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Summary. We expand the notion of Gaussian sequence models to n experiments and propose
a Stein estimation strategy which relies on pooling information across experiments. An oracle
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in the limit m→∞. This follows from Le Cam equivalence between expression (2) and the white
noise model

Y (dt)=f.t/dt+σm−1=2W (dt), t ∈ [0, 1], .3/

W being standard Brownian motion. This connection has been studied by Brown and Low
(1996), Brown et al. (2002) and Reiß (2008), among others. The white noise model (3) acts on
an orthonormal basis {ψk}k∈N of L2[0, 1] to give rise to the GSM (1) with θk = 〈f ,ψk〉. For
any estimator f̂ of f , isometry leads to E‖f − f̂‖2

L2
=Σ∞

k=1E.θk − θ̂k/2, where θ̂k =〈f̂ ,ψk〉. This
reduces the problem of estimating f under L2-loss to the problem of estimating a sequence of
normal means θ = .θk/k∈N under l2-loss. The appeal of this framework is that a function of
practical interest often has a natural characterization in terms of geometric constraints on its
(generalized) Fourier coefficients θk in a suitable basis, and may be grouped into a collection
F of possible generating mechanisms for expression (2). By distilling the central issues at play,
reduction to expression (1) has inspired many estimation procedures with adaptivity properties.
See Donoho (1993), Donoho et al. (1995), Cai (1999), Cavalier and Tsybakov (2002) and Zhang
(2005) for original work in this direction and Candes (2006), Cai (2012) and Johnstone (2015)
for comprehensive overviews. This framework has also facilitated understanding of frequentist
and Bayesian properties of simple Bayesian non-parametric models. See Freedman (1999), Zhao
(2000), Belitser and Ghosal (2003) and Szabó et al. (2013) for studies in this direction.

Modern scientific experiments are often conducted simultaneously with data sampled from
multiple ‘similar’ functions, such as images and voice signals, which motivates grouping GSMs
corresponding to individual experiments. In this paper, we expand on the notion of GSM (1)
to study recovery of multiple sequences, namely the multiple GSMs of size n,

Yik =θik +σm−1=2zik, k ∈N, i=1, : : : , n, .4/

where zik ∼IID N.0, 1/. This can be viewed as an idealization of observing n non-parametric
experiments,

yij =fi.xij/+σzij, xij ∈ [0, 1], i=1, : : : , n, j =1, : : : , m, .5/

corresponding to the central model of functional data analysis (FDA) which has attracted
considerable interest in recent decades. See Ramsay and Silverman (2005) for an introduction
and examples.

The main contributions of this paper are twofold. The first part focuses on simultaneous
recovery of the effects {θi}i�n, where θi = .θik/k∈N, from multiple GSMs (4). A form of Stein
estimation, based on information pooling across experiments, is proposed and its properties are
derived with the aid of new concentration results. The method is shown to attain the optimal
rate for recovery of n experiments in a uniform manner and enjoys a robustness guarantee in a
minimax sense. Moreover, the theoretical analysis suggests an explicit tuning-free form which
governs the amount of shrinkage parsimoniously under a general condition mγ1 �n�mγ2 →∞,
for any γ2 �γ1 >
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and random design, which covers standard cases that are considered in the functional data lit-
erature (Hall et al., 2006; Cai and Yuan, 2011). We further show that the theoretical guarantees
of the recovery proposed continue to hold for bases on which the projected coefficients exhibit
decaying correlations, and we present concrete examples of process–basis pairs satisfying such
assumptions. Although useful in many areas, common FDA methods based on non-parametric
smoothing suffer from some drawbacks. Chief among these are complicated theoretical proper-
ties and reliance on computationally expensive procedures. Hence a key motivation for studying
multiple GSMs (4) is to provide a simplified but foundational framework for functional data
which might encourage development of new methods with properties that are both easy to estab-
lish and relate transparently to other areas of statistics. On the computational side, the method
operates in O{nm log.m/} time, in contrast with standard smoothing-based FDA techniques
that typically operate in at least O.nm2 + m3/ time (Ramsay and Silverman, 2005; Yao et al.,
2005). This implies potentially significant computational savings and scalability to data of large
dimensions or sizes. Further, our procedure may be employed in an on-line algorithm fashion: a
new curve comes in, a transform is performed and threshold weights are updated, which makes
our method potentially useful in the context of realtime data collection and processing.

The rest of the paper is organized as follows. In Section 2 we draw inspiration from an oracle
strategy known to achieve optimal recovery rates under the conditional l2-risk metric. Risks of
the proposed Stein estimation are related to those of the oracle strategy via a set of concentra-
tion inequalities on the conditional measures. This leads to a theory of simultaneous recovery
which gives a precise account of the shrinkage and extends seamlessly to the case of unknown
variance. In Section 3, we make the connection to the functional data model (4) through Le
Cam asymptotic equivalence and extrapolate our recovery theory to more general correlation
settings that one might encounter in practice. In Section 4, we first present a simulation study
to support the recovery method and its theoretical properties in the setting of multiple GSMs;
then we demonstrate its performance and computational gains by using the phoneme data set
(Hastie et al., 1995). The computer code and data for reproducing the results are available from
http://www.utstat.utoronto.ca/fyao/GSM-FDA-code.zip. We conclude in Sec-
tion 5 with discussion on potential application to other statistical problems that may deserve
further investigation, such as multiple-change-point detection for penal data. For brevity, we
collect proofs of all theoretical results and some additional simulation results in the on-line
supplementary material.

2. Multiple Gaussian sequences and Stein estimation

2.1. Problem setting and objective
Before moving forwards, we outline some notation that is used throughout. For a function
f :D→R, mapping some domain D into R, we let supp(f ) denote the support of f , i.e. supp.f/=
{x ∈D : f.x/ 	= 0}. We let ‘⊥’ denote statistical independence, .x/+ = max.0, x/ for x ∈ R and,
for x ∈ Rm with positive components, we let x.j/ denote the non-increasing order statistics of
the co-ordinates, such that x.1/ � x.2/ �: : : � x.m/. For n
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across i for given k. A common model in the non-parametric literature on GSMs (1) takes
λ

−1=2
k θk ∼IID N.0, 1/ independent of zk, with λk = 2αk−.2α+1/ and α> 0. We use this as our

model for GSMs (4), with θ1k, : : : , θnk ∼IID θk independent of the zik, but relax the variance
decay to

λ.k/ ∝k−.2α+1/, k �m,

λk ∝k−.2α+1/, k>m:
.6/

Thus the bulk of each signal is contained in the first m co-ordinates, but the location and
ordering of sizable effects are unknown a priori. We give a graphical demonstration in Section
4.1 showing that this relaxation is suitable for modelling functions with striking local features
from a smoothness perspective in a similar manner to wavelet estimation in non-parametric
regression (Donoho and Johnstone, 1994). In what follows, we let Ei.·/=Eθi

.·/=E.·|θi/ denote
expectation conditional on the ith effect.

Remark 1. The regularity setting (6) can be regarded as randomization of weak lp decay
conditions (up to m) with their origin in Donoho (1993) who noted that they are closely related
to Besov smoothness in the context of wavelet coefficients. Standard properties of Gaussian
variables lead to

max
k

k1=p|θ|.k/ �max
k

k1=p−.α+1=2/ log.1+k/1=2,

and so we are in every weak lp-space for p > 2=.2α+ 1/, with |θk|= log.1 + k/1=2 lying in p =
1=.2α+ 1/, where a rigorous argument is given in the on-line supplementary material. These
spaces are known to form important generalizations of the traditional Hölder and Sobolev type
of smoothness spaces. As discussed in Donoho (1993) and Candes (2006), once a suitable basis
has been specified, such decay conditions set the frontier of statistical recovery at non-linear
approximation spaces.

