm for $\alpha \in(0,1)$.
De ote $F^{n}=\left\{F_{1}, \ldots, F_{n}\right\}$ as a set of mutuall i depe de t ra dom vectors i \mathbb{R}^{p} such that $F_{i}=\left(F_{i 1}, \ldots, F_{i p}\right)^{\prime}$ a d $F_{i} \sim N_{p}\left(\mu^{X}, E\left\{\left(X_{i}-\mu^{X}\right)\left(X_{i}-\mu^{X}\right)^{\prime}\right\}\right)$ for all $i=1, \ldots, n$, which de otes a Gaussia approximatio to X^{n}. Likewise, de e a set of mutuall i depe de t ra dom vectors $G^{m}=\left\{G_{1}, \ldots, G_{m}\right\}$ i \mathbb{R}^{p} such that $G_{i}=\left(G_{i 1}, \ldots, G_{i p}\right)^{\prime}$ a d $G_{i} \sim N_{p}\left(\mu^{Y}, E\left\{\left(Y_{i}-\mu^{Y}\right)\left(Y_{i}-\mu^{Y}\right)^{\prime}\right\}\right)$ for all $i=1, \ldots, m$ to approximate Y^{m}. The sets X^{n}, Y^{m}, F^{n} a d G^{m} are assumed to be i depe de t of each other. To this e d, deote the ormali ed sums $S_{n}^{X}, S_{n}^{F}, S_{m}^{Y}$ a d S_{m}^{G} b $S_{n}^{X}=n^{-1 / 2} \sum_{i=1}^{n} X_{i}=\left(S_{n 1}^{X}, \ldots, S_{n p}^{X}\right)^{\prime}$, $S_{n}^{F}=n^{-1 / 2} \sum_{i=1}^{n} F_{i}=\left(S_{n 1}^{F}, \ldots, S_{n p}^{F}\right)^{\prime}, S_{m}^{Y}=m^{-1 / 2} \sum_{i=1}^{m} Y_{i}=\left(S_{m 1}^{Y}, \ldots, S_{m p}^{Y}\right)^{\prime}$ ad $S_{m}^{G}=$ $m^{-1 / 2} \sum_{i=1}^{m} G_{i}=\left(S_{m 1}^{G}, \ldots, S_{m p}^{G}\right)^{\prime}$, where S_{n}^{F} a d S_{m}^{G} serve as the Gaussia approximatio s for S_{n}^{X} a d S_{m}^{Y}, respectivel . Lastl, de ote a set of i depe de t sta dard ormal ra dom variables $e^{n+m}=\left\{e_{1}, \ldots, e_{n+m}\right\}$ that is i depe de t of a of X^{n}, F^{n}, Y^{m} a d G^{m}.
2.1. Two-sample central limit theorem in high dimensions. To i troduce Theorem 1, a list of useful otatio are give as follows. De ote

$$
L_{n}^{X}=\max _{1 \leq j \leq p} \sum_{i=1}^{n} E\left(\left|X_{i j}-\mu_{j}^{X}\right|^{3}\right) / n, \quad L_{m}^{Y}=\max _{1 \leq j \leq p} \sum_{i=1}^{m} E\left(\left|Y_{i j}-\mu_{j}^{Y}\right|^{3}\right) / m
$$

We de ote the ke qua tit $\rho_{n, m}^{* *} \mathrm{~b}$

$$
\begin{align*}
\rho_{n, m}^{* *}= & \sup _{A \in \mathcal{A}^{\mathrm{Re}}} \mid P\left(S_{n}^{X}-n^{1 / 2} \mu^{X}+\delta_{n, m} S_{m}^{Y}-\delta_{n, m} m^{1 / 2} \mu^{Y} \in A\right) \tag{2}\\
& -P\left(S_{n}^{F}-n^{1 / 2} \mu^{X}+\delta_{n, m} S_{m}^{G}-\delta_{n, m} m^{1 / 2} \mu^{Y} \in A\right) \mid,
\end{align*}
$$

where $P\left(S_{n}^{X}-n^{1 / 2} \mu^{X}+\delta_{n, m} S_{m}^{Y}-\delta_{n, m} m^{1 / 2} \mu^{Y} \in A\right)$ represe ts the u k ow probabilit of i terest, a d $P\left(S_{n}^{F}-n^{1 / 2} \mu^{X}+\delta_{n, m} S_{m}^{G}-\delta_{n, m} m^{1 / 2} \mu^{Y} \in A\right)$ serves as a Gaussia approximatio to this probabilit of i terest, a $\mathrm{d} \rho_{n, m}^{* *}$ measures the error of approximatio over all
h perrecta gles $A \in \mathcal{A}^{\mathrm{Re}}$. Note that $\mathcal{A}^{\mathrm{Re}}$ is the class of all h perrecta gles i \mathbb{R}^{p} of the form $\left\{w \in \mathbb{R}^{p}: a_{j} \leq w_{j} \leq b_{j}\right.$ for all $\left.j=1, \ldots, p\right\}$ with $-\infty \leq a_{j} \leq b_{j} \leq \infty$ for all $j=1, \ldots, p$. B assumi g more speci c co ditio s , Theorem 1 gives a more explicit bou do $\rho_{n, m}^{* *}$ compared to Lemma 4.

THEOREM 1. For any sequence of constants $\delta_{n, m}$, assume we have the following conditions (a)-(e):
(a) There exist universal constants $\delta_{1}>\delta_{2}>0$ such that $\delta_{2}<\left|\delta_{n, m}\right|<\delta_{1}$.
(b) There exists a universal constant $b>0$ such that

$$
\operatorname{mi}_{1 \leq j \leq p} E\left\{\left(S_{n j}^{X}-n^{1 / 2} \mu_{j}^{X}+\delta_{n, m} S_{m j}^{Y}-\delta_{n, m} m^{1 / 2} \mu_{j}^{Y}\right)^{2}\right\} \geq b .
$$

(c) There exists a sequence of constants $B_{n, m} \geq 1$ such that $L_{n}^{X} \leq B_{n, m}$ and $L_{m}^{Y} \leq B_{n, m}$.
(d) The sequence of constants $B_{n, m}$ defined in (c) also satisfies

$$
\begin{aligned}
& \max _{1 \leq i \leq n} \max _{1 \leq j \leq p} E\left\{\exp \left(\left|X_{i j}-\mu_{j}^{X}\right| / B_{n, m}\right)\right\} \leq 2, \\
& \max _{1 \leq i \leq m} \max _{1 \leq j \leq p} E\left\{\exp \left(\left|Y_{i j}-\mu_{j}^{Y}\right| / B_{n, m}\right)\right\} \leq 2 .
\end{aligned}
$$

(e) There exists a universal constant $c_{1}>0$ such that

$$
\left(B_{n, m}\right)^{2}\{\log (p n)\}^{7} / n \leq c_{1}, \quad\left(B_{n, m}\right)^{2}\{\log (p m)\}^{7} / m \leq c_{1}
$$

Then we have the following property, where $\rho_{m, n}^{* *}$ is defined in (2):

$$
\rho_{n, m}^{* *} \leq K_{3}\left(\left[\left(B_{n, m}\right)^{2}\{\log (p n)\}^{7} / n\right]^{1 / 6}+\left[\left(B_{n, m}\right)^{2}\{\log (p m)\}^{7} / m\right]^{1 / 6}\right),
$$

for a universal constant $K_{3}>0$.
Co ditio s (a) (c) correspo d to the mome t properties of the coordi ates, a d (d) co cer s the tail properties. It follows from (a) a d (b) that the mome ts on average are bou ded below awa from ero, he ce allowi g certai proportio of these mome ts to co verge to ero. This is weaker tha previous work that usuall require a u iform lower bou do all mome ts [3, 11, 21]. Co ditio (c) implies that the mome ts on average has a upper bou d $B_{n, m}$ that ca diverge to i it without restrictio o correlatio , thus offers more exibilit tha those i literature that dema ds either a xed upper bou d or a certai correlatio structure or both. To appreciate this, letti $\mathrm{g} B_{n, m} \sim n^{1 / 3}$, o e otes that all the varia ces of the coordi ates are allowed to be u iforml as large as $B_{n, m}^{2 / 3} \sim n^{2 / 9} \rightarrow \infty \mathrm{u}$ der co ditio (c), while o restrictio o correlatio is eeded. As a compariso, if we assig a commo covaria ce to two samples, sa $\Sigma=\left(\Sigma_{j k}\right)_{1 \leq j, k \leq p}$ with each $\Sigma_{j k}=n^{2 / 9} \rho^{1\{j \neq k\}}$ for some co sta $\mathrm{t} \rho \in(0,1)$, the the trace co ditio i [5] implies that $p=o(1)$. Compared with a
xed upper bou do the tails of the coordi ates [3,21], co ditio (d) allows for u iforml divergi g tails as lo g as $B_{n, m} \rightarrow \infty$. Co ditio (e) i dicates that the data dime sio $p \mathrm{ca}$ grow expo e tiall i n, provided that $B_{n, m}$ is of some appropriate order. These co ditio s as a whole set the basis for the so-called distributio a d correlatio -free_features.
2.2. Two-sample multiplier bootstrap in high dimensions. Due to the $\mathrm{u} k$ ow probabilit i $\rho_{n, m}^{* *}(2)$ de oti g the Gaussia approximatio, it limits the applicabilit of the ce tral limit theorem for i fere ce. The idea is to adopt a multiplier bootstrap to approximate its Gaussia approximatio, a dqua tif its approximatio error bou d. De ote

$$
\Sigma^{X}=n^{-1} \sum_{i=1}^{n} E\{(
$$

where $\bar{X}=n^{-1} \sum_{i=1}^{n} X_{i}=\left(\bar{X}_{1}, \ldots, \bar{X}_{p}\right)^{\prime}$. A alogousl, de ote $\Sigma^{Y}, \hat{\Sigma}^{Y}$ a d \bar{Y}. Now we i troduce the multiplier bootstrap approximatio i this co text. Let $e^{n+m}=\left\{e_{1}, \ldots, e_{n+m}\right\}$ be a set of i.i.d. sta dard ormal ra dom variables i depe de t of the data, we further de ote

$$
\begin{equation*}
S_{n}^{e X}=n^{-1 / 2} \sum_{i=1}^{n} e_{i}\left(X_{i}-\bar{X}\right), \quad S_{m}^{e Y}=m^{-1 / 2} \sum_{i=1}^{m} e_{i+n}\left(Y_{i}-\bar{Y}\right), \tag{3}
\end{equation*}
$$

a d it is obvious that $E_{e}\left(S_{n}^{e X} S_{n}^{e X^{\prime}}\right)=\hat{\Sigma}^{X}$ a d $E_{e}\left(S_{n}^{e Y} S_{n}^{e Y^{\prime}}\right)=\hat{\Sigma}^{Y}$, where $E_{e}(\cdot)$ mea s the expectatio with respect to $e^{n+m} \mathrm{o} 1$. The, for a seque ce of co sta ts $\delta_{n, m}$ that depe ds o both n a d m, we de ote the qua tit of i terest $\rho_{n, m}^{M B} \mathrm{~b}$

$$
\begin{align*}
\rho_{n, m}^{M B}= & \sup _{A \in \mathcal{A}^{\mathrm{Re}}} \mid P_{e}\left(S_{n}^{e X}+\delta_{n, m} S_{m}^{e Y} \in A\right) \tag{4}\\
& -P\left(S_{n}^{F}-n^{1 / 2} \mu^{X}+\delta_{n, m} S_{m}^{G}-\delta_{n, m} m^{1 / 2} \mu^{Y} \in A\right) \mid,
\end{align*}
$$

where $P_{e}(\cdot)$ mea s the probabilit with respect to e^{n+m} o 1, a d $P_{e}\left(S_{n}^{e X}+\delta_{n, m} S_{m}^{e Y} \in A\right)$ acts as the multiplier bootstrap approximatio for the Gaussia approximatio $P\left(S_{n}^{F}-n^{1 / 2} \mu^{X}+\right.$ $\delta_{n, m} S_{m}^{G}-\delta_{n, m} m^{1 / 2} \mu^{Y} \in A$). I particular, $\rho_{n, m}^{M B}$ ca be u derstood as a measure of error betwee the two approximatio s over all h perrecta gles $A \in \mathcal{A}^{\mathrm{Re}}$. The followi g theorem provides a more explicit bou do $\rho_{n, m}^{M B}$ i co trast to its abstract versio stated i Lemma 5 i the Appe dix.

