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INTRINSIC RIEMANNIAN FUNCTIONAL DATA ANALYSIS1

BY ZHENHUA LIN∗ AND FANG YAO†

National University of Singapore∗ and Peking University†

In this work we develop a novel and foundational framework for ana-
lyzing general Riemannian functional data, in particular a new development
of tensor Hilbert spaces along curves on a manifold. Such spaces enable us
to derive Karhunen–Loève expansion for Riemannian random processes. This
framework also features an approach to compare objects from different tensor
Hilbert spaces, which paves the way for asymptotic analysis in Riemannian
functional data analysis. Built upon intrinsic geometric concepts such as vec-
tor field, Levi-Civita connection and parallel transport on Riemannian man-
ifolds, the developed framework applies to not only Euclidean submanifolds
but also manifolds without a natural ambient space. As applications of this
framework, we develop intrinsic Riemannian functional principal component
analysis (iRFPCA) and intrinsic Riemannian functional linear regression (iR-
FLR) that are distinct from their traditional and ambient counterparts. We also
provide estimation procedures for iRFPCA and iRFLR, and investigate their
asymptotic properties within the intrinsic geometry. Numerical performance
is illustrated by simulated and real examples.

1. Introduction. Functional data analysis (FDA) advances substantially in
the past two decades, as the rapid development of modern technology enables
collecting more and more data continuously over time. There is rich literature
spanning more than seventy years on this topic, including development on func-
tional principal component analysis such as Dauxois, Pousse and Romain (1982),
Hall and Hosseini-Nasab (2006), Kleffe (1973), Rao (1958), Silverman (1996),
Yao, Müller and Wang (2005a), Zhang and Wang (2016), and advances on func-
tional linear regression such as Hall and Horowitz (2007), Kong et al. (2016),
Yao, Müller and Wang (2005b), Yuan and Cai (2010), among many others. For a
thorough review of the topic, we refer readers to the review article Wang, Chiou

Received October 2017; revised October 2018.
1Fang Yao’s research is partially supported by National Natural Science Foundation of China Grant

11871080, a Discipline Construction Fund at Peking University and Key Laboratory of Mathematical
Economics and Quantitative Finance (Peking University), Ministry of Education. Data were provided
by the Human Connectome Project, WU-Minn Consortium (Principal Investigators: David Van Essen
and Kamil Ugurbil; 1U54MH091657) funded by the 16 NIH Institutes and Centers that support the
NIH Blueprint for Neuroscience Research, and by the McDonnell Center for Systems Neuroscience
at Washington University.

MSC2010 subject classifications. 62G05, 62J05.
Key words and phrases. Functional principal component, functional linear regression, intrinsic

Riemannian Karhunen–Loève expansion, parallel transport, tensor Hilbert space.

3533

http://www.imstat.org/aos/
https://doi.org/10.1214/18-AOS1787
http://www.imstat.org
http://www.ams.org/mathscinet/msc/msc2010.html


3534 Z. LIN AND F. YAO

and Müller (2016) and monographs Ferraty and Vieu (2006), Hsing and Eubank
(2015), Kokoszka and Reimherr (2017), Ramsay and Silverman (2005) for com-
prehensive treatments on classic functional data analysis. Although traditionally
functional data take values in a vector space, more data of nonlinear structure arise
and should be properly handled in a nonlinear space. For instance, trajectories
of bird migration are naturally regarded as curves on a sphere which is a non-
linear Riemannian manifold, rather than the three-dimensional vector space R

3.
Another example is the dynamics of brain functional connectivity. The functional
connectivity at a time point is represented by a symmetric positive-definite matrix
(SPD). Then the dynamics shall be modeled as a curve in the space of SPDs that
is endowed with either the affine-invariant metric (Moakher (2005)) or the Log-
Euclidean metric (Arsigny et al. (2006/07)) to avoid the “swelling” effect (Arsigny
et al. (2006/07)). Both metrics turn SPD into a nonlinear Riemannian manifold. In
this paper, we refer this type of functional data as Riemannian functional data,
which are functions taking values on a Riemannian manifold and modeled by Rie-
mannian random processes, that is, we treat Riemannian trajectories as realizations
of a Riemannian random process.

Analysis of Riemannian functional data is not only challenged by the infinite
dimensionality and compactness of covariance operator from functional data, but
also obstructed by the nonlinearity of the range of functions, since manifolds are
generally not vector spaces and render many techniques relying on linear structure
ineffective or inapplicable. For instance, if the sample mean curve is computed for
bird migration trajectories as if they were sampled from the ambient space R3, this
naïve sample mean in general does not fall on the sphere of earth. For manifolds of
tree-structured data studied in Wang and Marron (2007), as they are naturally not
Euclidean submanifolds which refer to Riemannian submanifolds of a Euclidean
space in this paper, the naïve sample mean can not even be defined from ambi-
ent spaces, and thus a proper treatment of manifold structure is necessary. While
the literature for Euclidean functional data is abundant, works involving nonlinear
manifold structure are scarce. Chen and Müller (2012) and Lin and Yao (2019)
respectively investigate representation and regression for functional data living in
a low-dimensional nonlinear manifold that is embedded in an infinite-dimensional
space, while Lila, Aston and Sangalli (2016) focuses principal component analy-
sis on functional data whose domain is a two-dimensional manifold. None of these
deal with functional data that take values on a nonlinear manifold, while Dai and
Müller (2018) is the only endeavor in this direction for Euclidean submanifolds.

As functional principal component analysis (FPCA) is an essential tool for FDA,
it is of importance and interest to develop this notion for Riemannian functional
data. Since manifolds are in general not vector spaces, classic covariance func-
tions/operators do not exist naturally for a Riemannian random process. A strategy
that is often adopted, for example, Shi et al. (2009) and Cornea et al. (2017), to
overcome the lack of vectorial structure is to map data on the manifold into tangent
spaces via Riemannian logarithm map defined in Section 2.2. As tangent spaces at
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different points are different vector spaces, in order to handle observations from
different tangent spaces, some existing works assume a Euclidean ambient space
for the manifold and identify tangent vectors as Euclidean vectors. This strategy is
adopted by Dai and Müller (2018) on Riemannian functional data such as compo-
sitional data modeled on the unit sphere for the first time. Specifically, they assume
that functional data are sampled from a time-varying geodesic submanifold, where
at a given time point, the functions take values on a geodesic submanifold of a
common manifold. Such a common manifold is further assumed to be a Euclidean
submanifold that allows to identify all tangent spaces as hyperplanes in a common
Euclidean space (endowed with the usual Euclidean inner product). Then, with the
aid of Riemannian logarithm map, Dai and Müller (2018) are able to transform
Riemannian functional data into Euclidean ones while accounting for the intrinsic
curvature of the underlying manifold.

To avoid confusion, we distinguish two different perspectives to deal with Rie-
mannian manifolds. One is to work with the manifold under consideration with-
out assuming an ambient space surrounding it or an isometric embedding into a
Euclidean space. This perspective is regarded as completely intrinsic, or simply
intrinsic. Although generally difficult to work with, it can fully respect all geomet-
ric structure of the manifold. The other one, referred to as ambient here, assumes
that the manifold under consideration is isometrically embedded in a Euclidean
ambient space, so that geometric objects such as tangent vectors can be processed
within the ambient space. For example, from this point of view, the local poly-
nomial regression for SPD proposed by Yuan et al. (2012) is intrinsic, while the
aforementioned work by Dai and Müller (2018) takes the ambient perspective.

Although it is possible to account for some of geometric structure in the ambient
perspective, for example, the curved nature of manifold via Riemannian logarithm
map, several issues arise due to manipulation of geometric objects such as tangent
vectors in the ambient space. First, the essential dependence on an ambient space
restricts potential applications. It is not immediately applicable to manifolds that
are not a Euclidean submanifold or do not have a natural isometric embedding into
a Euclidean space, for example, the Riemannian manifold of p × p (p ≥ 2) SPD
matrices endowed with the affine-invariant metric (Moakher (2005)) which is not
compatible with the p(p + 1)/2-dimensional Euclidean metric. Second, although
an ambient space provides a common stage for tangent vectors at different points,
operation on tangent vectors from this ambient perspective can potentially violate
the intrinsic geometry of the manifold. To illustrate this, consider comparison of
two tangent vectors at different points (this comparison is needed in the asymp-
totic analysis of Section 3.2; see also Section 2.4). From the ambient perspective,
taking the difference of tangent vectors requires moving a tangent vector parallelly
within the ambient space to the base point of the other tangent vector. However,
the resultant tangent vector after movement in the ambient space is generally not
a tangent vector for the base point of the other tangent vector; see the left panel
of Figure 1 for a geometric illustration. In another word, the ambient difference
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FIG. 1. Left panel: illustration of ambient movement of tangent vectors. The tangent vector v0 at
the point Q of a unit circle embedded in a Euclidean plane is moved to the point P1 and P2 within
the ambient space. v1 (resp. v2) is a tangent vector at P1 (resp. P2). The differences v1 − v0 and
v2 − v0 are not tangent to the circle at P1 and P2, respectively. If v0, v1 and v2 have the same
length, then the intrinsic parallel transport of v0 to Pk shall coincide with vk , and Pv0 − vk = 0,
where k = 1,2 and P represents the parallel transport on the unit circle with the canonical metric
tensor. Thus, ‖Pv0 − vk‖R2 = 0. However, ‖v0 − vk‖R2 > 0, and this nonzero value completely
results from the departure of the Euclidean geometry from the unit circle geometry. The ambient
discrepancy ‖v0 − v1‖

R2 is small as P1 is close to P , while ‖v0 − v2‖
R2 is large since P2 is far

away from Q. Right panel: illustration of parallel transport. A tangent vector v1 at the point p1 on
the unit sphere is parallelly transported to the point p2 and p3 along curves C1 and C2, respectively.
During parallel transportation, the transported tangent vector always stays within the tangent spaces
along the curve.

of two tangent vectors at different points is not an intrinsic geometric object on
the manifold, and the departure from intrinsic geometry can potentially affect the
statistical efficacy and/or efficiency. Lastly, since manifolds might be embedded
into more than one ambient space, the interpretation of statistical results crucially
depends on the ambient space and could be misleading if one does not choose the
ambient space appropriately.

In the paper, we develop a completely intrinsic framework that provides a foun-
dational theory for general Riemannian functional data that paves the way for the
development of intrinsic Riemannian functional principal component analysis and
intrinsic Riemannian functional linear regression, among other potential applica-
tions. The key building block is a new concept of tensor Hilbert space along a
curve on the manifold, which is described in Section 2. On one hand, our ap-
proach experiences dramatically elevated technical challenges relative to the am-
bient counterparts. For example, without an ambient space, it is nontrivial to per-
ceive and handle tangent vectors. On the other hand, the advantages of the intrin-
sic perspective are at least threefold, in contrast to ambient approaches. First, our
results immediately apply to many important Riemannian manifolds that are not
naturally a Euclidean submanifold but commonly seen in statistical analysis and
machine learning, such as the aforementioned SPD manifolds and Grassmannian
manifolds. Second, our framework features a novel intrinsic proposal for coher-
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ent comparison of objects from different tensor Hilbert spaces on the manifold,
and hence makes the asymptotic analysis sensible. Third, results produced by our
approach are invariant to embeddings and ambient spaces, and can be interpreted
independently, which avoid potential misleading interpretation in practice.

As important applications of the proposed framework, we develop intrinsic Rie-
mannian functional principal component analysis (iRFPCA) and intrinsic Rieman-
nian functional linear regression (iRFLR). Specifically, estimation procedures of
intrinsic eigenstructure are provided and their asymptotic properties are investi-
gated within the intrinsic geometry. For iRFLR, we study a Riemannian functional
linear regression model, where a scalar response intrinsically and linearly depends
on a Riemannian functional predictor through a Riemannian slope function, a con-
cept that is formulated in Section 4, along with the concept of linearity in the
context of Riemannian functional data. We present an FPCA-based estimator and
a Tikhonov estimator for the Riemannian slope function and explore their asymp-
totic properties, where the proposed framework of tensor Hilbert space again plays
an essential role.

The rest of the paper is structured as follows. The foundational framework for
intrinsic Riemannian functional data analysis is laid in Section 2. Intrinsic Rie-
mannian functional principal component analysis is presented in Section 3, while
intrinsic Riemannian functional regression is studied in Section 4. In Section 5, nu-
merical performance is illustrated through simulations, and an application to Hu-
man Connectome Project analyzing functional connectivity and behavioral data is
provided.