Remark 2. We assume a centred model (5) for functional data that corresponds to mean 0
GSMs (4), as research in FDA mostly focuses on characterizing random realizations and covari-
ance structure of an underlying process. Estimation of the mean function is usually considered
an easier task by standard means of non-parametric regression, such as kernel type (Yao et al.,
2005; Li and Hsing, 2010) or spline type (Ramsay and Silverman, 2005) smoothing which attains
a univariate convergence rate that is asymptotically negligible relative to simultaneous recovery
or covariance estimation. Hence the methodology proposed can be applied by subtracting the
estimated mean function (or simply the cross-sectional mean when observed on a common grid).

We now relate simultaneous recovery of θi = .θik/k∈N, for i=1, : : : , n, to an oracle framework.
Let E.·|θi/=Eθi

.·/=Ei.·/ denote conditional expectation and define the conditional l2-risk of
an estimator θ̂i by

Ri,m.θ̂i/
Δ=Ei‖θi − θ̂i‖2

l2
: .7/

Our goal is to devise an estimation strategy {θ̂i}i�n that is faithful to the effects {θ}iθn
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a factor of the optimal average risk attained by the linear oracle θ̂
o,a
ik = λkYik=.λk + σ2=m/,

i.e. E‖θi − θ̂
o,a
i ‖2

l2
= Σ∞

k=1.λk=m/=.λk + 1=m/ ∝ m−2α=.2α+1/. We show in Section 2.3 that the
conditional risks of this linear oracle, RÅ

i,m =Δ Ei‖θi − θ̂
o,a
i ‖2

l2
, can be controlled uniformly near

its average. From this perspective, no procedure can do significantly better than θ̂
o,a
ik which is rate

optimal among diagonal linear rules. Further, these rules are known to perform within a small
factor of the minimax optimal estimators over a broad range of parameter spaces (Donoho
et al., 1990). Such considerations motivate the search for recovery strategy θ̂i performing as well
as the average case oracle θ̂

o,a
i .

2.2. Stein estimation motivated by conditional concentration
The main idea guiding this paper is that models that are generated by similar experiments put
us in an empirical-Bayes-type setting where information pooling improves estimation. In this
setting, concentration of measure can be used to guide design of estimators and to quantify how
information pooling improves estimation measured by risks conditioned on the effects. For the
moment we take σ2 =1, treating the case of unknown variance in Section 2.6. Note that the aver-
age case oracle θ̂

o,a
ik can be written equivalently as θ̂

o,a
ik = [1− .n=m/={n.λk +1=m/}]+Yik: Thus,

when the relative error that is incurred in approximating n.λk +σ2=m/ by ‖Y·k‖2 is sufficiently
small, it is natural to consider standard (positive part) Stein estimation

θ̂
S
ik =

{
βmn,kYik, k �m

0, k>m
βmn,k =

(
1− n=m

‖Y·k‖2

)
+

: .8/

Similar ideas have been employed in the non-parametric setting (2) by Cai (1999), Cavalier and
Tsybakov (2002) and Zhang (2005) from different perspectives.

In this and the next subsection, we explore the intuition and theory to arrive at the proposed
Stein estimation strategy that is different from expression (8),

θ̂
RS
ik =

{
αmn,kYik, k �m

0, k>m
αmn,k =

{
1− [1+2

√{12 log.m/=n}]
n=m

‖Y·k‖2

}
+

: .9/

We begin with a new concentration of measure result, conditional on the effects, which is used to
assess the relative error of approximating n.λk +σ2=m/ by ‖Y·k‖2; see the on-line supplementary
material for its proof. For δ∈ .0, 1/, we consider collections of arrays whose components satisfy
norm constraints indexed by δ. Specifically, given λ1, : : : ,λm, define the sets Ak,δ, k =1, : : : , m,
and Am

δ by complement as follows:

Ac
k,δ ={.1− δ/n.λk +1=m/�‖Y·k‖2 � .1+ δ/n.λk +1=m/} .10/

and set A
m,c
δ =∩k�mAc

k,δ. Denote λ= .λ1,λ2, : : :/ and Pi.·/=P.·|θi/.

Lemma 1. Consider multiple GSMs (4) with the decay assumption (6), for all δ∈ .0, 1
2 / and

i=1, : : : , n: we have

Pi.Ak,δ/�3 exp.δ‖θ2
i =λ‖m,∞/exp.−nδ2=6/, .11/

Pi.A
m
δ /�3 exp.δ‖θ2

i =λ‖m,∞/exp{−nδ2=6+ log.m/}: .12/

This result inspires different Stein estimates (8) and sets the stage for bounding the conditional
risks of the estimator proposed. Intuitively, for ‘most’ effects, it is seen that ‖θ2

i =λ‖2
m,∞ ≈

2 log.m/. Thus, if mγ1 �n�mγ2 for any γ2 �γ1 >0, taking δ2 =C log.m/=n with C>6 guarantees
that the conditional probabilities in inequality (12) are small while δ→0 as m, n→∞.
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To understand the behaviour of the traditional Stein estimate (8) in multiple GSMs, note that
‖Y·k‖2 ∼ .λk + 1=m/χ2.n/ with E‖Y·k‖2 = n.λk + 1=m/. Since λk ∝ k−.2α+1/ tends to 0 quickly,
once k > m1=.2α+1/ the signals decay rapidly below the noise level and in this range ‖Y·k‖2 ≈
χ2.n/=m. On the basis of this intuition, we expect approximately half of the {‖Y·k‖2}k�m to ex-
ceed n=m with corresponding standard Stein weights βmn,k >0. However, given the fast decay of
λk, we expect that only of the order of m1=.2α+1/ of the {Yik}k�m contain sizable signals, whereas
the rest mainly contain noise. Further, when the norms fluctuate within the regime of high prob-
ability and λk � 1=m, many of the ‖Y·k‖2 ≈ .1 + δ/n.λk + 1=m/, with δ=√{C log.m/=n}. This
gives

∣∣∣∣βmn,k − λk

λk +1=m

∣∣∣∣
/ λk

λk +1=m
≈ δ

mλk
,

which can be arbitrarily large because of the rapid decay of λk. In other words, we do better by
forcing most βmn,k to 0 to mimic the oracle weights in the range λk �1=m.

This motivates a different Stein threshold in expression (8). Note that, on the event A
m,c
δ ,

we have ‖Y·k‖2 � .1 + δ/n.λk + 1=m/. Thus for λk � 1=m, i.e. k  m1=.2α+1/, we expect that
‖Y·k‖2 � .1 + δ/n=m < .1 + 2δ/n=m. In the light of this, we propose to lift the threshold level
to .1 + 2δ/n=m to force most weights in this range to 0, which leads to the new Stein weights
αmn,k = [1−{.1+2δ/n=m}=‖Y·k‖2]+ for k �m. The effect of δ on estimation quality is precisely
quantified in an extended version of theorem 2, presented in the on-line supplementary material,
which suggests the explicit form (9). Since lemma 1 guarantees that, conditionally on the effects
θi, the events A

m,c
δ encompass most of the probability space with the right choice of δ→ 0,

we expect that the strategy proposed retains only important signals and forces the rest to zero,
leading to desired model parsimony.