THEOREM 2. For any sequence of constants $\delta_{n, m}$, assume we have the following conditions (a)-(e),
(a) There exists a universal constant $\delta_{1}>0$ such that $\left|\delta_{n, m}\right|<\delta_{1}$.
(b) There exists a universal constant $b>0$ such that

$$
\operatorname{mi}_{1 \leq j \leq p} E\left\{\left(S_{n j}^{X}-n^{1 / 2} \mu_{j}^{X}+\delta_{n, m} S_{m j}^{Y}-\delta_{n, m} m^{1 / 2} \mu_{j}^{Y}\right)^{2}\right\} \geq b
$$

(c) There exists a sequence of constants $B_{n, m} \geq 1$ such that

$$
\begin{aligned}
& \max _{1 \leq j \leq p} \sum_{i=1}^{n} E\left\{\left(X_{i j}-\mu_{j}^{X}\right)^{4}\right\} / n \leq B_{n, m}^{2}, \\
& \max _{1 \leq j \leq p} \sum_{i=1}^{m} E\left\{\left(Y_{i j}-\mu_{j}^{Y}\right)^{4}\right\} / m \leq B_{n, m}^{2} .
\end{aligned}
$$

(d) The sequence of constants $B_{n, m}$ defined in (c) also satisfies

$$
\begin{aligned}
& \max _{1 \leq i \leq n} \max _{1 \leq j \leq p} E\left\{\exp \left(\left|X_{i j}-\mu_{j}^{X}\right| / B_{n, m}\right)\right\} \leq 2, \\
& \max _{1 \leq i \leq m} \max _{1 \leq j \leq p} E\left\{\exp \left(\left|Y_{i j}-\mu_{j}^{Y}\right| / B_{n, m}\right)\right\} \leq 2
\end{aligned}
$$

(e) There exists a sequence of constants $\alpha_{n, m} \in\left(0, e^{-1}\right)$ such that

$$
\begin{aligned}
B_{n, m}^{2} \log ^{5}(p n) \log ^{2}\left(1 / \alpha_{n, m}\right) / n & \leq 1, \\
B_{n, m}^{2} \log ^{5}(p m) \log ^{2}\left(1 / \alpha_{n, m}\right) / m & \leq 1 .
\end{aligned}
$$

Then there exists a universal constant $c^{*}>0$ such that with probability at least $1-\gamma_{n, m}$ where

$$
\begin{aligned}
\gamma_{n, m}= & \left(\alpha_{n, m}\right)^{\log (p n) / 3}+3\left(\alpha_{n, m}\right)^{\log ^{1 / 2}(p n) / c_{*}}+\left(\alpha_{n, m}\right)^{\log (p m) / 3} \\
& +3\left(\alpha_{n, m}\right)^{\log ^{1 / 2}(p m) / c_{*}}+\left(\alpha_{n, m}\right)^{\log ^{3}(p n) / 6}+3\left(\alpha_{n, m}\right)^{\log ^{3}(p n) / c_{*}} \\
& +\left(\alpha_{n, m}\right)^{\log ^{3}(p m) / 6}+3\left(\alpha_{n, m}\right)^{\log ^{3}(p m) / c_{*}}
\end{aligned}
$$

we have the following property, where $\rho_{n, m}^{M B}$ is defined in (4),

$$
\begin{aligned}
\rho_{n, m}^{M B} \lesssim & \left\{B_{n, m}^{2} \log ^{5}(p n) \log ^{2}\left(1 / \alpha_{n, m}\right) / n\right\}^{1 / 6} \\
& +\left\{B_{n, m}^{2} \log ^{5}(p m) \log ^{2}\left(1 / \alpha_{n, m}\right) / m\right\}^{1 / 6}
\end{aligned}
$$

Co ditio s (a) (c) pertai to the mome t properties of the coordi ates, co ditio (d) co cer s the tail properties a d co ditio (e) characteri es the order of p. These co ditio s have the desirable features as those i Theorem 1 , such as allowi g for u iforml divergi g mome ts a d tails a d so o. Moreover, b combi i g Theorem 2 with a two-sample Borel Ca telli lemma (i.e., Lemma 6), where co ditio (f) is eeded for Lemma 6, o e ca deduce Corollar 1 below, which facilitates the derivatio of our mai result i Theorem 3.

Corollary 1. For any sequence of constants $\delta_{n, m}$, assume the conditions (a)-(e) in Theorem 2 hold. Also suppose that the condition (f) holds as follows:
(f) The sequence of constants $\gamma_{n, m}$ defined in Theorem 2 also satisfies

$$
\sum_{n} \sum_{m} \gamma_{n, m}<\infty .
$$

Then with probability one, we have the following property, where $\rho_{n, m}^{M B}$ is defined in (4),

$$
\begin{aligned}
\rho_{n, m}^{M B} \lesssim & \left\{B_{n, m}^{2} \log ^{5}(p n) \log ^{2}\left(1 / \alpha_{n, m}\right) / n\right\}^{1 / 6} \\
& +\left\{B_{n, m}^{2} \log ^{5}(p m) \log ^{2}\left(1 / \alpha_{n, m}\right) / m\right\}^{1 / 6}
\end{aligned}
$$

3. Two-sample mean test in high dimensions. I this sectio , based o the theoretical results from the precedi g sectio, we rst establish the mai result, Theorem 3, which gives a co de ce regio for the mea differe ce $\left(\mu^{X}-\mu^{Y}\right)$ a d, equivale tl , the DCF test procedure. We ote that the theoretical guara tee is u iform for all $\alpha \in(0,1)$ with probabilit o e.

THEOREM 3. Assume we have the following conditions (a)-(e):
(a) $n /(n+m) \in\left(c_{1}, c_{2}\right)$, for some universal constants $0<c_{1}<c_{2}<1$.
(b) There exists a universal constant $b>0$ such that

$$
\operatorname{mi}_{1 \leq j \leq p}\left[E\left\{\left(S_{n j}^{X}-n^{1 / 2} \mu_{j}^{X}\right)^{2}\right\}+E\left\{\left(S_{m j}^{Y}-m^{1 / 2} \mu_{j}^{Y}\right)^{2}\right\}\right] \geq b .
$$

(c) There exists a sequence of constants $B_{n, m} \geq 1$ such that

$$
\begin{aligned}
& \max _{1 \leq j \leq p} \sum_{i=1}^{n} E\left(\left|X_{i j}-\mu_{j}^{X}\right|^{k+2}\right) / n \leq B_{n, m}^{k}, \\
& \max _{1 \leq j \leq p} \sum_{i=1}^{m} E\left(\left|Y_{i j}-\mu_{j}^{Y}\right|^{k+2}\right) / m \leq B_{n, m}^{k},
\end{aligned}
$$

for all $k=1,2$.
(d) The sequence of constants $B_{n, m}$ defined in (c) also satisfies

$$
\begin{aligned}
& \max _{1 \leq i \leq n} \max _{1 \leq j \leq p} E\left\{\exp \left(\left|X_{i j}-\mu_{j}^{X}\right| / B_{n, m}\right)\right\} \leq 2, \\
& \max _{1 \leq i \leq m} \max _{1 \leq j \leq p} E\left\{\exp \left(\left|Y_{i j}-\mu_{j}^{Y}\right| / B_{n, m}\right)\right\} \leq 2 .
\end{aligned}
$$

(e) $B_{n, m}^{2} \log ^{7}(p n) / n \rightarrow 0$ as $n \rightarrow \infty$.

Then with probability one, the Kolmogorov distance between the distributions of the quantity $\left\|S_{n}^{X}-n^{1 / 2} m^{-1 / 2} S_{m}^{Y}-n^{1 / 2}\left(\mu^{X}-\mu^{Y}\right)\right\|_{\infty}$ and the quantity $\left\|S_{n}^{S^{X}}-n^{1 / 2} m^{-1 / 2} S_{m}^{e Y}\right\|_{\infty}$ satisfies

$$
\begin{aligned}
& \sup _{t \geq 0} P\left(\left\|S_{n}^{X}-n^{1 / 2} m^{-1 / 2} S_{m}^{Y}-n^{1 / 2}\left(\mu^{X}-\mu^{Y}\right)\right\|_{\infty} \leq t\right) \\
& \quad-P_{e}\left(\left\|S_{n}^{e X}-n^{1 / 2} m^{-1 / 2} S_{m}^{e Y}\right\|\right.
\end{aligned}
$$

It is eas to see that the computatio of the DCF test is of the order $O\{n(p+N)\}$, compared with $O(N n p)$ that is usuall dema ded b a ge eral resampli g method.

Accordi g to (6), the true power fu ctio for the test ca be formulated as

$$
\begin{equation*}
\operatorname{Power}\left(\mu^{X}-\mu^{Y}\right)=P\left\{\left\|S_{n}^{X}-n^{1 / 2} m^{-1 / 2} S_{m}^{Y}\right\|_{\infty} \geq c_{B}(\alpha) \mid \mu^{X}-\mu^{Y}\right\} \tag{7}
\end{equation*}
$$

To qua tif the power of the DCF test, the expressio (7) is ot directl applicable si ce the distributio of $\left(S_{n}^{X}-n^{1 / 2} m^{-1 / 2} S_{m}^{Y}\right.$) is u k ow. Motivated b Theorem 3, we propose a other multiplier bootstrap approximatio for $\operatorname{Power}\left(\mu^{X}-\mu^{Y}\right)$, based o a differe t set of sta dard ormal ra dom variables $e^{* n+m}=\left\{e_{1}^{*}, \ldots, e_{n+m}^{*}\right\}$ i depe de t of e^{n+m} that are used to calculate $c_{B}(\alpha)$,

$$
\begin{align*}
& \operatorname{Power}^{*}\left(\mu^{X}-\mu^{Y}\right) \\
& \quad=P_{e^{*}}\left\{\left\|S_{n}^{e^{*} X}-n^{1 / 2} m^{-1 / 2} S_{m}^{e^{*} Y}+n^{1 / 2}\left(\mu^{X}-\mu^{Y}\right)\right\|_{\infty} \geq c_{B}(\alpha)\right\}, \tag{8}
\end{align*}
$$

where $S_{n}^{e^{*} X}$ a d $S_{m}^{e^{*} Y}$ are as de edi (3) with $e^{* n+m}$ i stead of e^{n+m}, a d $P_{e^{*}}(\cdot)$ mea s the probabilit with respect to $e^{* n+m}$ o 1 . The followi g theorem is devoted to establishi g the as mptotic equivale ce betwee $\operatorname{Power}\left(\mu^{X}-\mu^{Y}\right)$ a d $\operatorname{Power}^{*}\left(\mu^{X}-\mu^{Y}\right) \mathrm{u}$ der the same co ditio sas those i Theorem 3.