2. Tensor Hilbert space and Riemannian random process. In this section,
we first define the concept of tensor Hilbert space and discuss its properties, in-
cluding a mechanism to deal with two different tensor Hilbert spaces at the same
time. Then, random elements on tensor Hilbert space are investigated, with the
proposed intrinsic Karhunen–Loève expansion for the random elements. Finally,
practical computation with respect to an orthonormal frame is given. Throughout
this section, we assume a d-dimensional, connected and geodesically complete
Riemannian manifold M equipped with a Riemannian metric 〈·, ·〉, which defines
a scalar product 〈·, ·〉p for the tangent space TpM at each point p ∈ M. This
metric also induces a distance function dM on M. A preliminary for Riemannian
manifolds can be found in the Appendix. For a comprehensive treatment on Rie-
mannian manifolds, we recommend the introductory text by Lee (1997) and also
Lang (1995).

2.1. Tensor Hilbert spaces along curves. Let μ be a measurable curve on a
manifold M and parameterized by a compact domain T ⊂ R equipped with a
finite measure υ . A vector field V along μ is a map from T to the tangent bundle
TM such that V (t) ∈ Tμ(t)M for all t ∈ T . It is seen that the collection of vector
fields V along μ is a vector space, where the vector addition between two vector
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fields V1 and V2 is a vector field U such that U(t) = V1(t) + V2(t) for all t ∈ T ,
and the scalar multiplication between a real number a and a vector field V is a
vector field U such that U(t) = aV (t) for all t ∈ T . Let T (μ) be the collection
of (equivalence classes of) measurable vector fields V along μ such that ‖V ‖μ :=
{∫T 〈V (t),V (t)〉μ(t) dυ(t)}1/2 < ∞ with identification between V and U in T (μ)

(or equivalently, V and U are in the same equivalence class) when υ({t ∈ T :
V (t) 
= U(t)}) = 0. Then T (μ) is turned into an inner product space by the inner
product 〈〈V,U〉〉μ := ∫

T 〈V (t),U(t)〉μ(t) dυ(t), with the induced norm given by
‖ · ‖μ. Moreover, we have that:

THEOREM 1. For a measurable curve μ on M, T (μ) is a separable Hilbert
space.

We call the space T (μ) the tensor Hilbert space along μ, as tangent vectors are
a special type of tensor and the above Hilbertian structure can be defined for tensor
fields along μ. The above theorem is of paramount importance, in the sense that it
suggests T (μ) to serve as a cornerstone for Riemannian functional data analysis
for two reasons. First, as shown in Section 2.2, via Riemannian logarithm maps, a
Riemannian random process may be transformed into a tangent-vector-valued ran-
dom process (called log-process in Section 2.2) that can be regarded as a random
element in a tensor Hilbert space. Second, the rigorous theory of functional data
analysis formulated in Hsing and Eubank (2015) by random elements in separable
Hilbert spaces fully applies to the log-process.

One distinct feature of the tensor Hilbert space is that, different curves that are
even parameterized by the same domain give rise to different tensor Hilbert spaces.
In practice, one often needs to deal with two different tensor Hilbert spaces at the
same time. For example, in the next subsection we will see that under some con-
ditions, a Riemannian random process X can be conceived as a random element
on the tensor Hilbert space T (μ) along the intrinsic mean curve μ. However, the
mean curve is often unknown and estimated from a random sample of X. Since the
sample mean curve μ̂ generally does not agree with the population one, quantities
of interest such as covariance operator and their sample versions are defined on
two different tensor Hilbert spaces T (μ) and T (μ̂), respectively. For statistical
analysis, one needs to compare the sample quantities with their population coun-
terparts and hence involves objects such as covariance operators from two different
tensor Hilbert spaces.

In order to intrinsically quantify the discrepancy between objects of the same
kind from different tensor Hilbert spaces, we utilize the Levi-Civita connection
(Lee (1997), page 18) associated with the Riemannian manifold M. The Levi-
Civita connection is uniquely determined by the Riemannian structure. It is the
only torsion-free connection compatible with the Riemannian metric. Associated
with this connection is a unique parallel transport operator Pp,q that smoothly
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transports tangent vectors at p along a curve to q and preserves the inner product.
We shall emphasize that the parallel transportation is performed intrinsically. For
instance, tangent vectors being transported always stay tangent to the manifold
during transportation, which is illustrated by the right panel of Figure 1. Although
transport operator Pp,q depends on the curve connecting p and q , there exists
a canonical choice of the curve connecting two points, which is the minimizing
geodesic between p and q (under some conditions, almost surely the minimizing
geodesic is unique between two points randomly sampled from the manifold). The
smoothness of parallel transport also implies that if p and q are not far apart,
then the initial tangent vector and the transported one stays close (in the space
of tangent bundle endowed with the Sasaki metric (Sasaki (1958))). This feature
is desirable for our purpose, as when sample mean μ̂(t) approaches to μ(t), one
expects a tangent vector at μ̂(t) converges to its transported version at μ(t). Owing
to these nice properties of parallel transport, it becomes an ideal tool to construct a
mechanism of comparing objects from different tensor Hilbert spaces as follows.

Suppose f and h are two measurable curves on M defined on T . Let γt (·) :=
γ (t, ·) be a family of smooth curves that is parameterized by the interval [0,1]
(the way of parameterization here does not matter) and connects f (t) to h(t),
that is, γt (0) = f (t) and γt (1) = h(t), such that γ (·, s) is measurable for all
s ∈ [0,1]. Suppose v ∈ Tf (t)M and let V be a smooth vector field along γt such
that ∇γ̇ V = 0 and V (0) = v, where ∇ denotes the Levi-Civita connection of the
manifold M. The theory of Riemannian manifolds shows that such a vector field
V uniquely exists. This gives rise to the parallel transporter Pf (t),h(t) : Tf (t)M →
Th(t)M along γt , defined by Pf (t),h(t)(v) = V (1). In other words, Pf (t),h(t) paral-
lelly transports v to V (1) ∈ Th(t)M along the curve γt . As the parallel transporter
determined by the Levi-Civita connection, P preserves the inner product of tan-
gent vectors along transportation, that is, 〈u, v〉f (t) = 〈Pf (t),h(t)u,Pf (t),h(t)v〉h(t)

for u, v ∈ Tf (t)M. Then we can define the parallel transport of vector fields from
T (f ) to T (h), denoted by �f,h, (�f,hU)(t) =Pf (t),h(t)(U(t)) for all U ∈ T (f )

and t ∈ T . One immediately sees that �f,h is a linear operator on tensor Hilbert
space. Its adjoint, denoted by �∗

f,h, is a map from T (h) to T (f ) and is given by
〈〈U,�∗

f,hV 〉〉f = 〈〈�f,hU,V 〉〉h for U ∈ T (f ) and V ∈ T (h). Let C (f ) denote the
set of all Hilbert–Schmidt operators on T (f ), which is a Hilbert space with the
Hilbert–Schmidt norm ||| · |||f,9(map)-26c5TJφ0.0538 Tc 10.9589 Tc)
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smooth and γ (, s) is measurable. Then the following statements regarding �f,h

and �f,h hold.

1. The operator �f,h is a unitary transformation from T (f ) to T (h).
2. �∗

f,h = �h,f . Also, ‖�f,hU − V ‖h = ‖U − �h,f V ‖f .
3. �f,h(AU) = (�f,hA)(�f,hU).
4. If A is invertible, then �f,hA−1 = (�f,hA)−1.
5. �f,h

∑
k ckϕk ⊗ϕk = ∑

k ck(�f,hϕk)⊗ (�f,hϕk), where ck are scalar con-
stants, and ϕk ∈ T (f ).

6. |||�f,hA−B|||
h

= |||A− �h,fB|||
f

.

We define U �� V := �f,hU −V for U ∈ T (f ) and V ∈ T (h), and A��B :=
�f,hA − B for operators A and B. To quantify the discrepancy between an ele-
ment U in T (f ) and another one V in T (h), we can use the quantity ‖U �� V ‖h.
Similarly, we adopt |||A�� B|||h as discrepancy measure for two covariance oper-
ators A and B. These quantities are intrinsic as they are built on intrinsic geometric
concepts. In light of Proposition 2, they are symmetric under the parallel transport,
that is, transporting A to B yields the same discrepancy measure as transporting B
to A. We also note that, when M = R

d , the difference operators �� and �� re-
duce to the regular vector and operator difference, that is, U �� V becomes U −V ,
while A�� B becomes A−B. Therefore, �� and �� can be viewed as general-
ization of the regular vector and operator difference to a Riemannian setting. One
shall note that � and � depend on the choice of the family of curves γ , a canonical
choice of which is discussed in Section 3.2.

2.2. Random elements on tensor Hilbert spaces. Let X be a Riemannian ran-
dom process. In order to introduce the concept of intrinsic mean function for X,
we define a family of functions indexed by t :

(1) F(p, t) = Ed2
M

(
X(t),p

)
, p ∈M, t ∈ T .

For a fixed t , if there exists a unique q ∈ M that minimizes F(p, t) over all p ∈
M, then q is called the intrinsic mean (also called Fréchet mean) at t , denoted by
μ(t), that is,

μ(t) = arg min
p∈M

F(p, t).

As required for intrinsic analysis, we assume the following condition.

A.1 The intrinsic mean function μ exists.

We refer readers to Bhattacharya and Patrangenaru (2003) and Afsari (2011) for
conditions under which the intrinsic mean of a random variable on a general man-
ifold exists and is unique. For example, according to Cartan–Hadamard theorem,
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if the manifold is simply connected and complete with nonpositive sectional cur-
vature, then intrinsic mean function always exists and is unique as long as for all
t ∈ T , F(p, t) < ∞ for some p ∈ M.

Since M is geodesically complete, by Hopf–Rinow theorem (Lee (1997), page
108), its exponential map Expp at each p is defined on the entire TpM. As Expp

might not be injective, in order to define its inverse, we restrict Expp to a subset of
the tangent space TpM. Let Cut(p) denote the set of all tangent vectors v ∈ TpM
such that the geodesic γ (t) = Expp(tv) fails to be minimizing for t ∈ [0,1 + ε)

for each ε > 0. Now, we define Expp only on Dp := TpM\Cut(p). The image
of Expp , denoted by Im(Expp), consists of points q in M, such that q = Expp v

for some v ∈ Dp . In this case, the inverse of Expp exists and is called Riemannian
logarithm map, which is denoted by Logp and maps q to v. We shall make the
following assumption:

A.2 Pr{∀t ∈ T : X(t) ∈ Im(Expμ(t))} = 1.

Then, Logμ(t) X(t) is almost surely defined for all t ∈ T . The condition is super-
fluous if Expμ(t) is injective for all t , like the manifold of m × m SPDs endowed
with the affine-invariant metric.

In the sequel we shall assume X satisfies conditions A.1 and A.2. An impor-
tant observation is that the log-process {Logμ(t) X(t)}t∈T (denoted by Logμ X for
short) is a random vector field along μ. If we assume continuity for the sample
paths of X, then the process Logμ X is measurable with respect to the product σ -
algebra B(T ) × E and the Borel algebra B(TM), where E is the σ -algebra of
the probability space. Furthermore, if E‖Logμ X‖2

μ < ∞, then according to The-
orem 7.4.2 of Hsing and Eubank (2015), Logμ X can be viewed as a tensor Hilbert
space T (μ) valued random element. Observing that ELogμ X = 0 according to
Theorem 2.1 of Bhattacharya and Patrangenaru (2003), the intrinsic covariance
operator for Logμ X is given by C = E(Logμ X ⊗ Logμ X). This operator is nu-
clear and self-adjoint. It then admits the following eigendecomposition (Hsing and
Eubank (2015), Theorem 7.2.6):

(2) C =
∞∑

k=1

λkφk ⊗ φk

with eigenvalues λ1 ≥ λ2 · · · ≥ 0 and orthonormal eigenelements φk that form
a complete orthonormal system for T (μ). Also, with probability one, the log-
process of X has the following Karhunen–Loève expansion:

(3) Logμ X =
∞∑

k=1

ξkφk

with ξk := 〈〈X,φk〉〉μ being uncorrelated and centered random variables. There-
fore, we obtain the intrinsic Riemannian Karhunen–Loève (iRKL) expansion for
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X given by

(4) X(t) = Expμ(t)

∞∑
k=1

ξkφk(t).