2.3. Adaptive conditional risks of simultaneous recovery
On the basis of lemma 1 we can derive a new oracle inequality that relates the componentwise
conditional risks of the Stein estimates θ̂

RS
ik to those attainable by the oracle strategy θ̂

o,a
ik . The

derivation is given in the on-line supplementary material, employing techniques of technical
interest for assessing Stein or other shrinkage estimates in similar settings. Denote the compo-
nentwise conditional risks of the oracle strategy θ̂

o,a
ik by RÅ

i,m.k/=Δ Ei.θik − θ̂
o,a
ik /2, where simple

calculation yields

RÅ
i,m.k/= λkσ

2=m

λk +σ2=m
+ σ4=m2

λk +σ2=m
.θ2

ik −λk/, .13/

whereσ2 =1 is written explicitly for generality, and isometry gives RÅ
i,m =Σ∞

k=1RÅ
i,m.k/. Similarly,

for any estimator θ̂i, denoting Ri,m.θ̂i, k/=Ei.θik − θ̂ik/2 gives Ri,m.θ̂i/=Σ∞
k=1Ri,m.θ̂i, k/.

Theorem 1. Consider multiple GSMs (4) with the decay assumption (6), for i=1, : : : , n and
k =1, : : : , m:

Ei.θik − θ̂
RS
ik /2 =RÅ

i,m.k/+ eik, .14/

where RÅ
i,m.k/ = �61 Tf
1.4018Fθ

RSik�
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where Cδ =3.6+ δ/=.1− δ/ and C =√
24+4

√
12 are bounded and Pi.A

m
δ / satisfy the proba-

bility bounds in inequality (12).

This oracle inequality sets the theoretical basis for evaluating the conditional risks of simul-
taneously recovering the effects {θi}i�n. Note that the componentwise conditional oracle risks
RÅ

i,m.k/ differ from the optimal avarage risk by random perturbations. When we sum these risks
to obtain RÅ

i,m, the decay condition on λk (6) with concentration argument ensures that can-
cellations keep RÅ

i,m of the same order of the average risk. For brevity we provide a condensed
version of our theorem quantifying the maximal conditional risks, which shows that the pro-
posed recovery strategy adapts to the average case oracle. An expanded version and its proof
are given in the on-line supplementary material.

Theorem 2. Consider multiple GSMs (4) with the decay assumption (6), and suppose that
n, m→∞ with mγ1 �n�mγ2 for any γ2 �γ1 > 0. Then

max
i�n

RÅ
i,m ={1+oa:s:.1/}

∞∑
k=1

λk=m

λk +1=m
∝m−2α=.2α+1/, i=1, : : : , n: .16/

Further, the conditional risks Ri,m.θ̂
RS
i /=Ei‖θi − θ̂

RS
i ‖2

l2
adapt simultaneously to the oracle

risks RÅ
i,m for any choice of κ�2 with δ=√{4.κ+1/ log.m/=n}→0:

max
i�n

Ri,m.θ̂
RS
i /=RÅ

i,m =1+oa:s:.1/: .17/

It follows from the expanded version of theorem 2 in the supplementary material that, without
prior knowledge of the α governing decay of the {λk}k∈N, κ=2 is the smallest value such that
maxi�n ei = o.m−2α=.2α+1// almost surely, which yields an explicit form of the Stein estimates
defined in expression (9).

2.4. Risk comparisons with individual blocking
To appreciate the advantages of information pooling by the method proposed, we compare
with the risk performance of standard ‘pathwise’ blocking estimators that use the data from
that individual only, in the context of multiple GSMs; see Tsybakov (2009) and Johnstone
(2015) for details. To construct a pathwise blocking Stein estimate, given an increasing sequence
of numbers in [m]={1, : : : , m}, 1� j1 <j2 <: : :<jKm =m with Km →∞ and setting j0 =0, we
form a partition of [m] into blocks B = {B1, : : : , BKm}, where Bk = {jj−1 + 1, : : : , jk}. Denote
the cardinality of the kth block by |Bk| and set aBk

= .ajk−1+1, : : : , ajk
/T for a∈Rm; one estimates

the components of the kth block by Stein shrinkage,

θ̂i,Bk
=

(
1− |Bk|=m

‖Yi,Bk
‖2

2

)
+

Yi,Bk
, .18/

and correspondingly θi by θ̂B
i = .θ̂i,B1 , : : : , θ̂i,BKm

, 0, : : :/T, with the conditional risks denoted
by Ri.θ̂

B
i /=Δ Eθi

‖θi − θ̂B
i ‖2

l2
:

Theorem 3. Consider multiple GSMs (4) with the decay assumption (6), and suppose that
n, m → ∞ with mγ1 � n � mγ2 for any γ2 � γ1 > 0. For any blocking scheme B satisfying
Km =o{m1=.α+1=2/= log.m/} and containing at most O{log.m/} blocks of size less than log.m/,
the blocking estimator (18) cannot outperform the average case oracle. The lower bound of
the conditional risks is given by
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min
i�n

Ri.θ̂
B
i /�{1+oa:s:.1/}

∞∑
k=1

λk=m

λk +1=m
∝m−2α=.2α+1/:

Further, in this setting, when Km =o{m1=.2α+1/= log.m/} and α� 1
2 , there are always permu-

tations of .λ1, : : : ,λm/T under which θ̂
B
i performs poorly such that Ri.θ̂

B
i /  m−2α=.2α+1/

with high probability for each i=1, : : : , n.

Standard blocking schemes, such as dyadic and weak geometric systems, satisfy conditions in
theorem 3 and have a fundamental limit at performance of the average case oracle. The crucial
drawback of these blocking estimators is that they require knowledge of the decay ordering, as
there must be some block of size at least m2α=.2α+1/ log.m/. If a permutation places too many
large effects in this block, then, with high probability, the realized effects will be larger than
|B|=m�m−1=.2α+1/ log.m/, resulting in a crude lower bound m−1=.2α+1/ log.m/m−2α=.2α+1/.
This provides rationale for not pooling across indices k in this setting (e.g. Cai (1999) and Zhang
(2005)), because performance of these strategies relies on coefficients in a given block being of
similar size, which generally requires an implicit assumption on the decay. Although pooling
over k would alleviate the condition n�mγ1 in the case of standard decay, λk ∝k−.2α+1/, in the
more general setting λ.k/ ∝ k−.2α+1/ such strategies can be highly suboptimal. Nevertheless, it
remains an open question whether pooling over the experiments i=1, : : : , n is strictly necessary,
which deserves further investigation.

2.5. Robustness guarantee in minimax sense
To provide a robustness guarantee for the Stein estimates (9) in a minimax sense, we specify a
sequence of parameter spaces which account for the increasing number of experiments that we
need to control. When we restrict to the first m coefficients of the {θi}i�n, it is reasonable to
expect that these decay at the order of

√{λk log.mn/}, which suggests the scaling of the spaces.
Thus we fix a, b> 0 and define

Amn,k.λk/={
x∈ l2 : x2

k=λk �a log.mn/
}

, Bmn,k.λk/={
x∈ l2 : x2

k=λk �b log.nk/
}

,

Amn.λ/=
⋂

k�m

Amn,k.λk/, Bmn.λ/=
⋂
k>m

Bmn,k.λk/, Θmn.λ/=Amn.λ/
⋂

Bmn.λ/:

Then, with proper choices of a and b, one can guarantee that eventually all the θik lie in Θmn.λ/

and this becomes void if we substantially shrink the space. As a benchmark, we calculate the
classical minimax risk,

Rm{Θmn.λ/}∝m−2α=.2α+1/ log.mn/1=.2α+1/,

which follows from the fact that the Θmn.λ/ are hyperrectangles and the bounds for minimax
rates over these geometric regions given by Donoho et al. (1990). Theorem 2 indicates that our
estimation strategy recovers the ‘within-sample’ signals θi simultaneously below the minimax
risk over a sequence of parameter spaces which ‘just’ contains them. In the next theorem, we
quantify the probabilistic assertion {θi}i�n ⊆Θmn.λ/ and provide a robustness guarantee to
deviations from the distributional assumption in the following minimax sense. Suppose that we
are given a fixed θÅ ∈Θmn.λ/ and noisy observations on θÅ corresponding to model (1):

YÅ
k =θÅk +m−1=2zÅ

k , k ∈N,

independent of {Yik}i�n. Then we may construct an estimate θ̂
ÅRS

by using the weights αmn,k
(9) calculated from {Yik}i�n via θ̂

ÅRS
k =αmn,kYÅ

k . The following theorem asserts that the largest
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risk that we incur by this procedure comes within a logarithmic factor of the minimax risk over
Θmn.λ/.