THEOREM 4. Assume the conditions (a)-(e) in Theorem 3 hold, then for any $\mu^{X}-\mu^{Y} \in$ \mathbb{R}^{p}, we have with probability one,

$$
\left|\operatorname{Power}^{*}\left(\mu^{X}-\mu^{Y}\right)-\operatorname{Power}\left(\mu^{X}-\mu^{Y}\right)\right| \lesssim\left\{B_{n, m}^{2} \log ^{7}(p n) / n\right\}^{1 / 6}
$$

B i spectio of the co ditio si Theorem 4, it is worth me tio ig that either sparsit or correlatio restrictio is required, as opposed to previous work requiri g sparsit [3] for i sta ce. To appreciate this poi t, the as mptotic power u der fairl ge eral alter atives speci ed b co ditio (f) is a al ed i the theorem below.

THEOREM 5. Assume the conditions (a)-(e) in Theorem 3 and that
(f) $\mathcal{F}_{n, m, p}=\left\{\mu^{X} \in \mathbb{R}^{p}, \mu^{Y} \in \mathbb{R}^{p}:\left\|\mu^{X}-\mu^{Y}\right\|_{\infty} \geq K_{s}\left\{B_{n, m} \log (p n) / n\right\}^{1 / 2}\right\}$, for a sufficiently large universal constant $K_{S}>0$.

Then for any $\mu^{X}-\mu^{Y} \in \mathcal{F}_{n, m, p}$, we have with probability tending to one,

$$
\operatorname{Power}^{*}\left(\mu^{X}-\mu^{Y}\right) \rightarrow 1 \quad \text { as } n \rightarrow \infty
$$

The set $\mathcal{F}_{n, m, p}$ i (f) imposes a lower bou do the separatio betwee $\mu^{X} \mathrm{ad} \mu^{Y}$, which is comparable to the assumptio $\max _{i}\left|\delta_{i} / \sigma_{i, i}^{1 / 2}\right| \geq\{2 \beta \log (p) / n\}^{1 / 2} \mathrm{i}$ Theorem 2 i [3]. The latter is i fact a special case of co ditio (f) whe the seque ce $B_{n, m}$ is co sta t. It is worth me tio i g that the as mptotic power co verges to 1 u der either sparsit or correlatio assumptio si the co text of our theorem. I co trast, Theorem 2 i [3] requires ot o 1 sparse alter atives, but also restrictio so the correlatio structure, for example, co ditio 1 i that theorem such that the eige values of the correlatio matrix $\operatorname{diag}(\Sigma)^{-1 / 2} \Sigma \operatorname{diag}(\Sigma)^{-1 / 2}$ is lower bou ded b a positive u iversal co sta t. These compariso s reveal that the proposed DCF is powerful for a broader ra ge of alter atives. We co clude this sectio b oti g that the theor for the DCF-t pe test based o L_{2} - orm ca also be of i terest but is ot et established, which eeds further i vestigatio .
4. Simulation studies. I the two-sample test for high-dime sio al mea s, methods that are freque tl used a d/or rece tl proposed i clude those proposed b [5] (abbreviated as CQ, a L_{2} orm test), [3] (abbreviated as CL, a L_{∞} orm test) a d [21] (abbreviated as XL, a test combi i g L_{2} a d L_{∞} orms) tests. We co duct comprehe sive simulatio studies to compare our DCF test with these existi g methods i terms of si e a d power u der various setti gs. The two samples $X^{n}=\left\{X_{i}\right\}_{i=1}^{n}$ a d $Y^{m}=\left\{Y_{i}\right\}_{i=1}^{m}$ have si es (n, m), while the data dime sio is chose to be $p=1000$. Without loss of ge eralit, we let $\mu^{X}=0 \in \mathbb{R}^{p}$. The structure of $\mu^{Y} \in \mathbb{R}^{p}$ is co trolled b a sig al stre gth parameter $\delta>0 \mathrm{a}$ d a sparsit level parameter $\beta \in[0,1]$. To co struct μ^{Y}, i each sce ario, we rst ge erate a seque ce of i.i.d. ra dom variables $\theta_{k} \sim U(-\delta, \delta)$ for $k=1, \ldots, p$ a d keep them xed i the simulatio u der that sce ario. We set $\delta(r)=\{2 r \log (p) /(n \vee m)\}^{1 / 2}$ that gives appropriate scale of sig al stre gth $[3,5,28]$. We take $\mu^{Y}=\left(\theta_{1}, \ldots, \theta_{\lfloor\beta p\rfloor}, 0_{p-\lfloor\beta p\rfloor}^{\prime}\right)^{\prime} \in \mathbb{R}^{p}$, where $\lfloor a\rfloor$ de otes the earest i teger o more tha a, a d 0_{q} is the q-dime sio al vector of 0 's. Thus the sig al becomes sparser for a smaller value of β, with $\beta=0$ correspo di g to the ull h pothesis a d $\beta=1$ represe ti g the full de se alter ative. The covaria ce matrices of the ra dom vectors are de oted $\mathrm{b} \operatorname{cov}\left(X_{i}\right)=\Sigma^{X_{i}}, \operatorname{cov}\left(Y_{i^{\prime}}\right)=\Sigma^{Y_{i^{\prime}}}$ for all $i=1, \ldots, n, i^{\prime}=1, \ldots, m$. The omi al sig i ca ce level is $\alpha=0.05$, a d the DCF test is co ducted based o the multiplier bootstrap of si e $N=10^{4}$.

To have comprehe sive compariso, we rst co sider the followi g six differe t setti gs. The rst setti g is sta dard with $(n, m, p)=(200,300,1000)$, where the eleme ts i each sample are i.i.d. Gaussia , a d the two samples share a commo covaria ce ma$\operatorname{trix} \Sigma=\left(\Sigma_{j k}\right)_{1 \leq j, k \leq p}$. The matrix Σ is speci ed b a depe de ce structure such that $\Sigma_{j k}=(1+|j-k|)^{-1} / 4$. Begi i g with $\delta=0.1$, where the implicit chose value $r=0.217$ correspo ds to quite weak sig al accordi g to [3,28], we calculate the rejectio proportio s of the four tests based o 1000 Mo te Carlo ru s over a full ra ge of sparsit levels from $\beta=0$ (correspo di g to ull h pothesis) to $\beta=1$ (correspo di g to full de se alter ative). The the the sig als are graduall stre gthe ed to $\delta=0.15,0.2,0.25,0.3$. The seco d setti g is similar to the rst , except for $\Sigma^{Y_{i}}=2 \Sigma^{X^{\prime}}=2 \Sigma$ for all $i=1, \ldots, n, i^{\prime}=1, \ldots, m$, where Σ is de ed i the rst setti g. These two setti gs are de oted b i.i.d. equal (resp., u equal) covaria ce setti g.-

I the third setti g, the ra dom vectors i each sample have completel differe t distributio s a d covaria ce matrices from o e a other. The procedure to ge erate the two samples is as follows. First, a set of parameters $\left\{\phi_{i j}: i=1, \ldots, m, j=1, \ldots, p\right\}$ are ge erated from the u iform distributio $U(1,2)$ i depe de tl , a d are kept xed for all Mo te Carlo ru s. I a similar fashio , $\left\{\phi_{i j}^{*}: i=1, \ldots, m, j=1, \ldots, p\right\}$ are ge erated from $U(1,3)$ i depe de tl. The , for ever $i=1, \ldots, n$, we de e a $p \times p$ matrix $\Omega_{i}=\left(\omega_{i j k}\right)_{1 \leq j, k \leq p}$ with each $\omega_{i j k}=\left(\phi_{i j} \phi_{i k}\right)^{1 / 2}(1+|j-k|)^{-1 / 4}$. Likewise, for ever $i=1, \ldots, m$, de e a $p \times p$ matrix $\Omega_{i}^{*}=\left(\omega_{i j k}^{*}\right)_{1 \leq j, k \leq p}$ with each $\omega_{i j k}^{*}=\left(\phi_{i j}^{*} \phi_{i k}^{*}\right)^{1 / 2}(1+|j-k|)^{-1 / 4}$. Subseque tl, we ge erate a set of i.i.d. ra dom vectors $\breve{X}^{n}=\left\{\breve{X}_{i}\right\}_{i=1}^{n}$ with each $\breve{X}_{i}=\left(\breve{X}_{i 1}, \ldots, \breve{X}_{i p}\right)^{\prime} \in \mathbb{R}^{p}$, such that $\left\{\breve{X}_{i 1}, \ldots, \breve{X}_{i, 2 p / 5}\right\}$ are i.i.d. sta dard ormal ra dom variables, $\left\{\breve{X}_{i, 2 p / 5+1}, \ldots, \breve{X}_{i, p}\right\}$ are i.i.d. ce tered $\operatorname{Gamma}(16,1 / 4)$ ra dom variables, a d the are i depe de tof each other. Accordi gl , we co struct each X_{i} b letti $\mathrm{g} X_{i}=\mu^{X}+\Omega_{i}^{1 / 2} \breve{X}_{i}$ for all $i=1, \ldots, n$. It is worth oti g that $\Sigma^{X_{i}}=\Omega_{i}$ for all $i=1, \ldots, n$, that is, X_{i} 's have differe t covaria ce matrices a d distributio s. The other sample $Y^{m}=\left\{Y_{i}\right\}_{i=1}^{m}$ is co structed i the same wa with $\Sigma^{Y_{i}}=\Omega_{i}^{*}$ for all $i=1, \ldots, m$. The we obtai ed the results for various sig al stre gth levels of δ over a full ra ge of sparsit levels of β, a d we de ote this setti g as completel relaxed._ The fourth setti g is a alogous to the third, except that we set $(n, m, p)=(100,400,1000)$, where two sample si es deviates substa tiall from each other. Si ce this setti g is co cer ed with highl u equal sample si es, a d is therefore de oted as completel relaxed a dhighl u equal setti g.- The fth setti g is similar to the third, except that we replace the sta dard
ormal i ovatio si \breve{X}_{i} a d $\breve{Y}_{i^{\prime}}$ b i depe de ta dheav -tailed i ovatio s $(5 / 3)^{-1 / 2} t(5)$ with mea ero a du it varia ces, referred to as completel relaxed a d heav -tailed setti g. The sixth setti g is also a alogous to the third, while i depe de t a d skewed i ovatio $s 8^{-1 / 2}\left\{\chi^{2}(4)-4\right\}$ with mea ero a $d u$ it varia ces are used, de oted b completel relaxed a d skewed setti g.-