The elements φk are called intrinsic Riemannian functional principal component
(iRFPC), while the variables ξk are called intrinsic iRFPC scores. This result is
summarized in the following theorem whose proof is already contained in the
above derivation and hence omitted. We shall note that the continuity assumption
on sample paths can be weakened to piecewise continuity.

THEOREM 3 (Intrinsic Karhunen–Loève representation). Assume that X

satisfies assumptions A.1 and A.2. If sample paths of X are continuous and
E‖Logμ X‖2

μ < ∞, then the intrinsic covariance operator C = E(Logμ X ⊗
Logμ X) of Logμ X admits the decomposition (2), and the random process X

admits the representation (4).

In practice, the series at (4) is truncated at some positive integer K , resulting
in a truncated intrinsic Riemannian Karhunen–Loève expansion of X, given by
XK = Expμ WK with WK = ∑K

k=1 ξkφk . The quality of the approximation of XK

for X is quantified by
∫
T d2

M(X(t),XK(t))dυ(t), and can be shown by a method
similar to Dai and Müller (2018) that if the manifold has nonnegative sectional
curvature everywhere, then

∫
T d2

M(X(t),XK(t))dυ(t) ≤ ‖Logμ X − WK‖2
μ. For

manifolds with negative sectional curvatures, such inequality in general does not
hold. However, for Riemannian random process X that almost surely lies in a
compact subset of M, the residual

∫
T d2

M(X(t),XK(t))dυ(t) can be still bounded
by ‖Logμ X − WK‖2

μ up to a scaling constant.

PROPOSITION 4. Assume that conditions A.1 and A.2 hold, and the sectional
curvature of M is bounded from below by κ ∈ R. Let K be a subset of M. If κ ≥ 0,
we let K = M, and if κ < 0, we assume that K is compact. Then, for some constant
C > 0, dM(P,Q) ≤ √

C|LogO P − LogO Q| for all O,P,Q ∈K. Consequently,
if X ∈ K almost surely, then

∫
T d2

M(X(t),XK(t))dυ(t) ≤ C‖Logμ X − WK‖2
μ.

2.3. Computation in orthonormal frames. In practical computation, one might
want to work with specific orthonormal bases for tangent spaces. A choice of or-
thonormal basis for each tangent space constitutes an orthonormal frame on the
manifold. In this section, we study the representation of the intrinsic Riemannian
Karhunen–Loève expansion under an orthonormal frame and formulas for change
of orthonormal frames.

Let E = (E1, . . . ,Ed) be a continuous orthonormal frame, that is, each Ej

is a vector field of M such that 〈Ej(p),Ej (p)〉p = 1 and 〈Ej(p),Ek(p)〉p =
0 for j 
= k and all p ∈ M. At each point p, {E1(p), . . . ,Ed(p)} form an
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orthonormal basis for TpM. The coordinate of Logμ(t) X(t) with respect to
{E1(μ(t)), . . . ,Ed(μ(t))} is denoted by ZE(t), with the subscript E indicating
its dependence on the frame. The resulting process ZE is called the E-coordinate
process of X. Note that ZE is a regular R

d valued random process defined on
T , and classic theory in Hsing and Eubank (2015) applies to ZE. For example,
its L2 norm is defined by ‖ZE‖L2 = {E ∫

T |ZE(t)|2 dt}1/2, where | · | denotes the

canonical norm on R
d . One can show that ‖ZE‖2

L2 = E‖Logμ X‖2
μ. Therefore,

if E‖Logμ X‖2
μ < ∞, then the covariance function exists and is d × d matrix-

valued, quantified by CE(s, t) = E{ZE(s)ZE(t)T } (Balakrishnan (1960), Kelly and
Root (1960)), noting that EZE(t) = 0 as ELogμ(t) X(t) = 0 for all t ∈ T . Also,
the vector-valued Mercer’s theorem implies the eigendecomposition

(5) CE(s, t) =
∞∑

k=1

λkφE,k(s)φ
T
E,k(t),

with eigenvalues λ1 ≥ λ2 ≥ · · · and corresponding eigenfunctions φE,k . Here, the
subscript E in φE,k is to emphasize the dependence on the chosen frame. One can
see that φE,k is a coordinate representation of φk , that is, φk = φT

E,kE.
The coordinate process ZE admits the vector-valued Karhunen–Loève expan-

sion

(6) ZE(t) =
∞∑

k=1

ξkφE,k(t)

under the assumption of mean square continuity of ZE, according to Theorem 7.3.5
of Hsing and Eubank (2015), where ξk = ∫

T ZT
E (t)φE,k(t)dυ(t). While the covari-

ance function and eigenfunctions of ZE depend on frames, λk and ξk in (4) and (6)
are not, which justifies the absence of E in their subscripts and the use of the same
notation for eigenvalues and iRFPC scores in (2), (4), (5) and (6). This follows
from the formulas for change of frames that we shall develop below.

Suppose A = (A1, . . . ,Ad) is another orthonormal frame. Change from E(p) =
{E1(p), . . . ,Ed(p)} to A(p) = {A1(p), . . . ,Ad(p)} can be characterized by a uni-
tary matrix Op . For example, A(t) = OT

μ(t)E(t) and hence ZA(t) = Oμ(t)ZE(t)

for all t . Then the covariance function of ZA is given by

CA(s, t) = E
{
ZA(s)ZT

A(t)
}

= E
{
Oμ(s)ZE(s)ZT

E (t)OT
μ(t)

}
= Oμ(s)CE(s, t)OT

μ(t),

(7)

and consequently,

CA(s, t) =
∞∑

k=1

λk

{
Oμ(s)φE,k(s)

}{
Oμ(t)φE,k(t)

}T
.



3544 Z. LIN AND F. YAO

From the above calculation, we immediately see that λk are also eigenvalues of CA.
Moreover, the eigenfunction associated with λk for CA is given by

(8) φA,k(t) = Oμ(t)φE,k(t).

Also, the variable ξk in (4) and (6) is the functional principal component score
for ZA associated with φA,k , as seen by

∫
T ZT

A(t)φA,k(t)dυ(t) =∫
T ZT

E (t)OT
μ(t)Oμ(t)φE,k(t)dυ(t) = ∫

T ZT
E (t)φE,k(t)dυ(t). The following propo-

sition summarizes the above results.

PROPOSITION 5 (Invariance principle). Let X be a M-valued random process
satisfying conditions A.1 and A.2. Suppose E and A are measurable orthonormal
frames that are continuous on a neighborhood of the image of μ, and ZE denotes
the E-coordinate log-process of X. Assume Op is the unitary matrix continuously
varying with p such that A(p) = OT

p E(p) for p ∈ M.

1. The Lr -norm of ZE for r > 0, defined by ‖ZE‖Lr = {E ×∫
T |ZE(t)|r dυ(t)}1/r , is independent of the choice of frames. In particular,

‖ZE‖2
L2 = E‖Logμ X‖2

μ for all orthonormal frames E.
2. If E‖Logμ X‖2

μ < ∞, then the covariance function of ZE exists for all
E and admits decomposition of (5). Also, (2) and (5) are related by φk(t) =
φT

E,k(t)E(μ(t)) for all t , and the eigenvalues λk coincide. Furthermore, the eigen-
values of CE and the principal component scores of Karhunen–Loève expansion of
ZE do not depend on E.

3. The covariance functions CA and CE of respectively ZA and ZE, if they
exist, are related by (7). Furthermore, their eigendecomposions are related by (8)
and ZA(t) = Oμ(t)ZE(t) for all t ∈ T .

4. If E‖Logμ X‖2
μ < ∞ and sample paths of X are continuous, then the

scores ξk (6) coincide with the iRFPC scores in (4).

We conclude this subsection by emphasizing that the concept of covariance
function of the log-process depends on the frame E, while the covariance oper-
ator, eigenvalues, eigenelements and iRFPC scores do not. In particular, the scores
ξk , which are often the input for further statistical analysis such as regression and
classification, are invariant to the choice of coordinate frames. An important con-
sequence of the invariance principle is that, these scores can be safely computed in
any convenient coordinate frame without altering the subsequent analysis.

2.4. Connection to the special case of Euclidean submanifolds. Our frame-
work applies to general manifolds that include Euclidean submanifolds as special
examples to which the methodology of Dai and Müller (2018) also applies. When
the underlying manifold is a d-dimensional submanifold of the Euclidean space
R

d0 with d < d0, we recall that the tangent space at each point is identified as a d-
dimensional linear subspace of Rd0 . For such Euclidean manifolds, Dai and Müller
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(2018) treat the log-process of X as a R
d0 -valued random process, and derive the

representation for the log-process (equation (5) in their paper) within the ambient
Euclidean space. This is distinctly different from our intrinsic representation (3)
based on the theory of tensor Hilbert spaces, despite their similar appearance. For
instance, equation (5) in their work can only be defined for Euclidean submani-
folds, while ours is applicable to general Riemannian manifolds. Similarly, the co-
variance function defined in Dai and Müller (2018), denoted by CDM(s, t), is asso-
ciated with the ambient log-process V (t) ∈ R

d0 , that is, CDM(s, t) = EV (s)T V (t).
Such an ambient covariance function can only be defined for Euclidean submani-
folds but not general manifolds.

Nevertheless, there are connections between the ambient method of Dai and
Müller (2018) and our framework when M is a Euclidean submanifold. For in-
stance, the mean curve is intrinsically defined in the same way in both works. For
the covariance structure, although our covariance function CE is a d × d matrix-
valued function while CDM(s, t) is a d0 × d0 matrix-valued function, they both
represent the intrinsic covariance operator when M is a Euclidean submanifold.
To see so, first, we observe that the ambient log-process V (t) as defined in Dai
and Müller (2018) at the time t , although is ambiently d0-dimensional, lives in a
d-dimensional linear subspace of Rd0 . Second, the orthonormal basis E(t) for the
tangent space at μ(t) can be realized by a d0 × d full-rank matrix Gt by concate-
nating vectors E1(μ(t)), . . . ,Ed(μ(t)). Then U(t) = GT

t V (t) is the E-coordinate
process of X. This implies that CE(s, t) = GT

s CDM(s, t)Gt . On the other hand,
since V (t) = GtU(t), one has CDM(s, t) = GtCE(s, t)GT

t . Thus, CE and CDM de-
termine each other and represent the same object. In light of this observation and
the invariance principle stated in Proposition 5, when M is a Euclidean subman-
ifold, CDM can be viewed as the ambient representation of the intrinsic covari-
ance operator C, while CE is the coordinate representation of C with respect to the
frame E. Similarly, the eigenfunctions φDM

k of CDM are the ambient representation
of the eigenelements φk of C. The above reasoning also applies to sample mean
functions and sample covariance structure. Specifically, when M is a Euclidean
submanifold, our estimator for the mean function discussed in Section 3 is iden-
tical to the one in Dai and Müller (2018), while the estimators for the covariance
function and eigenfunctions proposed in Dai and Müller (2018) are the ambient
representation of our estimators stated in Section 3.

However, when quantifying the discrepancy between the population covariance
structure and its estimator, Dai and Müller (2018) adopt the Euclidean difference
as a measure. For instance, they use φ̂DM

k − φDM
k to represent the discrepancy be-

tween the sample eigenfunctions and the population eigenfunctions, where φ̂DM
k is

the sample version of φDM
k . When μ̂(t), the sample version of μ(t), is not equal

to μ(t), φ̂DM
k (t) and φDM

k (t) belong to different tangent spaces. In such case, the
Euclidean difference φ̂DM

k − φDM
k is a Euclidean vector that does not belong to

the tangent space at either μ̂(t) or μ(t), as illustrated in the left panel of Fig-
ure 1. In other words, the Euclidean difference of ambient eigenfunctions does
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not obey the geometry of the manifold, hence might not properly measure the in-
trinsic discrepancy. In particular, the measure ‖φ̂DM

k −φDM
k ‖

R
d0 might completely

result from the departure of the ambient Euclidean geometry from the manifold,
rather than the intrinsic discrepancy between the sample and population eigenfunc-
tions, as demonstrated in the left panel of Figure 1. Similar reasoning applies to
ĈDM − CDM. In contrast, we base on Proposition 2 to propose an intrinsic mea-
sure to characterize the intrinsic discrepancy between a population quantity and its
estimator in Section 3.2.