Theorem 4. Consider multiple GSMs (4) with the decay assumption (6), and suppose that
n, m→∞ with mγ1 �n�mγ2 for any γ2 �γ1 > 0.

(a) It holds that maxi�n ‖θ2
i =λ‖m,∞ = {1 + oa:s:.1/} × 2 log.nm/; thus, if a < 2, eventually

some θi 	∈Θmn.λ/. Further, for any a > .γ1 + 2/=.γ1 + 1/ and b > .2γ1 + 3/=.γ1 + 1/, we
have θ1, : : : , θn 	∈Θmn.λ/ only finitely often.

(b) Let θ̂
ÅRS

denote the procedure that was outlined above, and Rm.θ̂
ÅRS

/ = EθÅ‖θÅ −
θ̂

ÅRS‖2
l2

for any θÅ. Then we have

sup
θÆ∈Θmn.λ/

Rm.θ̂
ÅRS

/∝ log.mn/2α=.2α+1/Rm{Θmn.λ/}:

By coupling the arguments in the proofs of theorem 2 and theorem 4 in the on-line supple-
mentary material, we also see that, if {θn+1, : : : , θn+N} are independent draws from the same
GSM (4) with mγ1 �N �mγ2 , owing to information pooling over {θ1, : : : , θn}, we have, almost
surely,

max
j�N

Eθn+j
‖θn+j − θ̂

RS
n+j‖2

l2
∝m−2α=.2α+1/ =o[Rm{Θmn.λ/}],

where θ̂
RS
n+j are obtained by applying αmn,k (9) calculated from {Yik}i�n to the noisy sequence

{Yn+j,k}k�m via θ̂
RS
n+j,k =αmn,kYn+j,k. Moreover, part (a) in theorem 4 applies to various weakly

dependent variables (e.g. Pickands (1969)) and part (b) holds regardless of dependence struc-
tures, which can be seen from its proof.

2.6. The case of unknown variance
We now consider the case of unknown variance σ2 in multiple GSMs:

Yik =θik +σm−1=2zik, i=1, : : : , n, k ∈N,

with the goal of maintaining the risk properties of the proposed Stein estimates while using a
data-based estimator σ̂2. Variance estimation has been extensively studied in non-parametric
regression (2), mostly based on localized squared residuals (Hall and Carroll, 1989; Hall and
Marron, 1990; Fan and Yao, 1998) or difference sequences (Müller and Stadtmüller, 1987; Hall
et al., 1990; Brown and Levine, 2007), among many others. It is rarely discussed in the GSM
(1) which mainly serves as a theoretical device to study non-parametric regression problems. A
relevant case is robust estimation using the median of the finest scale coefficients in a wavelet-
transformed model (Donoho and Johnstone, 1994). In the multiple GSMs model (4), we propose
a natural means of estimating σ2, based on concentration of measure.

Derivation of the key oracle inequality of theorem 1 relies on the sets Ac
k,δ containing most

of the probability mass. In the case of unknown variance, the definitions extend to

Ac
k,δ ={.1− δ/.λk +σ2=m/�‖Y·k‖2=n� .1+ δ/.λk +σ2=m/},

and A
m,c
δ = ∩k�mAc

k,δ. Conditional concentration of measure guarantees that the probability
bounds in lemma 1 continue to hold; thus these sets capture ‘most’ realizations. Let Qm

p .·/, p∈
.0, 1/, denote the quantile function retrieving the element in a vector x∈Rm that is greater than
or equal to pm elements. Then on A

m,c
δ , denoting λm = .λ1, : : : ,λm/T and ‖Ym‖2 = .‖Y·1‖2, : : : ,

‖Y·m‖2/T,
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.1− δ/{Qm
p .λm/+σ2=m}�Qm

p .‖Ym‖2=n/� .1+ δ/{Qm
p .λm/+σ2=m}:

If p is fixed, by the decay assumption (6), we have Qm
p .λm/�{.1−p/m}−.2α+1/, i.e. mQm

p .λm/∝
m−2α. Hence, on Ac

δ for some 0 <c�C,

.1− δ/.σ2 + cm−2α/�mQm
p .‖Ym‖2=n/� .1+ δ/.σ2 +Cm−2α/:

This motivates an estimator of σ2 with small relative error on sets of high probability:

σ̂2
p =mQm

p .‖Ym‖2=n/: .19/

Further, we show that this holds for any p satisfying {.1 − p/m}−.2α+1/ = o.m−1/. Thus we
may let p vary to reveal an interesting phenomenon stated in the following theorem, with the
proof deferred to the on-line supplementary material. To state the theorem more precisely, for
p∈ .0, 1/, we take σ̂2

p =mQm
p .‖Ym‖2=n/ and amend the Stein weights in expression (9),

αmn,k.σ̂2
p/=

[
1− [1+ .qδ +2/

√{12 log.m/=n}]
nσ̂2

p=m

‖Y·k‖2

]
+

, .20/

where qδ = .1 + 2δ/=.1 − δ/ � 1 and δ=√{12 log.m/=n}. Corresponding estimates are formed
as θ̂ST

ik .σ̂2
p/=αmn,k.σ̂2

p/Yik for k �m and 0 otherwise.

Theorem 5.
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In the case of L2-recovery, these are equivalent to the multiple GSMs (4) when projected onto
the Karhunen–Loève (KL) basis (i.e. eigenfunctions) of the covariance function C =E.f ⊗f/.
Noting that the variances of the effects, λk, are non-deceasingly ordered eigenvalues in this
setting, the decay condition λk ∝ k−.2α+1/ in expression (6) is satisfied under fairly general
assumptions. For instance, it is sufficient that C satisfies the Sacks–Ylvisacker conditions of
order r =α− 1

2 �0 (Ritter et al., 1995).
We see that, to apply the proposed recovery strategy to functional data, an obstacle is the

unknown KL basis. Although this basis may be estimated from data, it is not our purpose
to employ traditional functional principal component procedures, which are computationally
expensive and introduce data-dependent uncertainty. Instead, we further extend the proposed
Stein estimates and their theoretical guarantees to more general settings where the effects θik

may be correlated across k. This allows projection of the white noise models (21) onto other
bases, such as wavelet or Fourier, provided that the correlation between projected coefficients
satisfies some mild conditions.

Besides theoretical advantages, a major benefit of recovering functional data by GSMs is
potentially significant computational savings. Typical presmoothing (Ramsay and Silverman,
2005) or post-smoothing (Yao et al., 2005) of individual functions for estimation of covariance–
eigenstructure operates with O.nm2 +m3/ complexity for common design, which scales poorly
with data, and O.n3m3/ complexity for random design, which is intractable for large data sets.
A recent proposal by Xiao et al. (2016) dealing with covariance estimation for functional data
in common design settings using penalized splines operates at the order of O.nm1+ρ/, where
0 <ρ�1 depends on smoothness. In contrast, by our method we can take advantage of trans-
forms, such as fast wavelet or Fourier transforms, to obtain recoveries in O{nm log.m/} time
with spatial (or frequency) adaptation which capture striking features (Donoho and Johnstone,
1994), such as those illustrated in Fig. 1(b) in Section 4.1 later. A simple calculation indicates
that our recovery strategy retains at most

dÅ � [m
√{n= log.m/}]1=.2α+1/

non-zero weights with high probability. We may in turn run principal components analysis
on these at O.nd2

Å + d3
Å/ cost to attain estimates of the covariance–eigenstructure. The entire

procedure may then potentially scale at O{nm log.m/}. Further, our method may be employed
in an on-line algorithm fashion: a new curve comes in; transform is performed; threshold weights
are updated. This could potentially extend the FDA applications to realtime data collection and
processing.