We co duct the four tests a d calculate the rejectio proportio s to assess the empirical power at differe t sig al levels δ a d sparsit levels β i each setti g as described above, based o 1000 Mo te Carlo ru s. The umerical results of these six setti gs are show i Tables 12 . For visuali atio, we depict the empirical power plots of all setti gs i Figure 1. We also displa the multiplier bootstrap approximatio based o a other i depe de t set of si e $N=10^{4}$, which agrees well with the empirical si e/power of the DCF test a d justi es the theoretical assessme t i Theorem 4. We see that the empirical si es of proposed DCF test agree well with the omi al level 0.05 i all six setti gs . B compariso, the CQ test is ot as stable, a d the CL a d XL tests show u derestimatio of t pe I error i all setti gs.
Regardi g power performa ce u der alter atives i these six setti gs, despite all tests sufferi g low power for the weak sig als $\delta=0.1$ a $\mathrm{d} \delta=0.15$, the DCF test still domi ates the other tests at all levels of β. Whe the sig al stre gth rises to $\delta=0.2$, the results i Setti g I i dicate that the DCF test outperforms the other tests, except for the CQ test whe $\beta \geq 80 \%$ (a ver de se alter ative). Although the power of CQ test i creases above that of DCF test at $\beta=80 \%$, the gai s are ot substa tial whe both tests have high power. Similar patter s are observed i Setti gs II, III, V, VI with $\delta=0.25$ for β ra gi g betwee 80% a d 83%, a d Setti gs III, IV with $\delta=0.3$ for β at 80% a d 90%, respectivel. This phe ome o is visuall show i the power plot i Figure 1. It is also oted the DCF test domi ates the CL ($L_{\infty} \mathrm{t}$ pe) a d XL (combi ed t pe) u iforml i these setti gs over all levels of $\delta \mathrm{a} \mathrm{d} \beta$. To summari e, except for the rapidl i creased power of CQ test i ver de se alter atives, the DCF test outperforms the other tests over various sig al levels of δ i a broad ra ge of sparsit levels β, for alter atives with varied mag itudes a d sig s. Moreover, the gai s are sustai able i the situatio s that the data structures get more complex, for example, highl u bala ced si es, heav -tailed or skewed distributio s.

We further exami e alter atives with commo / xed sig al upo reviewer's request u der the completel relaxed setti g , de oted b Setti g VII, where we let $\mu^{Y}=$ $\delta\left(1, \ldots, 1_{\lfloor\beta p\rfloor}, 0_{p-\lfloor\beta p\rfloor}^{\prime}\right)^{\prime}$

Table 1
Rejection proportions (\%) calculated for four testing methods at different signal strength levels of δ and sparsity levels of β based on 1000 Monte Carlo runs, where $\beta=0$ corresponds to the null hypothesis $\beta=1$ to the fully dense alternative, and $(n, m, p)=(200,300,1000)$

Test	Setti g I: i.i.d. equal cov																			
	$\delta=0.1$				$\delta=0.15$				$\delta=0.2$				$\delta=0.25$				$\delta=0.3$			
	DCF	CL	XL	CQ																
$\beta=0$	4.20	2.40	3.90	5.80	4.30	2.30	2.40	3.60	4.50	2.80	3.70	6.00	4.60	2.70	2.20	3.80	5.00	3.10	3.80	6.10
$\beta=0.02$	5.00	3.20	2.50	3.40	7.50	4.80	3.70	3.50	15.4	10.5	6.50	3.90	31.7	23.3	14.6	4.40	59.0	47.9	32.6	4.90
$\beta=0.04$	5.80	3.70	2.80	3.60	10.0	6.20	4.30	3.90	20.6	14.2	8.80	4.70	40.6	30.8	20.0	5.10	72.0	58.9	41.5	5.30
$\beta=0.2$	9.90	6.50	3.90	4.50	22.7	15.9	9.10	5.30	48.7	37.3	23.7	7.40	84.5	72.4	52.0	11.6	99.3	97.1	87.2	23.4
$\beta=0.4$	13.9	9.40	5.30	5.20	35.3	25.4	14.4	7.80	68.8	57.1	37.9	16.5	96.8	91.1	72.7	42.5	100	100	97.7	96.9
$\beta=0.6$	17.8	11.8	6.70	5.60	45.8	33.7	20.3	12.8	82.7	71.8	51.1	39.9	99.6	97.2	86.8	99.1	100	100	100	100
$\beta=0.8$	22.4	13.8	9.00	8.30	55.5	40.1	24.4	23.1	91.3	81.7	61.5	91.7	100	99.2	95.7	100	100	100	100	100
$\beta=1$	26.5	17.9	10.9	10.7	64.5	48.1	30.6	39.5	95.0	88.5	70.1	100	100	99.6	100	100	100	100	100	100

Test	Setti g II: i.i.d. u equal cov																			
	$\delta=0.1$				$\delta=0.15$				$\delta=0.2$				$\delta=0.25$				$\delta=0.3$			
	DCF	CL	XL	CQ																
$\beta=0$	4.90	1.80	3.70	6.10	5.20	1.30	2.20	3.80	5.00	1.60	3.60	6.00	4.80	1.20	3.50	6.30	5.00	1.90	3.90	6.20
$\beta=0.02$	4.70	1.00	2.40	3.80	6.60	1.40	2.70	4.10	10.7	2.60	2.90	4.10	19.1	6.70	4.80	4.40	33.3	14.4	8.80	4.50
$\beta=0.04$	5.80	1.30	2.50	4.10	7.90	1.80	2.80	4.30	12.5	3.50	3.40	4.50	24.7	9.30	6.00	4.60	42.5	20.3	12.2	5.00
$\beta=0.2$	8.10	1.90	2.70	4.60	15.0	4.40	3.80	4.90	30.9	11.2	7.20	6.40	57.6	26.5	16.3	8.40	86.8	52.1	33.9	11.8
$\beta=0.4$	10.6	2.80	3.10	5.70	22.4	7.20	5.70	6.50	47.3	19.6	11.6	10.0	78.7	43.2	26.6	19.1	97.5	74.1	53.2	45.7
$\beta=0.6$	13.5	3.30	3.80	6.70	29.2	9.60	6.70	8.40	59.0	26.5	17.1	18.7	90.5	56.2	36.7	54.4	99.8	88.1	70.1	99.6
$\beta=0.8$	16.4	4.60	4.50	7.40	37.4	11.9	8.60	12.6	70.9	32.9	21.4	39.6	95.6	67.0	47.0	F .	4	1	T	f

Table 1
(Continued)

Test	Setti g III: completel relaxed																			
	$\delta=0.1$				$\delta=0.15$				$\delta=0.2$				$\delta=0.25$				$\delta=0.3$			
	$\overline{\text { DCF }}$	CL	XL	CQ	$\overline{\text { DCF }}$	CL	XL	CQ	$\overline{\text { DCF }}$	CL	XL	CQ	DCF	CL	XL	CQ	DCF	CL	XL	CQ
$\beta=0$	4.70	2.00	3.90	6.30	4.50	1.70	2.30	3.50	4.80	1.90	3.70	6.10	4.60	2.20	2.80	3.90	5.10	2.10	3.80	6.20
$\beta=0.02$	4.90	2.10	3.20	4.40	6.50	2.70	3.50	5.30	9.40	4.30	4.00	5.60	13.6	7.80	6.20	5.70	24.9	12.9	10.1	5.90
$\beta=0.04$	5.60	2.40	3.50	4.70	7.60	3.40	4.20	5.40	12.1	6.00	5.00	5.80	19.1	10.8	8.80	6.00	32.8	19.1	13.8	6.50
$\beta=0.2$	7.50	3.80	4.30	5.80	12.1	6.00	5.60	6.60	23.9	12.5	8.90	7.50	44.2	26.3	16.6	9.30	71.6	50.2	32.1	14.1
$\beta=0.4$	9.40	3.90	4.50	6.30	18.4	9.00	8.00	7.60	35.8	19.9	12.7	11.7	62.3	40.8	26.4	18.5	89.3	69.9	48.6	31.5
$\beta=0.6$	11.5	4.90	6.20	6.80	24.0	10.8	8.90	9.50	48.0	28.2	18.2	17.8	76.8	55.3	37.0	35.7	96.5	83.8	64.6	83.1
$\beta=0.8$	13.6	6.40	6.60	7.00	30.3	13.5	11.7	12.7	57.3	36.4	23.4	28.5	86.7	65.0	45.1	81.2	98.5	91.6	77.4	100
$\beta=0.83$	14.3	7.10	6.80	7.50	31.0	14.6	11.8	13.1	58.0	37.6	23.9	30.8	87.6	66.1	46.1	88.0	98.9	92.6	79.2	100
$\beta=1$	16.6	8.50	7.40	8.00	35.0	17.2	13.9	17.3	65.6	42.8	28.3	48.2	90.8	75.7	56.0	99.9	99.2	95.5	95.7	100

TABLE 2
Rejection proportions (\%) calculated for four testing methods at different signal strength levels of δ and sparsity levels of β based on 1000 Monte Carlo runs, where $\beta=0$ corresponds to the null hypothesis $\beta=1$ to the fully dense alternative, $(n, m, p)=(100,400,1000)$ for Setting $I V$, and $(n, m, p)=(200,300,1000)$ for Settings V and VI

Test	Setti g IV: completel relaxed a d highl u equal sample si es																			
	$\delta=0.1$				$\delta=0.15$				$\delta=0.2$				$\delta=0.25$				$\delta=0.3$			
	DCF	CL	XL	CQ																
$\beta=0$	4.70	0.800	3.90	6.80	4.90	0.900	3.80	6.30	5.20	0.700	3.90	6.10	4.50	0.600	3.50	6.00	4.90	0.500	3.40	6.10
$\beta=0.02$	5.20	1.10	2.90	4.70	5.90	1.00	3.60	5.60	6.70	1.40	4.60	5.80	8.90	2.40	5.00	5.80	13.2	4.20	6.20	5.90
$\beta=0.04$	5.40	1.20	3.00	4.80	6.30	1.30	4.50	5.70	7.80	1.90	5.00	6.00	11.2	3.30	5.60	6.10	17.6	5.70	7.10	6.20
$\beta=0.2$	6.60	1.30	3.30	5.40	9.20	2.20	5.10	5.80	14.9	3.90	5.70	6.20	25.3	8.70	7.00	7.50	42.8	16.5	11.8	8.80
$\beta=0.4$	7.80	2.00	4.30	5.50	12.4	3.40	5.20	6.10	22.3	6.60	7.10	8.60	38.2	13.0	9.70	10.7	61.3	24.8	17.0	15.8
$\beta=0.6$	9.10	2.40	4.60	5.80	16.1	3.80	5.50	7.90	29.5	10.0	9.20	10.8	49.9	19.3	14.3	17.6	75.3	33.7	21.9	34.2
$\beta=0.8$	10.5	2.50	4.70	6.10	19.9	5.20	6.70	9.20	36.9	12.7	10.9	14.5	60.1	24.0	19.3	32.2	84.9	46.6	33.6	78.2
$\beta=0.9$	11.3	2.80	4.80	6.40	21.9	5.40	7.10	9.90	39.5	13.3	12.6	17.7	64.6	26.6	21.6	43.8	88.0	48.6	35.3	94.0
$\beta=1$	12.1	2.90	5.30	7.30	23.4	5.90	7.30	11.0	42.0	14.6	12.8	21.7	68.6	29.6	24.5	59.0	90.9	53.1	41.9	99.4