3. Intrinsic Riemannian functional principal component analysis.

3.1. Model and estimation. Suppose X admits the intrinsic Riemannian
Karhunen–Loève expansion (4), and X1, . . . ,Xn are a random sample of X. In
the sequel, we assume that trajectories Xi are fully observed. In the case that
data are densely observed, each trajectory can be individually interpolated by us-
ing regression techniques for manifold valued data, such as Steinke, Hein and
Schölkopf (2010), Cornea et al. (2017) and Petersen and Müller (2019). This way
the densely observed data could be represented by their interpolated surrogates,
and thus treated as if they were fully observed curves. When data are sparse, deli-
cate information pooling of observations across different subjects is required. The
development of such methods is substantial and beyond the scope of this paper.

In order to estimate the mean function μ, we define the finite-sample version of
F in (1) by

Fn(p, t) = 1

n

n∑
i=1

d2
M

(
Xi(t),p

)
.

Then, an estimator for μ is given by

μ̂(t) = arg min
p∈M

Fn(p, t).

The computation of μ̂ depends on the Riemannian structure of the manifold. Read-
ers are referred to Cheng et al. (2016) and Salehian et al. (2015) for practical algo-
rithms. For a subset A of M, Aε denotes the set

⋃
p∈A B(p; ε), where B(p; ε) is

the ball with center p and radius ε in M. We use Im−ε(Expμ(t)) to denote the set
M\{M\ Im(Expμ(t))}ε . In order to define Logμ̂ Xi , at least with a dominant prob-
ability for a large sample, we shall assume a slightly stronger condition than A.2:

A.2′ There is some constant ε0 > 0 such that Pr{∀t ∈ T : X(t) ∈
Im−ε0(Expμ(t))} = 1.

Then, combining the fact supt |μ̂(t) − μ(t)| = oa.s.(1) that we will show later, we
conclude that for a large sample, almost surely, Im−ε(Expμ(t)) ⊂ Im(Expμ̂(t)) for
all t ∈ T . Therefore, under this condition, Logμ̂(t) Xi(t) is well-defined almost
surely for a large sample.
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The intrinsic Riemannian covariance operator is estimated by its finite-sample
version

Ĉ = 1

n

n∑
i=1

(Logμ̂ Xi) ⊗ Logμ̂ Xi).

This sample intrinsic Riemannian covariance operator also admits an intrinsic
eigendecomposion Ĉ = ∑∞

k=1 λ̂kφ̂k ⊗ φ̂k for λ̂1 ≥ λ̂2 ≥ · · · ≥ 0. Therefore, the es-
timates for the eigenvalues λk are given by λ̂k , while the estimates for φk are given
by φ̂k . These estimates can also be conveniently obtained under a frame, due to the
invariance principle stated in Proposition 5. Let E be a chosen orthonormal frame
and ĈE be the sample covariance function based on ẐE,1, . . . , ẐE,n, where ẐE,i

is the coordinate process of Logμ̂(t) Xi(t) under the frame E with respect to μ̂.

We can then obtain the eigendecomposition ĈE(s, t) = ∑∞
k=1 λ̂kφ̂E,k(s)φ̂E,k(t)

T ,
which yields φ̂k(t) = φ̂T

E,k(t)E(t) for t ∈ T . Finally, the truncated process for Xi

is estimated by

(9) X̂
(K)
i = Expμ̂

K∑
k=1

ξ̂ikφ̂k,

where ξ̂ik = 〈〈Logμ̂ Xi, φ̂k〉〉μ̂ are estimated iRFPC scores. The above truncated
iRKL expansion can be regarded as generalization of the representation (10) in Dai
and Müller (2018) from Euclidean submanifolds to general Riemannian manifolds.

3.2. Asymptotic properties. To quantify the difference between μ̂ and μ, it is
natural to use the square geodesic distance dM(μ̂(t),μ(t)) as a measure of dis-
crepancy. For the asymptotic properties of μ̂, we need the following regularity
conditions.

B.1 The manifold M is connected and complete. In addition, the exponential
map Expp : TpM → M is surjective at every point p ∈ M.

B.2 The sample paths of X are continuous.
B.3 F is finite. Also, for all compact subsets K ⊂ M, supt∈T supp∈KEd2

M(p,

X(t)) < ∞.
B.4 The image U of the mean function μ is bounded, that is, the diameter is

finite, diam(U) < ∞.
B.5 For all ε > 0, inft∈T infp:dM(p,μ(t))≥ε F (p, t) − F(μ(t), t) > 0.

To state the next condition, let Vt(p) = Logp X(t). The calculus of manifolds sug-
gests that Vt(p) = −dM(p,X(t))gradp dM(p,X(t)) = gradp(−d2

M(p,X(t))/2),
where gradp denotes the gradient operator at p. For each t ∈ T , let Ht denote the
Hessian of the real function d2

M(·,X(t))/2, that is, for vector fields U and W

on M,

〈HtU,W 〉(p) = 〈−∇UVt ,W 〉(p) = Hessp

(
1

2
d2
M

(
p,X(t)

))
(U,W).
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Also, the continuity of μ(t) and μ̂(t) implies the continuity of γ (·, ·) and hence
the measurability of γ (·, s) for each s ∈ [0,1]. By Proposition 2, one sees that
�Ĉ = n−1 ∑n

i=1(�V̂i ⊗�V̂i), recalling that V̂i = Logμ̂ Xi is a vector field along μ̂.

It can also be seen that (λ̂k,�φ̂k) are eigenpairs of �Ĉ. These identities match our
intuition that the transported sample covariance operator ought to be an operator
derived from transported sample vector fields, and that the eigenfunctions of the
transported operator are identical to the transported eigenfunctions.

To state the asymptotic properties for the eigenstructure, we define

ηk = min
1≤j≤k

(λj − λj+1), J = inf
{
j ≥ 1 : λj − λj+1 ≤ 2|||Ĉ �� C|||μ

}
,

η̂j = min
1≤j≤k

(λ̂j − λ̂j+1), Ĵ = inf
{
j ≥ 1 : λ̂j − λ̂j+1 ≤ 2|||Ĉ �� C|||μ

}
.

THEOREM 7. Assume that every eigenvalue λk has multiplicity one, and
conditions A.1, A.2′ and B.1–B.7 hold. Suppose tangent vectors are parallel
transported along minimizing geodesics for defining the parallel transporters

� and �. If E‖Logμ X‖4
μ < ∞, then |||Ĉ �� C|||2μ = OP (n−1). Furthermore,

supk≥1 |λ̂k − λk| ≤ |||Ĉ �� C|||μ and for all 1 ≤ k ≤ J − 1,

(10) ‖φ̂k �� φk‖2
μ ≤ 8|||Ĉ �� C|||2μ/η2

k.

If (J, ηj ) is replaced by (Ĵ , η̂j ), then (10) holds with probability 1.

In this theorem, (10) generalizes Lemma 4.3 of Bosq (2000) to the Riemannian
setting. Note that the intrinsic rate for Ĉ is optimal. Also, from (10) one can deduce
the optimal rate ‖φ̂k �� φk‖2

μ = OP (n−1) for a fixed k. We stress that these results
apply to not only Euclidean submanifolds, but also general Riemannian manifolds.

4. Intrinsic Riemannian functional linear regression.

4.1. Regression model and estimation. Classical functional linear regres-
sion for Euclidean functional data is well studied in the literature, that is, the
model relating a scalar response Y and a functional predictor X by Y = α +∫
T X(t)β(t)dυ(t)+ε, where α is the intercept, β is the slope function and ε repre-

sents measurement errors, for example, Cardot, Ferraty and Sarda (2003), Cardot,
Mas and Sarda (2007), Hall and Horowitz (2007) and Yuan and Cai (2010), among
others. However, for Riemannian functional data, both X(t) and β(t) take values
in a manifold and hence the product X(t)β(t) is not well defined. Rewriting the
model as Y = α + 〈〈X,β〉〉L2 + ε, where 〈〈·, ·〉〉L2 is the canonical inner product
of the L2 square integrable functions, we propose to replace 〈〈·, ·〉〉L2 by the inner
product on the tensor Hilbert space T (μ), and define the following Riemannian
functional linear regression model:

(11) Y = α + 〈〈LogμX,Logμβ〉〉μ + ε,
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where we require conditions A.1 and A.2. Note that β is a manifold valued function
defined on T , namely the Riemannian slope function of the model (11), and this
model is linear in terms of Logμ(t) β(t). We stress that the model (11) is intrinsic
to the Riemannian structures of the manifold.

According to Theorem 2.1 of Bhattacharya and Patrangenaru (2003), the pro-
cess Logμ(t) X(t) is centered at its mean function, that is, ELogμ(t) Log
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submanifold, an argument similar to that in Section 2.4 can show that, if one treats
X as an ambient random process and adopts the FPCA and Tikhonov regulariza-
tion approaches (Hall and Horowitz (2007)) to estimate the slope function β in the
ambient space, then the estimates are the ambient representation of our estimates
Logμ̂ β̂ and Logμ̂ β̃ in (12) and (13), respectively.

4.2. Asymptotic properties. In order to derive convergence of the iRFPCA es-
timator and the Tikhonov estimator, we shall assume the sectional curvature of the
manifold is bounded from below by κ to exclude pathological cases. The compact
support condition on X in the case κ < 0 might be relaxed to weaker assumptions
on the tail decay of the distribution of Logμ X. Such weaker conditions do not pro-
vide more insight for our derivation, but complicate the proofs significantly, which
is not pursued further.

C.2 If κ < 0, X is assumed to lie in a compact subset K almost surely. More-
over, errors εi are identically distributed with zero mean and variance not exceed-
ing a constant C > 0.

The following conditions concern the spacing and the decay rate of eigenvalues
λk of the covariance operator, as well as the strength of the signal bk . They are
standard in the literature of functional linear regression, for example, Hall and
Horowitz (2007).

C.3 For k ≥ 1, λk − λk+1 ≥ Ck−α−1.
C.4 |bk| ≤ Ck−�, α > 1 and (α + 1)/2 < �.

Let F(C,α,�) be the collection of distributions f of (X,Y ) satisfying conditions
C.2–C.4. The following theorem establishes the convergence rate of the iRFPCA
estimator β̂ for the class of models in F(C,α,�).

THEOREM 8. Assume that conditions A.1, A.2′, B.1–B.7 and C.1–C.4 hold.
If K � n1/(4α+2�+2), then

lim
c→∞ lim sup

n→∞
sup
f ∈F

Prf

{∫
T

d2
M

(
β̂(t), β(t)

)
dυ(t) > cn

− 2�−1
4α+2�+2

}
= 0.

For the Tikhonov estimator β̃ , we have a similar result. Instead of conditions
C.3–C.4, we make the following assumptions, which again are standard in the
functional data literature.

C.5 k−α ≤ Cλk .
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THEOREM 9. Assume that conditions A.1, A.2′, B.1–B.7, C.1–C.2 and C.5–
C.6 hold. If ρ � n−α/(α+2�), then

lim
c→∞ lim sup

n→∞
sup
f ∈G

Prf

{∫
T

d2
M

(
β̃(t), β(t)

)
dυ(t) > cn

− 2�−α
2�+α

}
= 0.

It is important to point out that the theory in Hall and Horowitz (2007) is for-
mulated for Euclidean functional data and hence does not apply to Riemannian
functional data. In particular, their proof machinery depends on the linear structure
of the sample mean function n−1 ∑n

i=1 Xi for Euclidean functional data. However,
the intrinsic empirical mean generally does not admit an analytic expression, which
hinges derivation of the optimal convergence rate. We leave the refinement on min-
imax rates of iRFPCA and Tikhonov estimators to future research. Note that model
(11) can be extended to include a finite and fixed number of scalar predictors with
slight modification, and the asymptotic properties of β̂ and β̃ remain unchanged.

5. Numerical examples.

5.1. Simulation studies. We consider two manifolds that are frequently en-
countered in practice2. The first one is the unit sphere S

d which is a compact
nonlinear Riemannian submanifold of Rd+1 for a positive integer d . The sphere
can be used to model compositional data, as exhibited in Dai and Müller (2018)
which also provides details of the geometry of Sd . Here we consider the case of
d = 2. The sphere S

2 consists of points (x, y, z) ∈ R
3 satisfying x2 + y2 + z2 = 1.