3.1. Review of Le Cam equivalence for non-parametric experiments
We begin with the notion of Le Cam equivalence that was used in Brown and Low (1996), Brown
et al. (2002) and Reiß (2008), following an amalgam of notation from these sources. Denote
two sequences of experiments by standard probability triples, indexed by an identical parameter
space Θm, changing with m (or n), by

Em ={.X m
1 , Bm

1 , Pm
1,θ/, θ∈Θm},

Gm ={.X m
2 , Bm

2 , Pm
2,θ/, θ∈Θm}:

Given randomized decision rules, δi, i= 1, 2, on a common action space A and loss functions
L=Lm :Θm ×A→ [0, ∞/, the corresponding risks, Ri.δi, L, θ/=EPm

i,θ
{L.δi, θ/}, take the form
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With the pseudonorm ‖L‖= sup{L.θ, a/ :θ∈Θm, a∈A}, the experiments Em and Gm are con-
sidered asymptotically equivalent in the Le Cam sense as m→∞, if

Δ.Em, Gm/ :=max
{

inf
δ1

sup
δ2

sup
θ∈Θm,‖L‖=1

|R1.δ1, L, θ/−R2.δ2, L, θ/|,

inf
δ2

sup
δ1

sup
θ∈Θm, ‖L‖=1

|R1.δ1, L, θ/−R2.δ2, L, θ/|
}

→0: .22/

To unify results on equivalence for fixed and random designs of non-parametric experiments,
we need to introduce some background and notation on piecewise constant approximations. For
a given positive integer k, let Ik,j = [j=k, .j + 1/=k/ for j = 0, : : : , k − 2 and Ik,k−1 = [1 − 1=k, 1]
so that the Ik,j form a partition of [0, 1]. Let φk,j = k1=21Ik,j , such that for a given k these
functions form an orthonormal basis for the subspace Sk of L2[0, 1] consisting of functions
that are constant on each of the Ik,j. The functions Hl,j =2−l=2.φ2l+1,2j −φ2l+1,2j+1/, l�1 and
k =0, : : : , 2l −1, together with H0,0 =1[0,1], form the orthonormal Haar wavelet basis of L2[0, 1]
and wl,j.f/=〈f , Hl,j〉 the Haar wavelet coefficients for a function f ∈L2[0, 1]. We introduce a
class of norms defined on the Haar wavelet coefficients, for a given α> 1

2 ,

‖f‖.α/ =
{ ∞∑

k=0
22kα

2k−1∑
l=0

w2
k,l.f/

}1=2

,

which are closely related to a specific instance of Besov norms and provide a generalization of
various types of smoothness, e.g. Hölder continuity or Sobolev smoothness. With these norms
in place, we define the parameter spaces of interest. For some Bn →∞, we take

Θm ={f ∈L2[0, 1] :‖f‖.α/ <Bm}:

Now let Fm and Rm denote the non-parametric experiments in model (2) for fixed and random
designs respectively, and let Wm denote the white noise model (3), as f ranges over Θm. The
following lemma provides a generalization of existing results that may be applied to functional
data models; see the on-line supplementary material for its proof.

Lemma 2. For fixed and random designs of the non-parametric experiments (2), we have a
unified bound on the Le Cam distance

max{Δ.Fm, Wm/, Δ.Rm, Wm/}�B2
mm−.2α−1/=.2α+1/:

Consequently, if Bm =o.m.2α−1/=.4α+2//, we have the asymptotic equivalence in Le Cam sense
between the non-parametric model (2) under both designs and the white noise model (3).

3.2. Functional data and white noise representations
Given a single function f as a realization of a sufficiently smooth stochastic process, we may
form the non-parametric regression experiment yi = f.xi/ + zi and corresponding white noise
model Y.dt/=f.t/dt +m−1=2W.dt/, i=1, : : : , m. It is not obvious that we may approximate the
random variables Ef {L.f , ·/} from one model by those from the other as m → ∞. Modulo
proper assumptions on the smoothness of f , this is indeed possible and can be shown by using
Le Cam equivalence theory for fixed functions, e.g. lemma 2 from above. Intuitively, this works
because, for reasonable stochastic processes, the smoothness of f measured in ‖ · ‖.α/ has null
probability of growing sufficiently fast as m→∞ to dominate the convergence rate of Le Cam
equivalence of the experiments over Θm. By extension, it is not obvious that, given n non-
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parametric regression models sampled atm points generated from the functional data model (5),
the risks Efi{L.fi, ·/}, i=1, : : : , n, from the non-parametric regression models are approaching
those from the corresponding white noise models (21).

Recall that n and m are asymptotically linked through the constraint mγ1 � n � nγ2 . The
main appeal of lemma 2 is that proving bounds on wavelet coefficients |wl,j.f/| under various
smoothness constraints that are commonly used in practice is a relatively simple task, whereas
in FDA smoothness constraints are typically imposed through moment conditions on a norm
‖f‖Å which often dominates ‖f‖.α/ for some α> 1

2 . If the growth of the norms maxi�n ‖fi‖Å

can be controlled almost surely by a Bm satisfying the conditions of lemma 2, we may construct
a Θm over which we have Le Cam equivalence between the experiments of the previous section
while ensuring that eventually f1, : : : , fn ∈Θm. This means that for any estimator δ1 in the non-
parametric regression experiment there is an estimator δ2 in the white noise model, and vice
versa, so that eventually

max
1�j�n

sup
‖L‖�1

|R1.δ1, L, fj/−R2.δ2, L, fj/|� sup
f∈Θm

sup
‖L‖�1

|R1.δ1, L, f/−R2.δ2, L, f/|

�B2
mm−.2α−1/=.2α+1/ =o.1/:

As this allows for randomized estimators, we are guaranteed that we can model functional data
(5), under risks Efi{L.fi, ·/}, by the corresponding risks under white noise models (21), and vice
versa. This follows on noting that Efi.·/=E.·|fi/ is the expectation that averages over all data
in j 	= i experiments and the noise in the ith experiment, and thus any estimator which pools
over j =1, : : : , n may be viewed as a randomized estimator with respect to Efi . We first provide
a useful lemma and some concrete examples and then summarize in a general theorem.

Lemma 3. Suppose that f ∈L2[0, 1] has a generalized derivative f ′ ∈L2[0, 1]. Then w2
0,0.f/�

‖f‖2
2 and, for k �1, l=0, : : : , 2k −1, the Haar wavelet coefficients obey the decay

w2
k,l.f/�2−2k

∫
Ik, l

|f ′.s/|2ds:

Consequently, ‖f‖.α/ <∞ for any α∈ . 1
2 , 1/ and may be bounded by a factor of ‖f‖2 +‖f ′‖2

which may, in turn, be bounded by a factor of |f.0/|+‖f ′‖2.

On the basis of lemma 3 and the discussion above, if the growth of the norms maxi�n.‖fi‖+
‖f ′

i ‖2/ can be controlled almost surely by m−.2α−1/=.2α+1/, we may construct a Θm over which we
have Le Cam equivalence between the experiments while ensuring eventually f1, : : : , fn ∈Θm.