Test	Setti g V: completel relaxed a d heav -tailed																			
	$\delta=0.1$				$\delta=0.15$				$\delta=0.2$				$\delta=0.25$				$\delta=0.3$			
	DCF	CL	XL	CQ																
$\beta=0$	4.20	2.20	3.80	6.20	5.20	2.50	3.90	6.10	4.70	1.90	2.90	6.00	4.30	2.00	1.70	3.90	4.50	2.30	2.00	3.70
$\beta=0.02$	5.50	2.10	3.70	5.40	6.40	2.50	3.90	5.50	9.50	4.40	4.60	6.10	15.3	7.40	6.30	6.10	25.5	15.0	10.3	6.20
$\beta=0.04$	6.20	2.30	3.80	5.50	7.20	3.60	4.20	6.00	12.6	6.60	5.80	6.20	18.9	9.80	7.00	6.50	33.3	20.7	13.0	7.10
$\beta=0.2$	7.50	3.60	4.00	5.80	12.4	6.80	6.50	7.30	23.5	13.0	9.60	8.90	45.6	27.6	17.9	11.3	71.7	52.6	33.8	14.1
$\beta=0.4$	9.50	4.20	4.40	5.90	18.1	9.00	8.30	8.90	35.9	21.3	14.0	12.7	64.4	43.2	26.9	18.5	90.3	73.4	52.0	33.7
$\beta=0.6$	11.5	5.10	4.50	6.00	23.8	12.6	10.1	11.7	46.7	29.2	19.4	17.8	77.5	55.9	37.4	38.9	97.4	86.5	65.6	88.2
$\beta=0.8$	13.7	7.30	6.20	8.80	29.4	16.0	12.3	14.1	56.5	36.9	24.9	28.9	87.4	69.1	48.3	81.4	99.2	93.6	80.0	100
$\beta=0.83$	14.1	7.50	6.30	9.20	30.6	17.3	13.0	15.2	58.1	38.1	26.0	32.0	88.1	70.1	49.5	87.5	99.3	94.1	82.1	100
$\beta=1$	16.1	8.90	7.40	9.40	34.9	18.9	15.0	17.2	64.5	44.6	30.5	52.2	91.6	75.1	56.6	99.8	99.7	96.5	96.0	100

Table 2
(Continued)
Setti g VI: completel relaxed a d skewed

Test	Setti g VI: completel relaxed a d skewed																			
	$\delta=0.1$				$\delta=0.15$				$\delta=0.2$				$\delta=0.25$				$\delta=0.3$			
	DCF	CL	XL	CQ																
$\beta=0$	4.20	2.10	2.40	3.60	4.90	1.40	2.70	3.80	5.00	1.60	2.50	3.90	4.90	2.40	3.70	5.80	4.70	1.90	2.70	3.90
$\beta=0.02$	4.80	1.30	2.70	4.40	6.20	1.70	3.10	4.70	7.50	2.70	3.80	4.90	12.9	5.80	5.00	5.00	24.3	11.8	8.30	5.00
$\beta=0.04$	5.30	1.40	3.00	4.60	7.00	2.30	3.30	4.90	11.3	5.20	4.50	5.10	17.1	8.70	7.00	5.10	32.2	17.3	12.0	5.30
$\beta=0.2$	7.40	3.00	3.30	4.80	12.8	5.80	5.00	5.80	23.0	12.9	9.20	6.40	42.4	25.6	17.7	8.40	71.3	48.6	32.5	12.4
$\beta=0.4$	9.40	4.50	4.00	5.10	18.7	9.30	6.80	7.20	37.3	21.9	13.4	10.6	62.9	43.3	28.6	17.3	89.4	70.9	51.8	30.7
$\beta=0.6$	11.5	5.70	4.50	6.20	24.7	12.3	9.60	9.50	48.1	29.8	18.1	16.5	75.7	55.0	37.6	34.8	95.9	83.7	64.5	86.4
$\beta=0.8$	14.2	6.30	5.80	6.60	30.5	14.9	10.5	12.5	58.0	37.6	23.4	27.1	86.7	65.4	44.9	80.2	98.7	92.0	77.5	100
$\beta=0.83$	14.3	7.50	6.307	2.1	8 .	6	3	3	1	98			T D		0	T c			T	j

TABLE 3
Shown are the results of four tests based the original dataset, the bootstrapped samples and the random permutations

p-values of the four tests based o the dataset					
Test p-value	$\begin{gathered} \text { DCF } \\ 0.006 \end{gathered}$	$\begin{gathered} \text { CL } \\ 0.1708 \end{gathered}$		$\begin{gathered} \text { XL } \\ 0.093 \end{gathered}$	$\begin{gathered} \text { CQ } \\ 0.0955 \end{gathered}$
		Rejectio proportio s (\%) of the four tests over 500 bootstrapped datasets			
Test		DCF	CL	XL	CQ
Rejectio	proportio	82	65.8	65	58
		Rejectio proportio s (\%) of the four tests over 500 ra dom permutatio s			
Test Rejectio proportio		DCF	CL	XL	CQ
		4.6	1.8	3.4	7.4

500 bootstrapped datasets are give i Table 3, which shows that the highest rejectio proportio amo g the four tests is achieved b DCF at 82%. This is i li e with the smallest a d sig i ca $\mathrm{t} p$-value give b the DCF test based o the dataset itself. We also perform 500 ra dom permutatio s of the whole dataset (i.e., mixi g up two groups that elimi ate the group differe ce) a d co duct four tests over each permuted dataset. From Table 3, we see that the rejectio proportio of the DCF test (0.046) is close to the omi al level $\alpha=0.05$, while those of the other tests differ co siderabl .

APPENDIX

We rst prese t some auxiliar lemmas that are ke for derivi g the mai theorems. To i troduce Lemma 1, for a $\beta>0$ a d $y \in \mathbb{R}^{p}$, we de e a fu ctio $F_{\beta}(w)$ as

$$
F_{\beta}(w)=\beta^{-1} \log \left[\sum_{j=1}^{p} \exp \left\{\beta\left(w_{j}-y_{j}\right)\right\}\right], \quad w \in \mathbb{R}^{p}
$$

which satis es the propert

$$
0 \leq F_{\beta}(w)-\max _{1 \leq j \leq p}\left(w_{j}-y_{j}\right) \leq \beta^{-1} \log p
$$

for ever $w \in \mathbb{R}^{p} \mathrm{~b}$ (1) i [8]. I additio, we let $\varphi_{0}: \mathbb{R} \rightarrow[0,1]$ be a real valued fu ctio such that φ_{0} is thrice co ti uousl differe tiable a $\mathrm{d} \varphi_{0}(z)=1$ for $z \leq 0$ a d $\varphi_{0}(z)=0$ for $z \geq 1$. For a $\quad \phi \geq 1$, de e a fu ctio $\varphi(z)=\varphi_{0}(\phi z), z \in \mathbb{R}$. The, for a $\quad \phi \geq 1 \mathrm{ad}$ $y \in \mathbb{R}^{p}$, de ote $\beta=\phi \log p$ a d de e a fu ctio $\kappa: \mathbb{R}^{p} \rightarrow[0,1]$ as

$$
\begin{equation*}
\kappa(w)=\varphi_{0}\left(\phi F_{\phi \log p}(w)\right)=\varphi\left(F_{\beta}(w)\right), \quad w \in \mathbb{R}^{p} . \tag{9}
\end{equation*}
$$

Lemma 1 is devoted to characteri e the properties of the fu ctio κ de ed i (9), which ca be also referred to Lemmas A. 5 a d A. 6 i [7].

Lemma 1. For any $\phi \geq 1$ and $y \in \mathbb{R}^{p}$, we denote $\beta=\phi \log p$, then the function κ defined in (9) has the following properties, where $\kappa_{j k l}$ denotes $\partial_{j} \partial_{k} \partial_{l} \kappa$. For any $j, k, l=1, \ldots, p$, there exists a nonnegative function $Q_{j k l}$ such that:
(1) $\left|\kappa_{j k l}(w)\right| \leq Q_{j k l}(w)$ for all $w \in \mathbb{R}^{p}$,
(2) $\sum_{j=1}^{p} \sum_{k=1}^{p} \sum_{l=1}^{p} Q_{j k l}(w) \lesssim\left(\phi^{3}+\phi^{2} \beta+\phi \beta^{2}\right) \lesssim \phi \beta^{2}$ for all $w \in \mathbb{R}^{p}$,
(3) $Q_{j k l}(w) \lesssim Q_{j k l}(w+\tilde{w}) \lesssim Q_{j k l}(w)$ for all $w \in \mathbb{R}^{p}$ and $\tilde{w} \in\left\{w^{*} \in \mathbb{R}^{p}\right.$: $\left.\max _{1 \leq j \leq p}\left|w_{j}^{*}\right| \beta \leq 1\right\}$.

To state Lemma 2, a two-sample exte sio of Lemma 5.1 i [9], for a seque ce of co sta ts $\delta_{n, m}$ that depe ds o both n a d m, we de ote the qua tit $\rho_{n, m} \mathrm{~b}$

$$
\begin{align*}
\rho_{n, m} & =\sup _{v \in[0,1]} \sup _{y \in \mathbb{R}^{p}} \mid P\left\{v^{1 / 2}\left(S_{n}^{X}-n^{1 / 2} \mu^{X}+\delta_{n, m} S_{m}^{Y}-\delta_{n, m} m^{1 / 2} \mu^{Y}\right)\right. \\
& \left.+(1-v)^{1 / 2}\left(S_{n}^{F}-n^{1 / 2} \mu^{X}+\delta_{n, m} S_{m}^{G}-\delta_{n, m} m^{1 / 2} \mu^{Y}\right) \leq y\right\} \tag{10}\\
& -P\left(S_{n}^{F}-n^{1 / 2} \mu^{X}+\delta_{n, m} S_{m}^{G}-\delta_{n, m} m^{1 / 2} \mu^{Y} \leq y\right) \mid
\end{align*}
$$

Lemma 2 provides a bou do $\rho_{n, m} \mathrm{u}$ der some ge eral co ditio s .