Since the intrinsic Riemannian geometry of S
2 is the same as the one inherited

from its ambient space (referred to as ambient geometry hereafter), according to
the discussion in Section 2.4, the ambient approach to FPCA and functional linear
regression yields the same results as our intrinsic approach.

The other manifold considered is the space of m × m symmetric positive def-
inite matrices, denoted by Sym+

� (m). The space Sym+
� (m) includes nonsingular

covariance matrices which naturally arise from the study of DTI data (Dryden,
KolSym(2(naturally)-370.0n
/T1_(os)-1(aonal)-1(aZhou.559 0 Td
(()9.19)Tj
-0.0 rg
-0.0007 Tc (2018)Tj
0 g
0 Tc 09 Tc [(,)-243(t5e)-243)f
1)-1(aonal)-1(aff)]Tlinear2018

https://github.com/linulysses/iRFDA
https://github.com/linulysses/iRFDA
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the affine-invariant metric has a negative sectional curvature, and thus the Fréchet
mean is unique if it exists. In our simulation, we consider m = 3. We empha-
size that the affine-invariant geometry of Sym+

� (m) is different from the geometry
inherited from the linear space Sym(m). Thus, the ambient RFPCA of Dai and
Müller (2018) might yield inferior performance on this manifold.

We simulate data as follows. First, the time domain is set to T = [0,1]. The
mean curves for S

2 and Sym+
� (m) are, respectively, μ(t) = (sinϕ(t) cos θ(t),

sinϕ(t) sin θ(t), cosϕ(t)) with θ(t) = 2t2 + 4t + 1/2 and ϕ(t) = (t3 + 3t2 +
t + 1)/2, and μ(t) = (t0.4,0.5t,0.1t1.5;0.5t, t0.5,0.5t;0.1t1.5,0.5t , t0.6) that is
a 3 × 3 matrix. The Riemannian random processes are produced in accordance to

X = Exp(
∑20

k=1
√

λkξkφk), where ξk
i.i.d.∼ Uniform(−π/4, π/4) for S2 and ξk

i.i.d.∼
N(0,1) for Sym+

� (m). We set iRFPCs φk(t) = (Aψk(t))
T E(t), where E(t) =

(E1(μ(t)), . . . ,Ed(μ(t))) is an orthonormal frame over the path μ, ψk(t) =
(ψk,1(t), . . . ,ψk,d(t))

T with ψk,j being orthonormal Fourier basis functions on
T , and A is an orthonormal matrix that is randomly generated but fixed through-
out all simulation replicates. We take λk = 2k−1.2 for all manifolds. Each curve
X(t) is observed at M = 101 regular design points t = 0,0.01, . . . ,1. The slope
function is β = ∑K

k=1 ckφk with ck = 3k−2/2. Two different types of distribution
for ε in (11) are considered, namely, normal and Student’s t distribution with de-
gree of freedom df = 2.1. Note that the latter is a heavy-tailed distribution, with a
smaller df suggesting a heavier tail and df > 2 ensuring the existence of variance.
In addition, the noise ε is scaled to make the signal-to-noise ratio equal to 2. Three
different training sample sizes are considered, namely, 50, 150 and 500, while the
sample size for test data is 5000. Each simulation setup is repeated independently
100 times.

First, we illustrate the difference between the intrinsic measure and the ambient
counterpart for the discrepancy of two random objects residing on different tangent
spaces, through the examples of the sphere manifold S

2 and the first two iRFPCs.
Recall that the metric of S2 agrees with its ambient Euclidean geometry, so that
both iRFPCA and RFPCA essentially yield the same estimates for iRFPCs. We
propose to use the intrinsic root mean integrated squared error (iRMISE) {E‖φ̂k ��

φk‖2
μ}1/2 to characterize the difference between φk and its estimator φ̂k , while Dai

and Müller (2018) adopt the ambient RMISE (aRMISE) {E‖φ̂k − φk‖2
R

d0
}1/2, as

discussed in Section 2.4. The numerical results of iRMISE and aRMISE for φ̂1 and
φ̂2, as well as the RMISE for μ̂, are showed in Table 1. We see that, when n is small
and hence μ̂ is not sufficiently close to μ, the difference between iRMISE and
aRMISE is visible, while such difference decreases as the sample size grows and μ̂

converges to μ. In particular, aRMISE is always larger than iRMISE since aRMISE
contains an additional ambient component that is not intrinsic to the manifold, as
illustrated on the left panel of Figure 1.

We now use iRMISE to assess the performance of iRFPCA by comparing to the
ambient counterpart RFPCA proposed by Dai and Müller (2018). Table 2 presents
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TABLE 1
The root mean integrated squared error (RMISE) of the estimation of the mean function, and the
intrinsic RMISE (iRMISE) and the ambient RMISE (aRMISE) of the estimation for the first two

eigenfunctions in the case of S2 manifold. The Monte Carlo standard error based on 100 simulation
runs is given in parentheses

n = 50 n = 150 n = 500

μ 0.244 (0.056) 0.135 (0.029) 0.085 (0.019)

iRMISE aRMISE iRMISE aRMISE iRMISE aRMISE

φ1 0.279 (0.073) 0.331 (0.078) 0.147 (0.037) 0.180 (0.042) 0.086 (0.022) 0.106 (0.027)
φ2 0.478 (0.133) 0.514 (0128) 0.264 (0.064) 0.287 (0.061) 0.147 (0.044) 0.167 (0.042)

the results for the top 5 eigenelements. The first observation is that iRFPCA and
RFPCA yield the same results on the manifold S

2, which numerically verifies our
discussion in Section 2.4. We notice that in Dai and Müller (2018) the quality of
estimation of principal components is not evaluated, likely due to the lack of a
proper tool to do so. In contrast, our framework of tensor Hilbert space provides
an intrinsic gauge (e.g., iRMISE) to naturally compare two vector fields along dif-
ferent curves. For the case of Sym+

� (m) which is not a Euclidean submanifold, the
iRFPCA produces more accurate estimation than RFPCA. In particular, as sample
size grows, the estimation error for iRFPCA decreases quickly, while the error of
RFPCA persists. This coincides with our intuition that when the geometry induced
from the ambient space is not the same as the intrinsic geometry, the ambient RF-
PCA incurs loss of statistical efficiency, or even worse, inconsistent estimation. In
summary, the results Sym+

� (m) numerically demonstrate that the RFPCA proposed
by Dai and Müller (2018) does not apply to manifolds that do not have an ambient
space or whose intrinsic geometry differs from its ambient geometry, while our
iRFPCA are applicable to such Riemannian manifolds.

For functional linear regression, we adopt iRMISE to quantify the quality of the
estimator β̂ for slope function β , and assess the prediction performance by predic-
tion RMSE on independent test dataset. For comparison, we also fit the functional
linear model using the principal components produced by RFPCA (Dai and Müller
(2018)), and hence we refer to this competing method as RFLR. For both methods,
the tuning parameter which is the number of principal components included for β̂ ,
is selected by using an independent validation data of the same size of the training
data to ensure fair comparison between two methods. The simulation results are
presented in Table 3. As expected, we observe that on S

2 both methods produce
the same results. For the SPD manifold, in terms of estimation, we see that iR-
FLR yields far better estimators than RFLR does. Particularly, we again observe
that, the quality of RFLR estimators does not improve significantly when sample
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TABLE 2
Intrinsic root integrated mean squared error (iRMISE) of estimation for eigenelements. The first column denotes the manifolds, where S

2 is the unit
sphere and Sym+

� (m) is the space of m × m symmetric positive-definite matrices endowed with the affine-invariant metric. In the second column,
φ1, . . . , φ5 are the top five intrinsic Riemannian functional principal components. Columns 3–5 are (iRMISE) of the iRFPCA estimators for φ1, . . . , φ5
with different sample sizes, while columns 5–8 are iRMISE for the RFPCA estimators. The Monte Carlo standard error based on 100 simulation runs is

given in parentheses

iRFPCA RFPCA

Manifold FPC n = 50 n = 150 n = 500 n = 50 n = 150 n = 500

S
2 φ1 0.279 (0.073) 0.147 (0.037) 0.086 (0.022) 0.279 (0.073) 0.147 (0.037) 0.086 (0.022)

φ2 0.475 (0.133) 0.264 (0.064) 0.147 (0.044) 0.475 (0.133) 0.264 (0.064) 0.147 (0.044)
φ3 0.647 (0.153) 0.389 (0.120) 0.206 (0.054) 0.647 (0.153) 0.389 (0.120) 0.206 (0.054)
φ4 0.818 (0.232) 0.502 (0.167) 0.261 (0.065) 0.818 (0.232) 0.502 (0.167) 0.261 (0.065)
φ5 0.981 (0.223) 0.586 (0.192) 0.329 (0.083) 0.981 (0.223) 0.586 (0.192) 0.329 (0.083)

Sym+
� (m) φ1 0.291 (0.105) 0.155 (0.046) 0.085 (0.025) 0.707 (0.031) 0.692 (0.021) 0.690 (0.014)

φ2 0.523 (0.203) 0.283 (0.087) 0.143 (0.040) 0.700 (0.095) 0.838 (0.113) 0.684 (0.055)
φ3 0.734 (0.255) 0.418 (0.163) 0.206 (0.067) 0.908 (0.116) 0.904 (0.106) 0.981 (0.039)
φ4 0.869 (0.251) 0.566 (0.243) 0.288 (0.086) 0.919 (0.115) 1.015 (0.113) 0.800 (0.185)
φ5 1.007 (0.231) 0.699 (0.281) 0.378 (0.156) 0.977 (0.100) 1.041 (0.140) 1.029 (0.058)
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TABLE 3
Estimation quality of slope function β and prediction of y on test datasets. The second column indicates the distribution of noise, while the third column

indicates the manifolds, where S
2 is the unit sphere and Sym+

� (m) is the space of m × m symmetric positive-definite matrices endowed with the
affine-invariant metric. Columns 4–6 are performance of the iRFLR on estimating the slope curve β and predicting the response on new instances of

predictors, while columns 7–9 are performance of the RFLR method. Estimation quality of the slope curve is quantified by intrinsic root mean integrated
squared errors (iRMISE), while the performance of prediction on independent test data is measured by root mean squared errors (RMSE). The Monte

Carlo standard error based on 100 simulation runs is given in parentheses

iRFLR RFLR

n = 50 n = 150 n = 500 n = 50 n = 150 n = 500

Estimation normal S
2 0.507 (0.684) 0.164 (0.262) 0.052 (0.045) 0.507 (0.684) 0.164 (0.262) 0.052 (0.045)

SPD 1.116 (2.725) 0.311 (0.362) 0.100 (0.138) 2.091 (0.402) 1.992 (0.218) 1.889 (0.126)

t (2.1) S
2 0.575 (0.768) 0.183 (0.274) 0.053 (0.050) 0.575 (0.768) 0.183 (0.274) 0.053 (0.050)

SPD 1.189 (2.657) 0.348 (0.349) 0.108 (0.141) 2.181 (0.439) 1.942 (0.209) 1.909 (0.163)

Prediction normal S
2 0.221 (0.070) 0.135 (0.046) 0.083 (0.019) 0.221 (0.070) 0.135 (0.046) 0.083 (0.019)

SPD 0.496 (0.184) 0.284 (0.092) 0.165 (0.062) 0.515 (0.167) 0.328 (0.083) 0.248 (0.047)

t (2.1) S
2 0.251 (0.069) 0.142 (0.042) 0.088 (0.020) 0.251 (0.069) 0.142 (0.042) 0.088 (0.020)

SPD 0.532 (0.189) 0.298 (0.097) 0.172 (0.066) 0.589 (0.185) 0.360 (0.105) 0.268 (0.051)



IRFDA 3557

size increases, in contrast to estimators based on the proposed iRFLR. For predic-
tion, iRFLR outperforms RFLR by a significant margin. Interestingly, comparing
to estimation of slope function where the RFLR estimator is much inferior to the
iRFLR one, the prediction performance by RFLR is relatively closer to that by
iRFLR. We attribute this to the smoothness effect brought by the integration in
model (11). Nevertheless, although the integration cancels out certain discrepancy
between the intrinsic and the ambient geometry, the loss of efficiency is inevitable
for the RFLR method that is bound to the ambient spaces. In addition, we observe
that the performance of both methods for Gaussian noise is slightly better than that
in the case of heavy-tailed noise.