3.2.1. Example 1
A general method for forming processes is to smooth white noise by integrating against a kernel.
Regularity assumptions on the underlying kernel result in regularity of the sample paths. As a
concrete example, suppose that all second-order partial derivatives of R : [0, 1]2 →R exist and are
of bounded variation with either argument taken as fixed. Define the process f on [0, 1] by f.s/=∫ 1

0 R.s, t/B.dt/, whereB is Brownian motion. First note that f (0) is Gaussian with mean 0 and, by
Ito isometry, variance

∫ 1
0 R2.0, t/dt, which gives maxi�n |fi.0/|� log.m/1=2 almost surely under

the assumptions on n andm. Further, the assumptions onR allow us to integrate by parts f ′.s/=
B.1/@sR.s, 1/−∫ 1

0 B.t/@sR.s, dt/. Denoting the variation of a function g by V.g, [0, 1]/ gives

‖f ′‖∞ � sup
0�s�1

[|@sR.s, 1/|+V {@sR.s, ·/, [0, 1]}] sup
0�t�1

B.t/:
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If the first supremum term is bounded, the reflection principle puts sub-Gaussian tails on ‖f ′‖∞.
Hence, for a sample f1, : : : , fn ∼IID f , we have maxi�n ‖f ′

i ‖∞ � log.m/1=2, almost surely. Since
m−.2α−1/=.2α+1/ log.m/ = o.1/ for any choice of α∈ . 1

2 , 1/, lemma 2 gives Le Cam equivalence
over Θm = Θm.α/ with Bm � log.m/1=2. Lemma 3 implies that ‖f‖.α/ � |f.0/| + ‖f ′‖2 which
is bounded by |f.0/| + ‖f ′‖∞. This guarantees that, in view of maxi�n.|fi.0/| + ‖f ′

i ‖∞/ �
log.m/1=2 almost surely; we eventually have f1, : : : , fn ∈Θm. Thus we may model the risks of
recovering the fi from functional data by white noise models. Sufficiently regular convolutions
fall under this model, which generalizes to processes formed by taking linear combinations of
this form.

3.2.2. Example 2
Slightly more general assumptions in the FDA literature include, for all C> 0,

max
j=0,1,2

E‖f .j/‖C
∞ <∞,

as in Hall et al. (2006). A weakening of this requirement which might be seen as a strengthening
of the condition in Cai and Yuan (2011) requires, for all C> 0,

max
j=0,1,2

E‖f .j/‖C
2 <∞:

Under these conditions, for any choice of α∈ . 1
2 , 1/ and a sample f1, : : : , fn ∼IID f , we have

max
i�n

.‖fi‖2 +‖f ′
i ‖2/=oa:s:.m

−.2α−1/=.2α+1//:

Thus, as in the previous example, we may model the risks of recovering the fi from functional
data by white noise models.

These examples indicate a general approach to establishing validity of white noise equivalence
for functional data, as stated in the following theorem with proof in the on-line supplementary
material, which includes the commonly adopted settings in the FDA literature as special cases.
Recall the general setting mγ1 �n�mγ2 for any γ2 �γ1 > 0, and the decay parameter α> 0 in
expression (6).

Theorem 6. Suppose that for a norm ‖ · ‖Å which dominates ‖ · ‖.α/ for some α∈ . 1
2 , 1/, as in

the examples above, the process f satisfies

P.‖f‖Å >x/� .1+x/−β ,

for some β>2.α+1/ max.1,γ2/=.2α−1/. Then we can model the recovery of functional data
in both fixed and random designs, by white noise models (23).

3.3. Recovery of functional data in general basis and extension to general decay
A remaining issue of applying the recovery strategy to functional data is that the multiple GSMs
(4) assume independence between θik across k, which corresponds to projecting white noise
models (21) onto the unknown KL basis of C=E.f ⊗f/. We elaborate that, for projections onto
other bases with the coefficients displaying to some extent decaying correlations, the recovery
results continue to hold modulo constants and yield estimators that are adaptive to the average
case oracle strategies.

We are now dealing with the case that the coefficients θik are projections of fi onto a given
basis ψk, θik =〈fi,φk〉. Given the independence across curves, the oracle inequality of theorem
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1 continues to hold and the main difficulty lies in generalizing the results of theorem 2 to deal
with dependence between the projected coefficients of the underlying process. Withλk =var.θik/,
set

Δm =diag.λ1, : : : ,λm/,
Σm = .cov.θij, θik//j,k�m,

Γm =Δ−1=2
m ΣmΔ−1=2

m :

⎫⎬
⎭ .23/

The matrix Γm provides termwise correlations between projected coefficients in the chosen basis,
{ψk}∞

k=1 and reduces to the identity for KL basis.
The following conditions are sufficient to guarantee that our procedure recovers θi at the

optimal rate.

Condition 1. The ordered variances λk =var.θik/ decay as λ.k/ ∝k−.2α+1/.

Condition 2. The correlations between θik decay sufficiently fast that

max
i�m

m∑
j=1

|Γm,ij|�Bm: .24/

with B2
m =O{m1=.2α+1/= log.m/p} for some p�2.

Remark 3. Regarding condition 1, it is known that covariance functions satisfying the Sacks–
Ylvisacker conditions of order r =α− 1

2 generate reproducing kernel Hilbert spaces lying within
a polynomial translation of the Sobolev space Hr+1.[0, 1]/. There are many comparable smooth-
ness classes which share similar decay when expressed in efficient bases. Thus it is reasonable to
expect that in such bases λ.k/ decay at the KL rate, which does not know the ordering a priori..k/
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∞∑
j=0

2j−1∑
k=0

cov.θjk, θpq/√{var.θjk/var.θpq/} �B:

3.3.2. Example 4: Sobolev reproducing kernel and smooth wavelet basis
Let Kr, r ∈N, be the reproducing kernel of order r, given by Kr.x, y/=A.x, y/+B.x, y/,

A.x, y/=
r∑

p=0

xpyp

.p!/2 ,

B.x, y/=
∫ min.x,y/

0

.x−u/r.y −u/r

.r!/2 du,

which is a polynomial of order 2r + 1 in x and y. This is the canonical example of covariance
structure for a process satisfying Sacks–Ylvisacker conditions of order r. Let f be a mean
0 Gaussian process with the covariance kernel Kr, and {ψjk}j,k be a compactly supported
wavelet basis orthogonal to polynomials of degree 2r + 1. The next proposition indicates that
the recovery holds for such processes with Bm � log.m/, noting the scales p� log.m/ in wavelet
bases.

Proposition2. In the setting outlined above, the covariance structure of the wavelet coefficients
θjk satisfies

cov.θjk, θj′k′/

2−.r+1/.k+k′/ =
{

0, supp.ψjk/∩ supp.ψj′k′/=∅,
O.2−.r+1=2/|k−k′|/, otherwise.

Consequently, for fixed p and q and some B> 0,

∞∑
j=0

2j−1∑
k=0

cov.θjk, θpq/√{var.θjk/var.θpq/} �B max.1, p/:

Remark 4. We expect that the above examples hold in greater generality. For instance, in
the stationary example, given the local nature of ψjk for general wavelet bases of L2[0, 1], it is
reasonable to expect that similar decay conditions are satisfied if f is taken as a ‘snapshot’ over
[0, 1] of a process over R corresponding to K of a locally stationary process as in Mallat et al.
(1998). Similarly, the derivation for Sobolev-type kernels extends to A(x, y) with reasonable
coefficients, and B(x, y) may be expanded to include integrals against more general functions
of u.