LEMMA 2. For any $\phi_{1}, \phi_{2} \geq 1$ and any sequence of constants $\delta_{n, m}$, assume the following condition (a) holds,
(a) There exists a universal constant $b>0$ such that

$$
\operatorname{mi}_{1 \leq j \leq p} E\left\{\left(S_{n j}^{X}-n^{1 / 2} \mu_{j}^{X}+\delta_{n, m} S_{m j}^{Y}-\delta_{n, m} m^{1 / 2} \mu_{j}^{Y}\right)^{2}\right\} \geq b .
$$

Then we have

$$
\rho_{n, m} \lesssim n^{-1 / 2} \phi_{1}^{2}(\log p)
$$

Then we have

$$
\begin{aligned}
\rho_{n, m}^{*} \leq & K^{*}\left[n^{-1 / 2} \phi_{1}^{2}(\log p)^{2}\left\{\phi_{1} L_{n}^{X} \rho_{n, m}^{*}+L_{n}^{X}(\log p)^{1 / 2}+\phi_{1} M_{n}\left(\phi_{1}\right)\right\}\right. \\
& +m^{-1 / 2} \phi_{2}^{2}(\log p)^{2}\left|\delta_{n, m}\right|^{3}\left\{\phi_{2} L_{m}^{Y} \rho_{n, m}^{*}+L_{m}^{Y}(\log p)^{1 / 2}+\phi_{2} M_{m}^{*}\left(\phi_{2}\right)\right\} \\
& \left.+\left(\operatorname{mi}\left\{\phi_{1}, \phi_{2}\right\}\right)^{-1}(\log p)^{1 / 2}\right],
\end{aligned}
$$

up to a universal constant $K^{*}>0$ that depends only on b, where $\rho_{n, m}^{*}$ is defined in (11).
Before stati g the ext lemma, for a $\quad \phi \geq 1$, we de ote $M_{n}(\phi)=M_{n}^{X}(\phi)+M_{n}^{F}(\phi)$, where $M_{n}^{X}(\phi)$ a d $M_{n}^{F}(\phi)$ are give as follows, respectivel ,

$$
\begin{aligned}
& n^{-1} \sum_{i=1}^{n} E\left[\max _{1 \leq j \leq p}\left|X_{i j}-\mu_{j}^{X}\right|^{3} 1\left\{\max _{1 \leq j \leq p}\left|X_{i j}-\mu_{j}^{X}\right|>n^{1 / 2} /(4 \phi \log p)\right\}\right] \\
& n^{-1} \sum_{i=1}^{n} E\left[\max _{1 \leq j \leq p}\left|F_{i j}-\mu_{j}^{F}\right|^{3} 1\left\{\max _{1 \leq j \leq p}\left|F_{i j}-\mu_{j}^{F}\right|>n^{1 / 2} /(4 \phi \log p)\right\}\right]
\end{aligned}
$$

similar to those adopted i [9]. Likewise, for a $\quad \phi \geq 1 \mathrm{a}$ da seque ce of co sta ts $\delta_{n, m}$ that depe ds o both n a d m, we de ote $M_{m}^{*}(\phi)=M_{m}^{Y}(\phi)+M_{m}^{G}(\phi)$ with $M_{m}^{Y}(\phi)$ a d $M_{m}^{G}(\phi)$ as follows, respectivel ,

$$
\begin{aligned}
& m^{-1} \sum_{i=1}^{m} E\left[\max _{1 \leq j \leq p}\left|Y_{i j}-\mu_{j}^{Y}\right|^{3} 1\left\{\max _{1 \leq j \leq p}\left|Y_{i j}-\mu_{j}^{Y}\right|>m^{1 / 2} /\left(4\left|\delta_{n, m}\right| \phi \log p\right)\right\}\right] \\
& m^{-1} \sum_{i=1}^{m} E\left[\max _{1 \leq j \leq p}\left|G_{i j}-\mu_{j}^{G}\right|^{3} 1\left\{\max _{1 \leq j \leq p}\left|G_{i j}-\mu_{j}^{G}\right|>m^{1 / 2} /\left(4\left|\delta_{n, m}\right| \phi \log p\right)\right\}\right]
\end{aligned}
$$

Recalli g the de itio of $\rho_{n, m}^{* *} \mathrm{i}$ (2), Lemma 4 gives a abstract upper bou do $\rho_{n, m}^{* *}$ u der mild co ditio s as follows.

LEMMA 4. For any sequence of constants $\delta_{n, m}$, assume we have the following conditions (a)-(b):
(a) There exists a universal constant $b>0$ such that

$$
\operatorname{mi}_{1 \leq j \leq p} E\left\{\left(S_{n j}^{X}-n^{1 / 2} \mu_{j}^{X}+\delta_{n, m} S_{m j}^{Y}-\delta_{n, m} m^{1 / 2} \mu_{j}^{Y}\right)^{2}\right\} \geq b .
$$

(b) There exist two sequences of constants \bar{L}_{n}^{*} and $\bar{L}_{m}^{* *}$ such that we have $\bar{L}_{n}^{*} \geq L_{n}^{X}$ and $\bar{L}_{m}^{* *} \geq L_{m}^{Y}$, respectively. Moreover, we also have

$$
\begin{aligned}
\phi_{n}^{*} & =K_{1}\left\{\left(\bar{L}_{n}^{*}\right)^{2}(\log p)^{4} / n\right\}^{-1 / 6} \geq 2 \\
\phi_{m}^{* *} & =K_{1}\left\{\left(\bar{L}_{m}^{* *}\right)^{2}(\log p)^{4}\left|\delta_{n, m}\right|^{6} / m\right\}^{-1 / 6} \geq 2
\end{aligned}
$$

for a universal constant $K_{1} \in\left(0,\left(K^{*} \vee 2\right)^{-1}\right]$, where the positive constant K^{*} that depends on n as defined in Lemma 3 in the Appendix.

Then we have the following property, where $\rho_{n, m}^{* *}$ is defined in (2),

$$
\begin{aligned}
\rho_{n, m}^{* *} \leq & K_{2}\left[\left\{\left(\bar{L}_{n}^{*}\right)^{2}(\log p)^{7} / n\right\}^{1 / 6}+\left\{M_{n}\left(\phi_{n}^{*}\right) / \bar{L}_{n}^{*}\right\}\right. \\
& \left.+\left\{\left(\bar{L}_{m}^{* *}\right)^{2}(\log p)^{7}\left|\delta_{n, m}\right|^{6} / m\right\}^{1 / 6}+\left\{M_{m}^{*}\left(\phi_{m}^{* *}\right) / \bar{L}_{m}^{* *}\right\}\right]
\end{aligned}
$$

for a universal constant $K_{2}>0$ that depends only on b.

To i troduce Lemma 5, for a seque ce of co sta ts $\delta_{n, m}$ that depe ds o both n a d m, de ote a useful qua tit $\hat{\Delta}_{n, m}=\left\|\hat{\Sigma}^{X}-\Sigma^{X}+\delta_{n, m}^{2}\left(\hat{\Sigma}^{Y}-\Sigma^{Y}\right)\right\|_{\infty}$. Lemma 5 below gives a abstract upper bou do $\rho_{n, m}^{M B}$ de edi (4).

LEMMA 5. For any sequence of constants $\delta_{n, m}$, assume we have the following condition (a):
(a) There exists a universal constant $b>0$ such that

$$
\operatorname{mi}_{1 \leq j \leq p} E\left\{\left(S_{n j}^{X}-n^{1 / 2} \mu_{j}^{X}+\delta_{n, m} S_{m j}^{Y}-\delta_{n, m} m^{1 / 2} \mu_{j}^{Y}\right)^{2}\right\} \geq b .
$$

Then for any sequence of constants $\bar{\Delta}_{n, m}>0$, on the event $\left\{\hat{\Delta}_{n, m} \leq \bar{\Delta}_{n, m}\right\}$, we have the following property, where $\rho_{n, m}^{M B}$ is defined in (4),

$$
\rho_{n, m}^{M B} \lesssim\left(\bar{\Delta}_{n, m}\right)^{1 / 3}(\log p)^{2 / 3} .
$$

Lastl, we prese t two-sample Borel Ca telli lemma i Lemma 6.
LEMMA 6. Let $\left\{A_{n, m}: n \geq 1, m \geq 1,(n, m) \in A\right\}$ be a sequence of events in the sample space Ω, where A is the set of all possible combinations (n, m), which has the form $A=$ $\{(n, m): n \geq 1, m \in \sigma(n)\}$ where $\sigma(n)$ is a set of positive integers determined by n, possibly the empty set. Assume the following condition (a):
(a) $\sum_{n=1}^{\infty} \sum_{m \in \sigma(n)} P\left(A_{n, m}\right)<\infty$.

Then we have the following property:

$$
P\left(\bigcap_{k_{1}=1}^{\infty} \bigcap_{k_{2}=1}^{\infty} \bigcup_{n=k_{1}}^{\infty} \bigcup_{m \in \varrho\left(k_{2}\right) \cap \sigma(n)} A_{n, m}\right)=0,
$$

where $\varrho\left(k_{2}\right)=\left\{k: k \in \mathbb{Z}, k \geq k_{2}\right\}$.
Note that if $m \in \sigma(n)=\varnothing$, we just delete the roles of those $A_{n, m}$ a d $A_{n, m}^{c}$ duri g a operatio s such as u io a d i tersectio, a d the same applies to $P\left(A_{n, m}\right)$ a d $P\left(A_{n, m}^{c}\right)$ duri g summatio a deductio .

Before precedi g , we me tio that the derivatio s of Theorems 12 esse tiall follow those of their cou terparts i [9], but eed more tech icalit to emplo the aforesaid Lemmas 45 to address the challe ge arisi g from u equal sample si es. The derivatio of Corollar 1 is based o Theorem 1 as well as a two-sample Borel Ca telli lemma (Lemma 6) that rst appears i this work as far as we k ow.

Theorems 35 regardi g the DCF test are ewl developed, while o comparable results are prese ti literature. Thus we prese t the proofs of Theorems 35 below, while the proofs of Theorems 1 2, Corollar 1 a d the auxiliar lemmas are delegated to a o li e Suppleme tar Material for space eco om .

Proof of Theorem 3. First of all, we de e a seque ce of co sta ts $\delta_{n, m} \mathrm{~b}$

$$
\begin{equation*}
\delta_{n, m}=-n^{1 / 2} m^{-1 / 2} \tag{12}
\end{equation*}
$$

Together with co ditio (a), it ca deduced that

$$
\begin{equation*}
\delta_{2}<\left|\delta_{n, m}\right|<\delta_{1} \tag{13}
\end{equation*}
$$

with $\delta_{1}=\left\{c_{2} /\left(1-c_{2}\right)\right\}^{1 / 2}>0$ a d $\delta_{2}=\left\{c_{1} /\left(1-c_{1}\right)\right\}^{1 / 2}>$