5.2. Data application. We apply the proposed iRFPCA and iRFLR to analyze
the relationship between functional connectivity and behavioral data from the HCP
900 subjects release (Essen et al. (2013)). Although neural effects on language
(Binder et al. (1997)), emotion (Phana et al. (2002)) and fine motor skills (Dayan
and Cohen (2011)) have been extensively studied in the literature, scarce is the
exploration on human behaviors that do not seem related to neural activities, such
as endurance. Nevertheless, a recent research by Raichlen et al. (2016) suggests
that endurance can be related to functional connectivity. Our goal is to study the
endurance performance of subjects based on their functional connectivity.

The data consists of n = 330 subjects who are healthy young adults, in which
each subject is asked to walk for two minutes and the distance in feet is recorded.
Also, each subject participates in a motor task, where participants are asked to
act according to presented visual cues, such as tapping their fingers, squeezing
their toes or moving their tongue. During the task, the brain of each subject is
scanned and the neural activities are recorded at 284 equispaced time points. After
preprocessing, the average BOLD (blood-oxygen-level dependent) signals at 68
different brain regions are obtained. The details of experiment and data acquisition
can be found in the reference manual of WU-Minn HCP 900 Subjects Data Release
that is available on the website of human connectome project.

Our study focuses on m = 6 regions that are related to the primary motor cortex,
including precentral gyrus, Broca’s area, etc. At each design time point t , the func-
tional connectivity of the ith subject is represented by the covariance matrix Si(t)

of BOLD signals from regions of interest (ROI). To practically compute Si(t), let
Vit be an m-dimensional column vector that represents the BOLD signals at time t

from the m ROIs of the ith subject. We then adopt a local sliding window approach
(Park et al. (2017)) to compute Si(t) by

Si(t) = 1

2h + 1

t+h∑
j=t−h

(Vij − V̄it )(Vij − V̄it )
T with V̄it = 1

2h + 1

t+h∑
j=t−h

Vij ,

where h is a positive integer that represents the length of the sliding window to
compute Si(t) for t = h + 1, h, . . . ,284 − h. Without loss of generality, we repa-
rameterize each Si(·) from the domain [h+1,284−h] to [1,284−2h]. In practice,
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speed and strength are included as baseline covariates, selected by the forward-
stepwise selection method (Hastie, Tibshirani and Friedman (2009), Section 3.3).
Among these covariates, gender and age are in accordance with the common sense
about endurance, while gait speed and muscle strength could be influential since
endurance is measured by the distance walked in two minutes. Our primary interest
is to assess the significance of the functional predictor when effect of the baseline
covariates is controlled.

To fit the intrinsic functional linear model, we adopt the cross-validation pro-
cedure to select the number of components to be included in representing the
Riemannian functional predictor and the Riemannian slope function β . For as-
sessment, we conduct 100 runs of 10-fold cross-validation, where in each run we
permute the data independently. In each run, the model is fitted on 90% data and
the MSE for predicting the walking distance is computed on the other 10% data
for both iRFLR and RFLR methods. The fitted intrinsic Riemannian slope func-
tion Logμ̂β̂ displayed in the bottom panel of Figure 2 shows the pattern of weight
changes. The MSE for iRFLR is reduced by around 9.7%, compared to that for
RFLR. Moreover, the R2 for iRFLR is 0.338, with a p-value 0.012 based on a
permutation test of 1000 permutations, which is significant at level 5%. In con-
trast, the R2 for RFLR drops to 0.296 and the p-value is 0.317 that does not spell
significance at all.

APPENDIX A: BACKGROUND ON RIEMANNIAN MANIFOLD

We introduce geometric concepts related to Riemannian manifolds from an in-
trinsic perspective without referring to any ambient space.

A smooth manifold is a differentiable manifold with all transition maps being
C∞ differentiable. For each point p on the manifold M, there is a linear space
TpM of tangent vectors which are derivations. A derivation is a linear map that
sends a differentiable function on M into R and satisfies the Leibniz property.
For example, if Dv is the derivation associate with the tangent vector v at p, then
Dv(fg) = (Dvf ) · g(p) + f (p) · Dv(g) for any f,g ∈ A(M), where A(M) is
a collection of real-valued differentiable functions on M. For submanifolds of a
Euclidean space R

d0 for some d0 > 0, tangent vectors are often perceived as vec-
tors in R

d0 that are tangent to the submanifold surface. If one interprets a Euclidean
tangent vector as a directional derivative along the vector direction, then Euclidean
tangent vectors coincide with our definition of tangent vectors on a general mani-
fold. The linear space TpM is called the tangent space at p. The disjoint union of
tangent spaces at each point constitutes the tangent bundle, which is also equipped
with a smooth manifold structure induced by M. The tangent bundle of M is con-
ventionally denoted by TM. A (smooth) vector field V is a map from M to TM
such that V (p) ∈ TpM for each p ∈ M. It is also called a smooth section of TM.
Noting that a tangent vector is a tensor of type (0,1), a vector field can be viewed
as a kind of tensor field, which assigns a tensor to each point on M. A vector field
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along a curve γ : I → M on M is a map V from an interval I ⊂ R to TM such
that V (t) ∈ Tγ (t)M. For a smooth function from a manifold M and to another
manifold N , the differential dϕp of f at p ∈ M is a linear map from TpM to
Tϕ(p)N , such that dϕp(v)(f ) = Dv(f ◦ ϕ) for all f ∈ A(M) and v ∈ TpM.

An affine connection ∇ on M is a bilinear mapping that sends a pair of
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L(γ ) over all continuously differentiable curves joining p and q . For a connected
and complete Riemannian, given two points on the manifold, there is a minimizing
geodesic connecting these two points.

APPENDIX B: IMPLEMENTATION FOR Sym+
� (m)

Given Sym+
� (m)-valued functional data X1, . . . ,Xn, below we briefly outline

the numerical steps to perform iRFPCA. The computation details for Sd can be
found in Dai and Müller (2018).

Step 1. Compute the sample Fréchet mean μ̂. As there is no analytic solution,
the recursive algorithm developed by Cheng et al. (2016) can be used.

Step 2. Select an orthonormal frame E = (E1, . . . ,Ed) along μ̂. For Sym+
� (m),

at each S ∈ Sym+
� (m), the tangent space TS Sym+

� (m) is isomorphic to Sym(m).
This space has a canonical linearly independent basis e1, . . . , ed with d =
m(m + 1)/2, defined in the following way. For an integer k ∈ [1, d], let N1 be
the largest integer such that N1(N1 + 1)/2 ≤ k. Let N2 = k −N1(N1 − 1)/2. Then
ek is defined as the m × m matrix that has 1 at (N1,N2), 1 at (N2,N1) and 0
elsewhere. Because the inner product on the space Tμ̂(t) Sym+

� (m) is given by

tr
(
μ̂(t)

−1/2
Uμ̂(t)V μ̂(t)

−1/2)
for U,V ∈ TS Sym+

� (m), in general this basis is not orthonormal in Tμ̂(t) Sym+
� (m).

To obtain an orthonormal basis of Tμ̂(t) Sym+
� (m) for any given t , we can apply

the Gram–Schmidt procedure on the basis e1, . . . , ed . The orthonormal bases ob-
tained in this way smoothly vary with t and hence form an orthonormal frame of
Sym+

� (m) along μ̂.
Step 3. Compute the E-coordinate representation ẐE,i of each Logμ̂ Xi . For

Sym+
� (m), the logarithm map at a generic S ∈ Sym+

� (m) is given by LogS(Q) =
S1/2 log(S−1/2QS−1/2)S1/2 for Q ∈ Sym+

� (m), where log denotes the matrix log-
arithm function. Therefore,

Logμ̂(t) Xi(t) = μ̂(t)
1/2 log

(
μ̂(t)

−1/2
Xi(t)μ̂(t)

−1/2)
μ̂(t)

1/2
.

Using the orthonormal basis E1(t), . . . ,Ed(t) obtained in the previous step, one
can compute the coefficient ẐE,i(t) representation of Logμ̂(t) Xi(t) for any given t .

Step 4. Compute the first K eigenvalues λ̂1, . . . , λ̂K and eigenfunctions
φ̂E,1, . . . , φ̂E,K of the empirical covariance function ĈE(s, t) = n−1 ∑n

i=1 ẐE,i(s)×
ẐT

E,i(t). This step is generic and does not involve the manifold structure. For d = 1,
the classic univariate FPCA method such as Hsing and Eubank (2015) can be em-
ployed to derive the eigenvalues and eigenfunctions of ĈE. When d > 1, each
observed coefficient function ẐE,i(t) is vector-valued. FPCA for vector-valued
functional data can be performed by the methods developed in Happ and Greven
(2018) or Wang (2008).
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Step 5. Compute the scores ξ̂ik = ∫
ẐT

E,i(t)φ̂E,k(t)dt . Finally, compute the ap-
proximations of Xi by the first K principal components using

X̂K
i (t) = Expμ̂(t)

K∑
k=1

ξ̂ikφ̂
T
E,k(t)E(t),

where for Sym+
� (m), the exponential map at a generic S is given by

ExpS(U) = S1/2 exp
(
S−1/2US−1/2)

S1/2

for U ∈ TS Sym+
� (m), where exp denotes the matrix exponential function.

APPENDIX C: PROOFS OF MAIN THEOREMS

PROOF OF THEOREM 1. We first show that T (μ) is a Hilbert space. It is
sufficient to prove that the inner product space T (μ) is complete. Suppose {Vn}
is a Cauchy sequence in T (μ). We will later show that there exists a subsequence
{Vnk

} such that

(14)
∞∑

k=1

∣∣Vnk+1(t) − Vnk
(t)

∣∣ < ∞, υ-a.s.

Since Tμ(t)M is complete, the limit V (t) = limk→∞ Vnk
(t) is υ-a.s. well defined

and in Tμ(t)M. Fix any ε > 0 and choose N such that n,m ≥ M implies ‖Vn −
Vm‖μ ≤ ε. Fatou’s lemma applying to the function |V (t) − Vm(t)| implies that if
m ≥ N , then ‖V − Vm‖2

μ ≤ lim inf
k→∞ ‖Vnk

− Vm‖2
μ ≤ ε2. This shows that V − Vm ∈

T (μ). Since V = (V − Vm) + Vm, we see that V ∈ T (μ). The arbitrariness of
ε implies that limm→∞ ‖V − Vm‖μ = 0. Because ‖V − Vn‖μ ≤ ‖V − Vm‖μ +
‖Vm − Vn‖μ ≤ 2ε, we conclude that Vn converges to V in T (μ).

It remains to show (14). To do so, we choose {nk} so that ‖Vnk
− Vnk+1‖μ ≤

2−k . This is possible since Vn is a Cauchy sequence. Let U ∈ T (μ). By Cauchy–
Schwarz inequality,

∫
T |U(t)| · |Vnk

(t)−Vnk+1(t)|dυ(t) ≤ ‖U‖μ‖Vnk
−Vnk+1‖μ ≤

2−k‖U‖μ. Thus,
∑

k

∫
T |U(t)| · |Vnk

(t)−Vnk+1(t)|dυ(t) ≤ ‖U‖μ < ∞. Then (14)
follows, because otherwise, if the series diverges on a set A with υ(A) > 0, then a
choice of U such that |U(t)| > 0 for t ∈ A contradicts the above inequality.

Now let E be a measurable orthonormal frame. For every element U ∈ T (μ),
the coordinate representation of U with respect to E is denoted by UE. One can
see that UE is an element in the Hilbert space L2(T ,Rd) of square integrable
R

d -valued measurable functions with norm ‖f ‖L2 = {∫T |f (t)|2 dυ(t)}1/2 for f ∈
L2(T ,Rd). If we define the map ϒ : T (μ) → L2(T ,Rd) by ϒ(U) = UE, we
can immediately see that ϒ is a linear map. It is also surjective, because for any
f ∈ L2(T ,Rd), the vector field U along μ given by Uf (t) = f (t)E(μ(t)) for
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t ∈ T is an element in T (μ), since ‖Uf ‖μ = ‖f ‖L2 . It can be also verified that
ϒ preserves the inner product. Therefore, it is a Hilbertian isomorphism. Since
L2(T ,Rd) is separable, the isomorphism between L2(T ,Rd) and T (μ) implies
that T (μ) is also separable. �

PROOF OF PROPOSITION 2. The regularity conditions on f , h and γ ensure
that � and � are measurable. Parts 1, 2 and 6 can be deduced from the fact that
Pf,h is a unitary operator between two finite-dimensional real Hilbert spaces and
its inverse is Ph,f . To reduce notational burden, we shall suppress the subscripts
f,h from �f,h and �f,h below. For Part 3,

(�A)(�U) = �
(
A�∗�U

)
) = �(AU).