3.3.3. Example 5: Calderon–Zygmund and pseudodifferential-type integral operators and
sufficiently regular wavelet basis
More generally, in sufficiently regular wavelet bases {ψjk}j,k, integral operators C such as
Calderon–Zygmund and pseudodifferential type, which correspond to broad classes of covari-
ance structures, are known to satisfy decay conditions of the form

|〈ψjk, Cψj′k′ 〉|� 2−.r+1/.j+j′/ ×2−κ|j−j′|

[1+d{.j, k/, .j′, k′/}]γ
,

where d{.j, k/, .j′, k′/} = 2min.j,j′/|2−jk − 2−j′
k′|
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covariance structure of the wavelet coefficients θjk, and thus Bm � log.m/ with p � log.m/ in
wavelet bases.

Proposition3. In the setting outlined above, the covariance structure of the wavelet coefficients
θjk satisfies, for fixed p and q,

∞∑
j=0

2j−1∑
k=0

cov.θjk, θpq/√{var.θjk/var.θpq/} �p:

Further, if γ> 1 this bound is constant and independent of m.

We conclude this section by pointing out that the results of this paper can be extended to more
general decay settings. Denote by R the average oracle risk, R=R.m/=Σ∞

k=1.λk=m/.λk +1=m/:

The following conditions are needed for the method proposed to continue to hold.

Condition 3. The signal in the components larger than noise, λk > 1=m, dwarfs the operator
norm of the correlations, i.e. .mR/=‖Γ‖2 � log.m/2:

Condition 4. The bulk of signal components larger than noise, λk > 1=m, remain in the first
m components, i.e. Σk>mλk =o{R= log.m/}.

Condition 5. The risk is slowly varying in m so that R.m=δ/� δγR.m/ for some γ ∈ .0, 1/.

It is easy to verify that a more general decay k−.2κ+1/ �λ.k/ �k−.2α+1/ with λk slowly varying
for k �m and k−.2κ+1/ �λk �k−.2α+1/ for k>m, where 0 <α<κ, satisfies these conditions.

Theorem 8. Consider multiple GSMs (4) with conditions 3–5 holding, and suppose that
n, m →∞ with mγ1 � n � mγ2 for any γ2 � γ1 > 0. Then the method proposed continues to
adapt to the average case oracle, i.e. maxi�n Eθi

‖θi − θ̂i‖2
l2

=R=1+o.1/ almost surely.

4. Simulated and real data examples

In this section, we first report simulation experiments which highlight advantages of information
pooling in multiple GSMs. The performance of our recovery procedure is compared against the
linear oracle as well as individual blocking and soft thresholding estimators. Robustness to
deviation from distributional assumptions and model complexity associated with estimation
of σ2 are also examined, with results supporting our theoretical findings. We then apply the
proposed method to the phoneme data set that was studied in Hastie et al. (1995). Classification
performance and computational times of our method are compared against those attained by
common FDA methods based on pre- or post-smoothing individual functions.

4.1. Simulation studies
The simulated data are generated from the multiple GSMs with the first m effects,

Yik =θik +m−1=2zik, k =1, : : : , m, i=1, : : : , n, .25/

where zik ∼IID N.0, 1/, θik ∼ N.0,λj/⊥zik and two scenarios are considered. The first scenario
follows the model where variances λk are decreasing in k with Sobolev-type decay λk =λ.k/ =
2αk−.2α+1/. In the second scenario, we permute {λk}k�m uniformly at random and then generate
data from the model according to the permuted sequence. In each scenario, 1000 Monte Carlo
runs are performed for all combinations of sample sizes n =10,100,1000, sampling rates m =
50, 500, 5000 and decay speeds α= 2

3 and α= 1. The benchmark is the linear oracle θ̂
o,a
ik =
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λkYik=.λk +σ2=m/. For the method proposed, we calculate the Stein weights by using both true
and estimated variances, i.e. αmn,k in expression (9) with the true value σ2 = 1, αmn,k.σ̂2

min/ in
expression (20) with qδ in expression (5) and σ̂2

min = .m‖Ym‖2=n/.m/. To highlight advantages
of information pooling, we also compare with the ‘individual’ blocking and soft thresholding
estimators, denoted by θ̂

B
i and θ̂

ST
i respectively, using σ2 =1. Note that both methods use only

the data {Yik}k�m from the ith experiment to estimate the effects θi. Specifically, we use the
weakly geometric blocking scheme for θ̂

B
i and the threshold level

√{2 log.m/} for θ̂
ST
i . See

Tsybakov (2009) and Donoho and Johnstone (1994) for explicit formulae.
Shown in Table 1 are the average and maximal l2-errors over n recoveries, {‖θi − θ̂i‖2

l2
}i�n, for

both decreasing and permuted {λk}k�m by using different methods with the decay parameter
α= 2

3 . The results provide empirical evidence for the assertions in theorem 2 and demonstrate
the advantage of information pooling across experiments by our method, using both true and
estimated variance, even when the sample size is moderate at n = 100. It is expected that the
blocking method performs well for the case of decreasing {λk}k�m with a large sampling rate,

Table 1. Average and maximal l2-errors over n recoveries, {kθi � θ̂ik2
l2

}i�n, for both decreasing and per-
muted sequences of {λk}k�m using various methods, when the decay parameter αD 2

3 and the sampling
rate m varies

m Method Results (×102) for n = 10 Results (×102) for n = 100 Results (×102) for n = 1000

Average Maximum Average Maximum Average Maximum

Decreasing sequence { λk }k�m

50 Oracle θ̂
o,a
i 15.4 25.6 15.2 35.3 15.2 44.8

θ̂
RS
i .σ2/ 32.4 60.7 21.3 50.3 16.9 48.2

θ̂
RS
i .σ̂2

min/ 21.5 36.9 20.9 49.2 17.4 49.3

Block θ̂
B
i 21.5 37.2 21.4 51.1 21.4 64.7

Soft θ̂
ST
i 46.3 77.2 46.1 101 46.1 123

5000 Oracle θ̂
o,a
i 1.19 1.46 1.19 1.66 1.19 1.83

θ̂
RS
i .σ2/ 2.88 3.78 1.84 2.64 1.39 2.11

θ̂
RS
i .σ̂2

min/ 9.88 10.5 1.60 2.25 1.39 2.11

Block θ̂
B
i 1.58 1.99 1.58 2.28 1.58 2.54

Soft θ̂
ST
i 5.97 7.23 5.97 8.08 5.97 8.76

Permuted sequence { λk }k�m

50 Oracle θ̂
o,a
i 15.3 26.0 15.2 35.5 15.2 44.7

θ̂
RS
i .σ2/ 32.3 61.0 21.3 50.3 16.9 47.9

θ̂
RS
i .σ̂2

min/ 21.4 36.8 20.9 49.0 17.4 49.1

Block θ̂
B
i 73.0 182 70.0 320 71.1 475

Soft θ̂
ST
i 46.0 76.7 46.2 101 46.1 122

5000 Oracle θ̂
o,a
i 1.19 1.46 1.19 1.66 1.19 1.83

θ̂
RS
i .σ2/ 2.88 3.78 1.84 2.65 1.39 2.11

θ̂
RS
i .σ̂2

min/ 9.57 10.2 1.60 2.26 1.39 2.12

Block θ̂
B
i 53.7 146 53.7 270 51.5 376

Soft θ̂
ST
i 5.97 7.25 5.97 8.09 5.97 8.77
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for instance m = 5000, but degrades substantially when λk are randomly permuted. Although
soft thresholding is adaptive to permutation, it incurs much larger errors. Although variants of
procedures tuned by Stein’s unbiased risk estimation may fare better against ours, we consider
it fair to compare our tuning-free method using a universal threshold with those requiring
similar computation. The results of α=1 illustrate a similar performance pattern (which is not
reported) with overall smaller errors, as faster decay corresponds to smoother functions that
are easier to be recovered. To appreciate the adaptivity to permutation, we depict a realization
θi and its random permutation in Figs 1(a) and 1(b), expanded in a smooth wavelet basis,
specifically, the symlets of order 6, that is nearly symmetric with a minimum support size for
that order corresponding to the number of vanishing moments. It is evident that the function
corresponding to permuted effects exhibits striking local features and thus presents a more
challenging pattern for recovery from a smoothness regularity perspective. We also inspect
the robustness of the proposed method in the case of recovering new observations-generated
distributions that violate the Gaussian assumption. The results, which are reported in Table S1
of the on-line supplementary material, provide an empirical support to theorem 4.