Proof of Theorem 4. Give a $\quad\left(\mu^{X}-\mu^{Y}\right)$, we have

$$
\begin{aligned}
& \operatorname{Power}^{*}\left(\mu^{X}-\mu^{Y}\right) \\
&= P_{e^{*}}\left\{\left\|S_{n}^{e^{*} X}-n^{1 / 2} m^{-1 / 2} S_{m}^{e^{*} Y}+n^{1 / 2}\left(\mu^{X}-\mu^{Y}\right)\right\|_{\infty} \geq c_{B}(\alpha)\right\} \\
&= 1-P_{e^{*}}\left\{\left\|S_{n}^{e^{*} X}-n^{1 / 2} m^{-1 / 2} S_{m}^{e^{*} Y}+n^{1 / 2}\left(\mu^{X}-\mu^{Y}\right)\right\|_{\infty}<c_{B}(\alpha)\right\} \\
&= 1-P_{e^{*}}\left\{-n^{1 / 2}\left(\mu^{X}-\mu^{Y}\right)-c_{B}(\alpha)<S_{n}^{e^{*} X}-n^{1 / 2} m^{-1 / 2} S_{m}^{e^{*} Y}<\right. \\
&\left.-n^{1 / 2}\left(\mu^{X}-\mu^{Y}\right)+c_{B}(\alpha)\right\} \\
&= 1-P_{e^{*}}\left\{-n^{1 / 2}\left(\mu^{X}-\mu^{Y}\right)-c_{B}(\alpha)<S_{n}^{e^{*} X}-n^{1 / 2} m^{-1 / 2} S_{m}^{e^{*} Y}<\right. \\
&\left.-n^{1 / 2}\left(\mu^{X}-\mu^{Y}\right)+c_{B}(\alpha)\right\} \\
&+P\left\{-n^{1 / 2}\left(\mu^{X}-\mu^{Y}\right)-c_{B}(\alpha)<S_{n}^{X}-n^{1 / 2} m^{-1 / 2} S_{m}^{Y}\right. \\
&\left.-n^{1 / 2}\left(\mu^{X}-\mu^{Y}\right)<-n^{1 / 2}\left(\mu^{X}-\mu^{Y}\right)+c_{B}(\alpha)\right\} \\
&-P\left\{-n^{1 / 2}\left(\mu^{X}-\mu^{Y}\right)-c_{B}(\alpha)<S_{n}^{X}-n^{1 / 2} m^{-1 / 2} S_{m}^{Y}\right. \\
&\left.-n^{1 / 2}\left(\mu^{X}-\mu^{Y}\right)<-n^{1 / 2}\left(\mu^{X}-\mu^{Y}\right)+c_{B}(\alpha)\right\} \\
& \geq 1-\sup _{A \in \mathcal{A}^{\mathrm{Re}}} \mid P\left(\| S_{n}^{X}-n^{1 / 2} m^{-1 / 2} S_{m}^{Y}\right. \\
&\left.-n^{1 / 2}\left(\mu^{X}-\mu^{Y}\right) \|_{\infty} \in A\right)-P_{e^{*}}\left(\left\|S_{n}^{e^{*} X}-n^{1 / 2} m^{-1 / 2} S_{m}^{e^{*} Y}\right\|_{\infty} \in A\right) \mid \\
&-P\left\{\left\|S_{n}^{X}-n^{1 / 2} m^{-1 / 2} S_{m}^{Y}\right\|_{\infty}<c_{B}(\alpha)\right\} \\
&= \operatorname{Power}\left(\mu^{X}-\mu^{Y}\right) \\
&-\sup \mid P\left(\left\|S_{n}^{X}-n^{1 / 2} m^{-1 / 2} S_{m}^{Y}-n^{1 / 2}\left(\mu^{X}-\mu^{Y}\right)\right\|_{\infty} \in A\right) \\
&-P_{e^{*}}\left(\left\|S_{n}^{e^{*} X}-n^{1 / 2} m^{-1 / 2} S_{m}^{e^{*} Y}\right\|_{\infty} \in A\right) \mid .
\end{aligned}
$$

Likewise, give a $\quad\left(\mu^{X}-\mu^{Y}\right)$, we have

$$
\begin{aligned}
& \operatorname{Power}\left(\mu^{X}-\mu^{Y}\right) \\
&= P\left\{\left\|S_{n}^{X}-n^{1 / 2} m^{-1 / 2} S_{m}^{Y}\right\|_{\infty} \geq c_{B}(\alpha)\right\} \\
&= 1-P\left\{\left\|S_{n}^{X}-n^{1 / 2} m^{-1 / 2} S_{m}^{Y}\right\|_{\infty}<c_{B}(\alpha)\right\} \\
&= 1-P\left\{-c_{B}(\alpha)<S_{n}^{X}-n^{1 / 2} m^{-1 / 2} S_{m}^{Y}<c_{B}(\alpha)\right\} \\
&= 1+P_{e^{*}}\left\{-n^{1 / 2}\left(\mu^{X}-\mu^{Y}\right)-c_{B}(\alpha)<S_{n}^{e^{*} X}-n^{1 / 2} m^{-1 / 2} S_{m}^{e^{*} Y}<\right. \\
&\left.-n^{1 / 2}\left(\mu^{X}-\mu^{Y}\right)+c_{B}(\alpha)\right\}-P\left\{-n^{1 / 2}\left(\mu^{X}-\mu^{Y}\right)-c_{B}(\alpha)\right. \\
&\left.<S_{n}^{X}-n^{1 / 2} m^{-1 / 2} S_{m}^{Y}-n^{1 / 2}\left(\mu^{X}-\mu^{Y}\right)<-n^{1 / 2}\left(\mu^{X}-\mu^{Y}\right)+c_{B}(\alpha)\right\} \\
&-P_{e^{*}}\left\{-n^{1 / 2}\left(\mu^{X}-\mu^{Y}\right)-c_{B}(\alpha)<S_{n}^{e^{*} X}-n^{1 / 2} m^{-1 / 2} S_{m}^{e^{*} Y}\right. \\
&\left.<-n^{1 / 2}\left(\mu^{X}-\mu^{Y}\right)+c_{B}(\alpha)\right\} \\
& \geq 1-\sup \mid P\left(\left\|S_{n}^{X}-n^{1 / 2} m^{-1 / 2} S_{m}^{Y}-n^{1 / 2}\left(\mu^{X}-\mu^{Y}\right)\right\|_{\infty} \in A\right) \\
& \quad-P_{e^{*}}\left(\left\|S_{n}^{e^{*} X}-n^{1 / 2} m^{-1 / 2} S_{m}^{e^{*} Y}\right\|_{\infty} \in A\right) \mid
\end{aligned}
$$

$$
\begin{aligned}
& -P_{e^{*}}\left\{\left\|S_{n}^{e^{*} X}-n^{1 / 2} m^{-1 / 2} S_{m}^{e^{*} Y}+n^{1 / 2}\left(\mu^{X}-\mu^{Y}\right)\right\|_{\infty}<c_{B}(\alpha)\right\} \\
= & \operatorname{Power}^{*}\left(\mu^{X}-\mu^{Y}\right) \\
& -\sup _{A \in \mathcal{A}^{\operatorname{Re}}} \mid P\left(\left\|S_{n}^{X}-n^{1 / 2} m^{-1 / 2} S_{m}^{Y}-n^{1 / 2}\left(\mu^{X}-\mu^{Y}\right)\right\|_{\infty} \in A\right) \\
& -P_{e^{*}}\left(\left\|S_{n}^{e^{*} X}-n^{1 / 2} m^{-1 / 2} S_{m}^{e^{*} Y}\right\|_{\infty} \in A\right) \mid .
\end{aligned}
$$

Putti g (22) a d (23) together i dicates that

$$
\begin{align*}
& \left|\operatorname{Power}^{*}\left(\mu^{X}-\mu^{Y}\right)-\operatorname{Power}\left(\mu^{X}-\mu^{Y}\right)\right| \\
& \quad \leq \sup _{A \in \mathcal{A}^{\mathrm{Re}}} \mid P\left(\left\|S_{n}^{X}-n^{1 / 2} m^{-1 / 2} S_{m}^{Y}-n^{1 / 2}\left(\mu^{X}-\mu^{Y}\right)\right\|_{\infty} \in A\right) \tag{24}\\
& \quad-P_{e^{*}}\left(\left\|S_{n}^{e^{*} X}-n^{1 / 2} m^{-1 / 2} S_{m}^{e^{*} Y}\right\|_{\infty} \in A\right) \mid .
\end{align*}
$$

Moreover, b similar argume t as i the proof of Theorem 3, o e ca show that with probabilit o e,

$$
\begin{array}{rl}
\sup _{A \in \mathcal{A}^{\mathrm{Re}}} & P\left(\left\|S_{n}^{X}-n^{1 / 2} m^{-1 / 2} S_{m}^{Y}-n^{1 / 2}\left(\mu^{X}-\mu^{Y}\right)\right\|_{\infty} \in A\right) \\
& -P_{e^{*}}\left(\left\|S_{n}^{e^{*} X}-n^{1 / 2} m^{-1 / 2} S_{m}^{e^{*} Y}\right\|_{\infty} \in A\right) \mid \tag{25}\\
\lesssim & \left\{B_{n, m}^{2} \log ^{7}(p n) / n\right\}^{1 / 6} .
\end{array}
$$

Fi all, b combi i g (24) with (25), for a $\mu^{X}-\mu^{Y} \in \mathbb{R}^{p}$, we have that with probabilit o e,

$$
\left|\operatorname{Power}^{*}\left(\mu^{X}-\mu^{Y}\right)-\operatorname{Power}\left(\mu^{X}-\mu^{Y}\right)\right| \lesssim\left\{B_{n, m}^{2} \log ^{7}(p n) / n\right\}^{1 / 6}
$$

which completes the proof.
Proof of Theorem 5. First of all, o the basis of (8) a d the tria gle i equalit, it is clear that

$$
\begin{align*}
\operatorname{Power}^{*}\left(\mu^{X}-\mu^{Y}\right) \geq & P_{e^{*}}\left\{\left\|S_{n}^{e^{*} X}-n^{1 / 2} m^{-1 / 2} S_{m}^{e^{*} Y}\right\|_{\infty}\right. \tag{26}\\
& \left.\leq\left\|n^{1 / 2}\left(\mu^{X}-\mu^{Y}\right)\right\|_{\infty}-c_{B}(\alpha)\right\} .
\end{align*}
$$

At this poi t , with some abuse of otatio, we de ote $\left\{e_{j}: j \leq p\right\}$ as the atural basis for \mathbb{R}^{p}. The it follows from u io bou di equalit a d co ce tratio i equalit that for a $t \geq 0$,

$$
\begin{aligned}
P_{e^{*}} & \left\{\left\|S_{n}^{e^{*} X}-n^{1 / 2} m^{-1 / 2} S_{m}^{e^{*} Y}\right\|_{\infty} \geq t\right\} \\
& \leq \sum_{j=1}^{p} P_{e^{*}}\left\{\left|S_{n j}^{e^{*} X}-n^{1 / 2} m^{-1 / 2} S_{m j}^{e^{*} Y}\right| \geq t\right\} \\
& \leq \sum_{j=1}^{p} 2 \exp \left[-t^{2} /\left\{2 e_{j}^{\prime}\left(\hat{\Sigma}^{X}+n m^{-1} \hat{\Sigma}^{Y}\right) e_{j}\right\}\right] \\
& \leq 2 p \exp \left(-t^{2} /\left[2 \max _{j \leq p}\left\{e_{j}^{\prime}\left(\hat{\Sigma}^{X}+n m^{-1} \hat{\Sigma}^{Y}\right) e_{j}\right\}\right]\right) .
\end{aligned}
$$

B pluggi $\mathrm{g} t=c_{B}(\alpha)$ i to (27), it follows from the de itio of $c_{B}(\alpha)$ that

$$
\begin{align*}
c_{B}(\alpha) & \leq\left[2 \log (2 p / \alpha) \max _{j \leq p}\left\{e_{j}^{\prime}\left(\hat{\Sigma}^{X}+n m^{-1} \hat{\Sigma}^{Y}\right) e_{j}\right\}\right]^{1 / 2} \\
& \leq\left[4 \log (p n) \max _{j \leq p}\left\{e_{j}^{\prime}\left(\hat{\Sigma}^{X}+n m^{-1} \hat{\Sigma}^{Y}\right) e_{j}\right\}\right]^{1 / 2}, \tag{28}
\end{align*}
$$

for suf cie tl large n. To bou d the qua tit $\max _{j \leq p}\left\{e_{j}^{\prime}\left(\hat{\Sigma}^{X}+n m^{-1} \hat{\Sigma}^{Y}\right) e_{j}\right\}$, rst otice that

$$
\begin{align*}
& \max _{j \leq p}\left\{e_{j}^{\prime}\left(\hat{\Sigma}^{X}+n m^{-1} \hat{\Sigma}^{Y}\right) e_{j}\right\} \\
& \quad=\left\|\hat{\Sigma}^{X}+n m^{-1} \hat{\Sigma}^{Y}\right\|_{\infty} \tag{29}\\
& \quad \leq\left\|\hat{\Sigma}^{X}-\Sigma^{X}+n m^{-1}\left(\hat{\Sigma}^{Y}-\Sigma^{Y}\right)\right\|_{\infty}+\left\|\Sigma^{X}+n m^{-1} \Sigma^{Y}\right\|_{\infty}
\end{align*}
$$