To prove Part 4, assume V ∈ T (g). Then, noting that �(�∗V ) = V and �∗(�U) =
U , we have

(�A)
((

�A−1)
V

) = (�A)
(
�

(
A−1�∗V

))
= �

(
A�∗(

�
(
A−1�∗V

)))
= �

(
AA−1�∗V

) = �
(
�∗V

) = V

and (
�A−1)

(�AV ) = (
�A−1)(

�
(
A�∗V

))
= �

(
A−1�∗(

�
(
A�∗V

)))
= �

(
A−1A�∗V

) = �
(
�∗V

) = V.

Part 5 is seen by the following calculation: for V ∈ T (g),(
�f,g

∑
ckϕk ⊗ ϕk

)
V = �

(∑
ck

〈〈
ϕk,�

∗V
〉〉
f ϕk

)
= ∑

ck

〈〈
φk,�

∗V
〉〉
f �ϕk

= ∑
ck〈〈�ϕk,V 〉〉g�ϕk

=
(∑

ck�ϕk ⊗ �ϕk

)
V. �

PROOF OF PROPOSITION 4. The case κ ≥ 0 is already given by Dai and
Müller (2018) with C = 1. Suppose κ < 0. The second statement follows from
the first one if we let O = μ(t), P = X(t) and Q = XK(t) for any fixed t and note
that C is independent of t .

For the first statement, the inequality is clearly true if P = O , Q = O or P = Q.
Now suppose O , P and Q are distinct points on M. The minimizing geodesic
curves between these points form a geodesic triangle on M. By Toponogov’s the-
orem (the hinge version), dM(P,Q) ≤ dMκ

(P ′,Q′), where Mκ is the model space
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with constant sectional curvature κ . For κ < 0, it is taken as the hyperboloid with
curvature κ . Let a = dM(O,P ), b = dM(O,Q) and c = dM(P,Q). The inte-
rior angle of geodesics connecting O to P and O to Q is denoted by γ . Denote
δ = √−κ , the law of cosine on Mκ gives

cosh(δc) = {
cosh(δa) cosh(δb) − sinh(δa) sinh(δb)

}
+ {

sinh(δa) sinh(δb)(1 − cosγ )
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where C = {(2BD + √
2B)/δ}2, or in other words, dM(P,Q) ≤ √

C|LogO P −
LogO Q|. �

PROOF OF PROPOSITION 5. Part 1 follows from a simple calculation. To
lighten notations, let fT E denote fT (·)E(μ(·)) for a R

d valued function defined
on T . Suppose φE,k is the coordinate of φk under E. Because

(CEφE,k)
T E = E〈ZE, φE,k〉ZEE

= E〈〈Logμ X,φk〉〉μLogμX

= λkφk = λkφ
T
E,kE,

one concludes that CEφE,k = λkφE,k and hence φE,k is an eigenfunction of CE cor-
responding to the eigenvalue λk . Other results in Part 2 and 3 have been derived
in Section 3. The continuity of X and E, in conjunction with E‖Logμ X‖2

μ < ∞,
implies that ZE is a mean square continuous random process and the joint mea-
surability of X passes to ZE. Then ZE can be regarded a random element of the
Hilbert space L2(T ,B(T ), υ) that is isomorphic to T (μ). Also, the isomorphism
maps ZE to X for each ω in the sample space. Then, Part 4 follows from Theo-
rem 7.4.3 of Hsing and Eubank (2015). �

PROOF OF THEOREM 6. The strong consistency stated in Part 2 is an im-
mediate consequence of Lemma 12. For Part 1, to prove continuity of μ, fix
t ∈ T . Let K ⊃ U be compact. By B.3, c := supp∈K sups∈T Ed2

M(p,X(s)) < ∞.
Thus,

∣∣F (
μ(t), s

) − F
(
μ(s), s

)∣∣
≤ ∣∣F (

μ(t), t
) − F

(
μ(s), s

)∣∣ + ∣∣F (
μ(t), s

) − F
(
μ(t), t

)∣∣
≤ sup

p∈K
∣∣F(p, t) − F(p, s)

∣∣ + 2cEdM
(
X(s),X(t)

)
≤ 4cEdM

(
X(s),X(t)

)
.

The continuity assumption of sample paths implies EdM(X(s),X(t)) → 0 as
s → t . Then by condition B.5, dM(μ(t),μ(s)) → 0 as s → t , and the the con-
tinuity of μ follows. The uniform continuity follows from the compactness of T .
Given Lemma 11 and 12, the a.s. continuity of μ̂ can be derived in a similar way.
The first statement of Part 4 is a corollary of Part 3, while the second statement
follows from the first one and the compactness of T . It remains to show Part 3 in
order to conclude the proof, as follows.
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Let Vt,i(p) = Logp Xi(t) and γt,p be the minimizing geodesic from μ(t) to
p ∈ M at unit time. The first-order Taylor series expansion at μ(t) yields

Pμ̂(t),μ(t)

n∑
i=1

Vt,i

(
μ̂(t)

)

=
n∑

i=1

Vt,i

(
μ(t)

) +
n∑

i=1

∇γ ′
t,μ̂(t)

(0)Vt,i

(
μ(t)

) + �t

(
μ̂(t)

)
γ ′
t,μ̂(t)(0)(16)

=
n∑

i=1

Vt,i

(
μ(t)

) −
n∑

i=1

Ht

(
μ(t)

)
γ ′
t,μ̂(t)(0) + �t

(
μ̂(t)

)
γ ′
t,μ̂(t)(0),

where an expression for �t is provided in the proof of Lemma 10.
Since

∑n
i=1 Vt,i(μ̂(t)) = ∑n

i=1 Logμ̂(t) Xi(t) = 0, we deduce from (16) that

(17)
1

n

n∑
i=1

Logμ(t) Xi(t) −
(

1

n

n∑
i=1

Ht,i

(
μ(t)

) − 1

n
�t

(
μ̂(t)

))
Logμ(t) μ̂(t) = 0.

By LLN, 1
n

∑n
i=1 Ht,i(μ(t)) → EHt(μ(t)) in probability, while EHt(μ(t)) is in-

vertible for all t by condition B.6. In light of Lemma 10, this result suggests that
with probability tending to one, for all t ∈ T , 1

n

∑n
i=1 Ht,i(μ(t)) − 1

n
�t(μ̂(t)) is

invertible, and also(
1

n

n∑
i=1

Ht,i

(
μ(t)

) − 1

n
�t

(
μ̂(t)

))−1

= {
EHt

(
μ(t)

)}−1 + oP (1),

and according to (17),

Logμ(t) μ̂(t) = {
EHt

(
μ(t)

)}−1

(
1

n

n∑
i=1

Logμ(t) Xi(t)

)
+ oP (1),

where the oP (1) terms do not depend on t . Given this, we can now conclude the
proof of Part 3 by applying a central limit theorem in Hilbert spaces (Aldous
(1976)) to establish that the process 1√

n

∑n
i=1{EHt(μ(t))}−1 Logμ(t) Xi(t) con-

verges to a Gaussian measure on tensor Hilbert space T (μ) with covariance opera-
tor C(·) = E(〈〈V, ·〉〉μV ) for a random element V (t) = {EHt(μ(t))}−1 Logμ(t) X(t)

in the tensor Hilbert space T (μ). �

PROOF OF THEOREM 7. Note that

�Ĉ − C = n−1
∑

(� Logμ̂ Xi) ⊗ (� Logμ̂ Xi) − C

= n−1
∑

(Logμ Xi) ⊗ (Logμ Xi) − C

+ n−1
∑

(� Logμ̂ Xi − Logμ Xi) ⊗ (Logμ Xi)
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+ n−1
∑

(Logμ Xi) ⊗ (� Logμ̂ Xi − Logμ Xi)

+ n−1
∑

(� Logμ̂ Xi − Logμ Xi) ⊗ (� Logμ̂ Xi − Logμ Xi)

≡ A1 + A2 + A3 + A4.

For A2, it is seen that

|||A2|||2HS ≤ const.
1

n2

n∑
i=1

n∑
j=1

(‖Logμ Xi‖2
μ + ‖Logμ Xj‖2

μ

)

× (‖�Logμ̂Xi − LogμXi‖2
μ + ‖�Logμ̂Xj − LogμXj‖2

μ

)
.

With smoothness of d2
M, continuity of μ and compactness of T , one can show

that supt∈T ‖Ht(μ(t))‖ < ∞. By the uniform consistency of μ̂, with the same
Taylor series expansion in (16) and the technique in the proof of Lemma 10, it can
be established that n−1 ∑n

i=1 ‖� Logμ̂ Xi − Logμ Xi‖2
μ‖Logμ Xi‖2

μ ≤ const.(1 +
oP (1)) supt∈T d2

M(μ̂(t),μ(t)). Also note that by LLN, n−1 ∑n
j=1 ‖Logμ Xj‖2

μ =
OP (1). Then, with Part 4 of Theorem 6,

|||A2|||2HS ≤ const.
{
4 + oP (1) + OP (1)

}
sup
t∈T

d2
M

(
μ̂(t),μ(t)

) = OP (1/n).

Similar calculation shows that |||A3|||2HS = OP (1/n) and |||A4|||2HS = OP (1/n2).
Now, by Dauxois, Pousse and Romain (1982), ‖n−1 ∑

(Logμ Xi) ⊗ (Logμ Xi) −
C‖2

HS = OP (1/n). Thus, ‖�Ĉ − C‖2
HS = OP (1/n). According to Part 1 & 5 of

Proposition 2, λ̂k are also eigenvalues of �Ĉ. The results for λ̂k and (J, δj )

follow from Bosq (2000). Those for (Ĵ , δ̂j ) are due to supk≥1 |λ̂k − λk| ≤
|||Ĉ �� C|||HS. �

PROOF OF THEOREM 8. In this proof, both oP (·) and OP (·) are understood
to be uniform for the class F . Let β̌ = Expμ

∑K
k=1 b̂k�φ̂k . Then

d2
M(β̂, β) ≤ 2d2

M(β̂, β̌) + 2d2
M(β̌, β).

The first term is of order Op(1/n) uniform for the class F , according to a tech-
nique similar to the one in the proof of Lemma 10, as well as Theorem 6 (note that
the results in Theorem 6 are uniform for the class F ). Then the convergence rate
is established if one can show that

d2
M(β̌, β) = OP

(
n

− 2�−1
4α+2�+2

)
,

which follows from∥∥∥∥∥
K∑

k=1

b̂k�φ̂k −
∞∑

k=1

bkφk

∥∥∥∥∥
2

μ

= OP

(
n

− 2�−1
4α+2�+2

)
(18)

and Proposition 4. It remains to show (18).
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We first observe that because bk ≤ Ck−�,

∥∥∥∥∥
K∑

k=1

b̂k�φ̂k −
∞∑

k=1

bkφk

∥∥∥∥∥
2

μ

≤ 2

∥∥∥∥∥
K∑

k=1

b̂k�φ̂k −
K∑

k=1

bkφk

∥∥∥∥∥
2

μ

+ O
(
K−2�+1)

.

(19)

Define

A1 =
K∑

k=1

(b̂k − bk)φk, A2 =
K∑

k=1

bk(�φ̂k − φk),

A3 =
K∑

k=1

(b̂k − bk)(�φ̂k − φk).

Then ∥∥∥∥∥
K∑

k=1

b̂k�φ̂k −
K∑

k=1

bkφk

∥∥∥∥∥
2

μ

≤ 2‖A1‖2
μ + 2‖A2‖2

μ + 2‖A3‖2
μ.

It is clear that the term A3 is asymptotically dominated by A1 and A2. Note that
the compactness of X in condition C.2 implies E‖Logμ X‖4

μ < ∞. Then, by The-
orem 7, for A2, we have the bound

‖A2‖2
μ ≤ 2

K∑
k=1

b2
k‖�φ̂k − φk‖2

μ =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩
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= −(
Iμ + C+

ρ �
)−1C+

ρ �Logμβ − (
Iμ + C+

n �
)−1C+

ρ �
(
C+

ρ χn − Logμβ
)

≡ An211 + An212.