For the term $\left\|\hat{\Sigma}^{X}-\Sigma^{X}+n m^{-1}\left(\hat{\Sigma}^{Y}-\Sigma^{Y}\right)\right\|_{\infty}$, i equalities (53) a d (54) from the Suppleme tar Material together with (12), (17) a d co ditio (a) e tails that there exists a u iversal co sta $\mathrm{t} c_{1}>0$ such that

$$
\begin{equation*}
\left\|\hat{\Sigma}^{X}-\Sigma^{X}+n m^{-1}\left(\hat{\Sigma}^{Y}-\Sigma^{Y}\right)\right\|_{\infty} \leq c_{1}\left\{B_{n, m}^{2} \log ^{3}(p n) / n\right\}^{1 / 2} \tag{30}
\end{equation*}
$$

with probabilit te di g to o e. Regardi g the term $\left\|\Sigma^{X}+n m^{-1} \Sigma^{Y}\right\|_{\infty}$, o e has

$$
\begin{aligned}
\| \Sigma^{X} & +n m^{-1} \Sigma^{Y} \|_{\infty} \\
\leq & \left\|\Sigma^{X}\right\|_{\infty}+n m^{-1}\left\|\Sigma^{Y}\right\|_{\infty} \leq\left\|\Sigma^{X}\right\|_{\infty}+c_{2}\left\|\Sigma^{Y}\right\|_{\infty} \\
= & \max _{1 \leq j \leq p} \sum_{i=1}^{n} E\left\{\left(X_{i j}-\mu_{j}^{X}\right)^{2}\right\} / n+c_{2} \max _{1 \leq j \leq p} \sum_{i=1}^{m} E\left\{\left(Y_{i j}-\mu_{j}^{Y}\right)^{2}\right\} / m \\
\leq & \max _{1 \leq j \leq p} \sum_{i=1}^{n}\left[E\left\{\left(X_{i j}-\mu_{j}^{X}\right)^{4}\right\}\right]^{1 / 2} / n \\
& +c_{2} \max _{1 \leq j \leq p} \sum_{i=1}^{m}\left[E\left\{\left(Y_{i j}-\mu_{j}^{Y}\right)^{4}\right\}\right]^{1 / 2} / m \\
\leq & {\left[\max _{1 \leq j \leq p} \sum_{i=1}^{n} E\left\{\left(X_{i j}-\mu_{j}^{X}\right)^{4}\right\} / n\right]^{1 / 2} } \\
& +c_{2}\left[\max _{1 \leq j \leq p} \sum_{i=1}^{m} E\left\{\left(Y_{i j}-\mu_{j}^{Y}\right)^{4}\right\} / m\right]^{1 / 2} \\
\leq & c_{3} B_{n, m}
\end{aligned}
$$

for some u iversal co sta ts $c_{2}, c_{3}>0$, where the seco d i equalit is b co ditio (a), the third i equalit is based o Je se 's i equalit, the fourth i equalit holds from the Cauch Schwar i equalit a d the last i equalit follows from co ditio (c). To this e d, b combi i g (30), (31), (e) with (29), it ca be deduced that there exists a u iversal co sta $\mathrm{t} c_{4}>0$ such that

$$
\begin{equation*}
\max _{j \leq p}\left\{e_{j}^{\prime}\left(\hat{\Sigma}^{X}+n m^{-1} \hat{\Sigma}^{Y}\right) e_{j}\right\} \leq c_{4} B_{n, m} \tag{32}
\end{equation*}
$$

with probabilit te di g to o e. Together with (28), it ca be veri ed that

$$
\begin{equation*}
c_{B}(\alpha) \leq\left\{4 c_{4} B_{n, m} \log (p n)\right\}^{1 / 2} \tag{33}
\end{equation*}
$$

with probabilit te di g to o e Now, we set the co sta $\mathrm{t} K_{S} \mathrm{i}$ (f) as $K_{s}=4 c_{4}^{1 / 2}$, a d it the follows from (f) a d (33) that

$$
\begin{equation*}
\left\|n^{1 / 2}\left(\mu^{X}-\mu^{Y}\right)\right\|_{\infty}-c_{B}(\alpha) \geq\left\{4 c_{4} B_{n, m} \log (p n)\right\}^{1 / 2} \tag{34}
\end{equation*}
$$

with probabilit te di g to $\mathrm{o} \mathrm{e} . \mathrm{Hece}$, it ca be deduced that with probabilit te di g to o e,

$$
\begin{aligned}
& \operatorname{Power}^{*}\left(\mu^{X}-\mu^{Y}\right) \\
& \qquad \geq P_{e^{*}}\left[\left\|S_{n}^{e^{*} X}-n^{1 / 2} m^{-1 / 2} S_{m}^{e^{*} Y}\right\|_{\infty} \leq\left\{4 c_{4} B_{n, m} \log (p n)\right\}^{1 / 2}\right] \\
& \quad=1-P_{e^{*}}\left[\left\|S_{n}^{e^{*} X}-n^{1 / 2} m^{-1 / 2} S_{m}^{e^{*} Y}\right\|_{\infty} \geq\left\{4 c_{4} B_{n, m} \log (p n)\right\}^{1 / 2}\right] \\
& \quad \geq 1-2 p \exp \left(-4 c_{4} B_{n, m} \log (p n) /\left[2 \max _{j \leq p}\left\{e_{j}^{\prime}\left(\hat{\Sigma}^{X}+n m^{-1} \hat{\Sigma}^{Y}\right) e_{j}\right\}[)[\}\right.\right.
\end{aligned}
$$

[9] Chernozhukov, V., Chetverikov, D. a d Kato, K. (2017). Ce tral limit theorems a d bootstrap i high dime sio s. Ann. Probab. 452309 2352. MR3693963 https://doi.org/10.1214/16-AOP1113
[10] Feng, L., Zou, C., Wang, Z. a d Zhu, L. (2015). Two-sample Behre s Fisher problem for highdime sio al data. Statist. Sinica 251297 1312. MR3409068
[11] Gregory, K. B., Carroll, R. J., Baladandayuthapani, V. a d Lahiri, S. N. (2015). A twosample test for equalit of mea si high dime sio .J.Amer. Statist. Assoc. 110837 849. MR3367268 https://doi.org/10.1080/01621459.2014.934826
[12] HU, J., BAI, Z., WANG, C. a d WANG, W. (2017). O testi g the equalit of high dime sio al mea vectors with u equal covaria ce matrices. Ann. Inst. Statist. Math. 69365 387. MR3611524 https://doi.org/10. 1007/s10463-015-0543-8
[13] Hussain, L., Aziz, W., Nadeem, S. A., Shah, S. A. a d Majid, A. (2015). Electroe cephalograph (EEG) a al sis of alcoholic a d co trol subjects usi g multiscale permutatio e trop . J. Multidiscip. Eng. Sci. Technol. 131590040.
[14] Park, J. a d Ayyala, D. N. (2013). A test for the mea vector i large dime sio a d small samples. J. Statist. Plann. Inference 143929 943. MR3011304 https://doi.org/10.1016/j.jspi.2012.11.001
[15] SHEN, Y. a d Lin, Z. (2015). A adaptive test for the mea vector i large- p-small- n problems. Comput. Statist. Data Anal. 8925 38. MR3349665 https://doi.org/10.1016/j.csda.2015.03.004
[16] Srivastava, M. S. (2007). Multivariate theor for a al i g high dime sio al data. J. Japan Statist. Soc. 3753 86. MR2392485 https://doi.org/10.14490/jjss. 37.53
[17] SRivastava, M. S. (2009). A test for the mea vector with fewer observatio s tha the dime sio u der o - ormalit . J. Multivariate Anal. 100518 532. MR2483435 https://doi.org/10.1016/j.jmva.2008. 06.006
[18] Srivastava, M. S. a d Du, M. (2008). A test for the mea vector with fewer observatio s tha the dime sio .J. Multivariate Anal. 99386 402. MR2396970 https://doi.org/10.1016/j.jmva.2006.11.002
[19] Srivastava, M. S. a d Kubokawa, T. (2013). Tests for multivariate a al sis of varia ce i high dime sio u der o - ormalit . J. Multivariate Anal. 115204 216. MR3004555 https://doi.org/10.1016/j. jmva.2012.10.011
[20] Wang, L., Peng, B. a d Li, R. (2015). A high-dime sio al o parametric multivariate test for mea vector. J. Amer. Statist. Assoc. 1101658 1669. MR3449062 https://doi.org/10.1080/01621459.2014. 988215
[21] Xu, G., Lin, L., Wei, P. a d Pan, W. (2016). A adaptive two-sample test for high-dime sio al mea s. Biometrika 103609 624. MR3551787 https://doi.org/10.1093/biomet/asw029
[22] Xue, K. a d Yao, F. (2019). Suppleme t to Distributio a d correlatio -free two-sample test of highdime sio al mea s._https://doi.org/10.1214/19-AOS1848SUPP.
[23] Yagi, A. a d Seo, T. (2014). A test for mea vector a d simulta eous co de ce i tervals with three-step mo oto e missi g data. Amer. J. Math. Management Sci. 33161175.
[24] Yamada, T. a d Himeno, T. (2015). Testi g homoge eit of mea vectors u der heteroscedasticit i high-dime sio . J. Multivariate Anal. 1397 27. MR3349477 https://doi.org/10.1016/j.jmva.2015.02. 005
[25] Zhang, J. a d Pan, M. (2016). A high-dime sio two-sample test for the mea usi g cluster subspaces. Comput. Statist. Data Anal. 9787 97. MR3447038 https://doi.org/10.1016/j.csda.2015.12.004
[26] Zhang, X. (2015). Testi g high dime sio al mea u der sparsit. Prepri t. Available at arXiv:1509.08444v2.
[27] ZHAO, J. (2017). A ew test for the mea vector i large dime sio a d small samples. Comm. Statist. Simulation Comput. 466115 6128. MR3740770 https://doi.org/10.1080/03610918.2016.1197244
[28] Zhong, P.-S., Chen, S. X. a d Xu, M. (2013). Tests alter ative to higher criticism for high-dime sio al mea s u der sparsit a d colum -wise depe de ce. Ann. Statist. 412820 2851. MR3161449 https://doi.org/10.1214/13-AOS1168
[29] Zhu, Y. a d Bradic, J. (2016). Two-sample testi g i o -sparse high-dime sio al li ear models. Prepri t. Available at arXiv: 1610.04580 v 1.

[^0]: Received October 2018; revised Ja uar 2019.
 MSC2010 subject classifications. $62 \mathrm{H} 05,62 \mathrm{~F} 05$.
 Key words and phrases. High-dime sio al ce tral limit theorem, Kolmogorov dista ce, multiplier bootstrap, power fu ctio .