By Theorem 7, |||�|||μ = OP (1/n). Also, one can see that |||(Iμ + C+
ρ �)−1|||

μ
=

OP (1), with the assumption that ρ−1/n = o(1). Also, |||(Iμ + C+
ρ �)−1C+

ρ �|||
op

=
OP (ρ−2/n). Using the similar technique in Hall and Horowitz (2005), we can
show that ‖C+

ρ χn − Logμ β‖2
μ = OP (n−(2�−1)/(2�+α)), and hence conclude that

‖An212‖2
μ = OP (n−(2�−1)/(2�+α)). For An211,

‖An211‖2
μ = ∥∥(

Iμ + C+
n �

)−1C+
n �Logμβ

∥∥2
μ

≤ ∣∣∣∣∣∣(Iμ + C+
n �

)−1∣∣∣∣∣∣2
op

∣∣∣∣∣∣C+
n �

∣∣∣∣∣∣2
op‖Logμβ‖2

μ

= OP

(
n−(2�−α)/(2�+α)).

Combining all results above, we deduce that ‖�(Ĉ+χ̂ ) − Logμβ‖2
μ =

OP (n−(2�−α)/(2�+α)) and thus

d2
M

(
Exp

μ
�

(
Ĉ+χ̂

)
, β

) = OP

(
n−(2�−α)/(2�+α)),

according to condition C.2 and Proposition 4. �

APPENDIX D: ANCILLARY LEMMAS

LEMMA 10. supt∈T n−1‖�t(μ̂(t))‖ = oP (1), where �t is as in (16).

PROOF. With the continuity of μ and compactness of T , the existence of local
smooth orthnormal frames (e.g., Proposition 11.17 of Lee (2013)) suggests that
we can find a finite open cover T1, . . . ,Tm for T such that there exists a smooth
orthonormal frame bj,1, . . . , bj,d for the j th piece {μ(t) : t ∈ cl(Tj )} of μ, where
cl(A) denotes topological closure of a set A. For fixed t ∈ Tj , by mean value
theorem, it can be shown that

�t

(
μ̂(t)

)
U =

d∑
r=1

n∑
i=1

(
P

γt,μ̂(t)(θ
r,j
t ),μ(t)

∇UW
r,j
t,i

(
γt,μ̂(t)

(
θ

r,j
t

))

− ∇UW
r,j
t,i

(
μ(t)

))(20)

for θ
r,j
t ∈ [0,1] and W

r,j
t,i = 〈Vt,i, e

r,j
t 〉er,j

t , where e
1,j
t , . . . , e

d,j
t is the orthonormal

frame extended by parallel transport of bj,1(μ(t)), . . . , bj,d(μ(t)) along minimiz-
ing geodesic.

Take ε = εn ↓ 0 as n → ∞. For each j , by the same argument of Lemma 3
of Kendall and Le (2011), together with continuity of μ and the continuity
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of the frame bj,1, . . . , bj,d , we can choose a continuous positive ρ
j
t such that,

μ̂(t) ∈ B(μ(t), ρ
j
t ) and for p ∈ B(μ(t), ρ

j
t ) where B(q,ρ) denotes the ball on M

centered at q with radius ρ,∥∥Pp,μ(t)∇W
r,j
t,i (p) − ∇W

r,j
t,i

(
μ(t)

)∥∥
≤ (

1 + 2ερ
j
t

)
sup

q∈B(μ(t),ρ
j
t )

∥∥Pq,μ(t)∇Vt,i(q) − ∇Vt,i

(
μ(t)

)∥∥

+ 2ε
(∥∥Vt,i

(
μ(t)

)∥∥ + ρ
j
t

∥∥∇Vt,i

(
μ(t)

)∥∥)
.

In the above, p plays a role of γt,μ̂(t)(θ
r,j
t ) in (20). Let ρj = max{ρt : t ∈ cl(Tj )}

and ρmax = maxj ρj . We then have

sup
t∈T

∥∥�t

(
μ̂(t)

)∥∥
≤ max

j
sup
t∈Tj

∥∥�t

(
μ̂(t)

)∥∥

=
d∑

r=1

n∑
i=1

max
j

sup
t∈Tj

∥∥P
γt,μ̂(t)(θ

r,j
t ),μ(t)

∇UW
t,j
r,i

(
γt,μ̂(t)

(
θ

r,j
t

)) − ∇UW
t,j
r,i

(
μ(t)

)∥∥

≤ d(1 + 2ερmax)m

n∑
i=1

sup
t∈T

sup
q∈B(μ(t),ρmax)

∥∥Pq,μ(t)∇Vt,i(q) − ∇Vt,i

(
μ(t)

)∥∥(21)

+ 2dε

n {(1m
(i)T3281.7=1�
� ∥∥

:
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or

(24)
1

n

n∑
i=1

sup
t∈T

∥∥Vt,i

(
μ(t)

)∥∥ = OP (1).

For the second term in (22), the compactness of T , the Lipschitz condi-
tion of B.7 and smoothness of dM also imply that E supt∈T ‖∇Vt,i(μ(t))‖ =
E supt∈T ‖Ht(μ(t))‖ < ∞. Consequently, by LLN,

(25)
1

n

n∑
i=1

sup
t∈T

∥∥∇Vt,i

(
μ(t)

)∥∥ = OP (1).

Combining (23), (24) and (25), with ε = εn ↓ 0, one concludes that
supt∈T n−1‖�t(p)‖ = oP (1). �

LEMMA 11. Suppose conditions A.1 and B.1–B.3 hold. For any compact sub-
set K ⊂ M, one has

sup
p∈K

sup
t∈T

∣∣Fn(p, t) − F(p, t)
∣∣ = oa.s.(1).

PROOF. By applying the uniform SLLN to n−1 ∑n
i=1 dM(Xi(t),p0), for a

given p0 ∈ K,

sup
p∈K

sup
t∈T

1

n

n∑
i=1

dM
(
Xi(t),p

) ≤ sup
t∈T

1

n

n∑
i=1

dM
(
Xi(t),p0

) + sup
p∈K

dM(p0,p)

≤ sup
t∈T

EdM
(
X(t),p0

) + diam(K) + oa.s.(1).

Therefore, there exists a set �1 ⊂ � such that Pr(�1) = 1, N1(ω) < ∞ and for all
n ≥ N1(ω),

sup
p∈K

sup
t∈T

1

n

n∑
i=1

dM
(
Xi(t),p

) ≤ sup
t∈T

EdM
(
X(t),p0

) + diam(K) + 1 := c1 < ∞,

since supt∈T EdM(X(t),p0) < ∞ by condition B.3. Fix ε > 0. By the inequality
|d2

M(x,p)−d2
M(x, q)| ≤ {dM(x,p)+dM(x, q)}dM(p, q), for all n ≥ N1(ω) and

ω ∈ �1,

sup
p,q∈K:dM(p,q)<δ1

sup
t∈T

∣∣Fn,ω(p, t) − Fn,ω(q, t)
∣∣ ≤ 2c1δ1 = ε/3

with δ1 := ε/(6c1). Now, let δ2 > 0 be chosen such that supt∈T |F(p, t) −
F(q, t)| < ε/3 if p,q ∈ K and dM(p, q) < δ2. Suppose {p1, . . . , pr} ⊂ K is a
δ-net in K with δ := min{δ1, δ2}. Applying uniform SLLN again, there exists a set
�2 such that Pr(�2) = 1, N2(ω) < ∞ for all ω ∈ �2, and

max
j=1,...,r

sup
t∈T

∣∣Fn,ω(pj , t) − F(pj , t)
∣∣ < ε/3
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for all n ≥ N2(ω) with ω ∈ �2. Then, for all ω ∈ �1 ∩ �2, for all n ≥
max{N1(ω),N2(ω)}, we have

sup
p∈K

sup
t∈T

∣∣Fn,ω(p, t) − F(p, t)
∣∣

≤ sup
p∈K

sup
t∈T

∣∣Fn,ω(p) − Fn,ω(up)
∣∣ + sup

p∈K
sup
t∈T

∣∣Fn,ω(up, t) − F(up, t)
∣∣

+ sup
p∈K

sup
t∈T

∣∣F(up, t) − F(p, t)
∣∣

< ε/3 + ε/3 + ε/3 = ε,

and this concludes the proof. �

LEMMA 12. Assume conditions A.1 and B.1–B.5 hold. Given any ε > 0, there
exists �′ ⊂ � such that Pr(�′) = 1 and for all ω ∈ �′, N(ω) < ∞ and for all
n ≥ N(ω), supt∈T dM(μ̂ω(t),μ(t)) < ε.

PROOF. Let c(t) = F(μ(t), t) = min{F(p, t) : p ∈ M} and N (t) := {p :
dM(p,μ(t)) ≥ ε}. It is sufficient to show that there exists δ > 0 and N(ω) < ∞
for all ω ∈ �′, such that for all n ≥ N(ω),

sup
t∈T

{
Fn,ω

(
μ(t), t

) − c(t)
} ≤ δ/2 and inf

t∈T
{

inf
p∈N (t)

Fn,ω(p, t) − c(t)
}

≥ δ.

This is because the above two inequalities suggest that for all t ∈ T , inf{Fn,ω(p, t) :
p ∈ M} is not attained at p with dM(p,μ(t)) ≥ ε, and hence supt∈T dM(μ̂ω(t),

μ(t)) < ε.
Let U = {μ(t) : t ∈ T }. We first show that there exists a compact set A ⊃ U

and N1(ω) < ∞ for some �1 ⊂ � such that Pr(�1) = 1, and both F(p, t) and
Fn,ω(p, t) are greater than c(t) + 1 for all p ∈ M\A, t ∈ T and n ≥ N1(ω). This
is trivially true when M is compact, by taking A = M. Now assume M is non-
compact. By the inequality dM(x, q) ≥ |dM(q, y) − dM(y, x)|, one has

Ed2
M

(
X(t), q

)
≥ E

{
d2
M

(
q,μ(t)

) + d2
M

(
X(t),μ(t)

) − 2dM
(
q,μ(t)

)
dM

(
X(t),μ(t)

)}
,

and by Cauchy–Schwarz inequality,

F(q, t) ≥ d2
M

(
q,μ(t)

) + F
(
μ(t), t

) − 2dM
(
q,μ(t)

){
F

(
μ(t), t

)}1/2
.

Similarly,

Fn,ω(q, t) ≥ d2
M

(
q,μ(t)

) + Fn,ω

(
μ(t), t

) − 2dM
(
q,μ(t)

){
Fn,ω

(
μ(t), t

)}1/2
.

Now, we take q at a sufficiently large distance � from U such that F(q, t) > c(t)+
1 on M\A for all t , where A := {q : dM(q,U) ≤ �} (Heine–Borel property yields
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compactness of A, since it is bounded and closed). Since Fn,ω(μ(t), t) converges
to F(μ(t), t) uniformly on T a.s. by Lemma 11, we can find a set �1 ⊂ � such
that Pr(�1) = 1 and N1(ω) < ∞ for ω ∈ �1, and Fn,ω(q, t) > c(t) + 1 on M\A
for all t and n ≥ N1(ω).

Finally, let Aε(t) := {p ∈ A : dM(p,μ(t)) ≥ ε} and cε(t) := min{F(p, t) :
p ∈ Aε}. Then Aε(t) is compact and by condition B.5, inft {cε(t) − c(t)} >

2δ > 0 for some constant δ. By Lemma 11, one can find a set �2 ⊂ � with
Pr(�2) = 1 and N2(ω) < ∞ for ω ∈ �2, such that for all n ≥ N2(ω), (i)
supt {Fn,ω(μ(t), t) − c(t)} ≤ δ/2 and (ii) inft infp∈Aε(t){Fn,ω(p, t) − c(t)} > δ.
Since supt {Fn,ω(p, t) − c(t)} > 1 on M\A for all n ≥ N1(ω) with ω ∈ �1,
we conclude that inft {Fn,ω(p, t) − c(t)} > min{δ,1} for all p ∈ Aε ∪ (M\A) if
n ≥ max{N1(ω),N2(ω)} for ω ∈ �1 ∩ �2. The proof is completed by noting that
�1 ∩ �2 can serve the �′ we are looking for. �
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