It is of also interest to examine the influence of quantiles on the estimation of σ2 which
manifests in a trade-off between quality of recovery and model complexity. We use data of
size n = m = 100 for enhanced visualization with λk = 2αk−.2α+1/ and calculate recoveries of
{θi}i�n by Stein estimation (20) using σ̂2

p (19) over a range of percentages. From Fig. 1(c)
showing the pattern of maximal recovery error as a function of p, as dictated by theorem 5,
we observe an ‘elbow’-type transition from consistency to a sudden risk hike, when p exceeds a
certain threshold pÅ approaching 1. Together with Fig. 1(d) showing the corresponding model
complexity measured by the number of retained variables, we see that exercising caution in
choosing a larger p may be worthwhile for balancing model complexity and quality of recovery.

4.2. Application to phoneme data
We apply our recovery method to the phoneme data set that was studied in Hastie et al. (1995).
The data consist of n = 4509 equally spaced log-periodogram sequences of length m = 256
derived from continuous speech of male subjects. Each sequence of log-periodograms belongs
to one of the five categories: ‘sh’, ‘dcl’, ‘iy’, ‘aa’ and ‘ao’. To assess the classification performance,
we randomly split the data into a training sample of 1000 trajectories versus a testing sample of
3509 for each of 100 Monte Carlo iterations. In each run, we perform three procedures on the
training sample: penalized spline smoothing of individual functions (i.e. pre-smoothing; Ramsay
and Silverman (2005)) followed by eigendecomposition of covariance, denoted by RAMS; the
principal analysis through conditional expectation (PACE) method (Yao et al., 2005) based on
kernel smoothing to raw covariances formed from noisy data (i.e. post-smoothing); the proposed
Stein estimation in a smooth wavelet basis, denoted by STEIN. For recoveries by this method, a
periodized Battle–Lemarie wavelet system (spline based) with six vanishing moments was used.
Then a simple linear discriminant classifier is fitted in the reduced model spaces, the functional
principal component scores resulting from RAMS and PACE, and the coefficients retained
from our method. For a comprehensive comparison over various model dimensions, we train
the classification rules for the RAMS and PACE methods by retaining functional principal
component that explain 90%, 95% and 99% of total variance, whereas different percentages for
σ̂2.p/ are used in our method, specifically p=0:60, 0:70, 0:75, 0:80, 0:85, 0:90. Results in Table 2
show that, although classification by each method appears indistinguishable in its optimal case
and is also comparable with the benchmark in Hastie et al. (1995), our recovery method is seen
to be much more stable over different complexities.
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Table 2. Classification error CE based on 100 random partitions of phoneme data into
training (n D 1000) and testing (N D 3509) samples and model complexity determined by
the percentage p in σ̂2.p/ for the method proposed (STEIN), and by the total variance
explained, TVE, for the RAMS and PACE methods†

STEIN

Comparison of performance
σ̂2.p/ p = 0.60 p = 0.70 p = 0.75 p = 0.80 p = 0.85 p = 0.90
CE (%) 7.66 (0.32) 7.68 (0.33) 7.85 (0.38) 7.82 (0.35) 7.48 (0.30) 7.65 (0.30)

RAMS PACE

TVE 90% 95% 99% 90% 95% 99%
CE (%) 10.9 (0.36) 8.15 (0.46) 7.72 (0.31) 12.2 (0.60) 9.25 (0.33) 7.68 (0.33)

Comparison of computation time (min)
m = 512 m = 1024 m = 2048 m = 4096 m = 8192 m = 16384

STEIN 0.068 0.078 0.113 0.169 0.328 0.860
RAMS 0.108 0.240 0.664 3.76 26.5 221
PACE 6.95 30.2 98.9 426 — —

†The average computation time is for a full sample (n = 4509) of extrapolated data by adding
noise to recovered curves at increased sampling rates m.

To illustrate computational savings we use synthetic data, with recovered curves and estimated
variance σ̂2 used to extrapolate the original data to larger sampling rates m. To be specific, we add
noise following N{0, σ̂2.p/}with p=0:9 to the curves recovered by our method to generate larger
synthetic data sets with m = 512, 1024, 2048, 4096, 8192, 16384. We use the public MATLAB
packages at http://www.psych.mcgill.ca/misc/fda and http://www.stat.ucda
vis.edu/PACE for the RAMS and PACE methods with default selections for smoothing pa-
rameters, on a Macintosh Minicomputer with a 2.3 GHz Intel Core i7 chip and 8 Gbytes of
DDR3 random-access memory. The average computation times for one full sample of n=4509
reported in Table 2 indicates significant time savings for large m regimes by the method pro-
posed, which approximately agree with the computation complexity: O.nm2 +m3/ for RAMS,
O.nm2 +m6/ for PACE and O{nm+m log.m/} for our method. Note that the PACE method
is designed for sparse functional data with random design and thus encounters computational
challenges in dense designs when data are not binned before smoothing.

5. Potential application to other statistical problems

The statistical principles and mathematical techniques that are explored in this paper may be
lent to broad classes of problems involving information pooling across similar experiments. An
example is the change point problem that has been traditionally treated individually (Fryzlewicz,
2014, 2016). More recently, the change point problem has been considered in the context of panel
data where common structure lends strength to multiple-change-point detection (Cho, 2016).
We briefly outline a treatment of multiple change points for panel data through the lens of
multiple GSMs, which may deserve a further study.

Assume that the data consist of Yij = θij + zij, i = 1, : : : , n and j = 1, : : : , m + 1, with θij

varying independently across i (individuals) and being piecewise constant across j (time) with
T (unknown) change points at kl ∈{2, : : : , m+1}, l=1, : : : , T . At the unknown change points,
assume that the θij ∼N.0,λ/ are generated independently of each other and are also independent
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of the zij which are independent and identically distributed N.0, 1/. We difference the data to
form GSMs, denoting YÅ

ij =Yi,j+1 −Yij and similarly θÅij and zÅ
ij,

YÅ
ij =θÅij + zÅ

ij, i=1, : : : , n, j =1, : : : , m:

Note that θÅij =0 except at the unknown change points in which case θÅij ∼N.0, 2λ/ and zÅ
ij ∼IID

N.0, 2/. Thus we have ‖YÅ·j‖2 ≈ 2n.1 +λ/ for j ∈ {k1, : : : , kT } and 2n otherwise. Applying the
proposed Stein procedure to estimate θÅij, we find that θ̂

Å
ij are non-zero, with high probability,

at the locations satisfying

‖YÅ
·j‖2=.2n/> 1+2δ,

wheneverλ>.1+2δ/.1+δ/=.1−δ/−1=o.1/. Shown in Fig. 2 is an illustration of ‖YÅ
i· ‖2=.nσ̂2/

with n = 100, m = 64 and λ= 3 in a Monte Carlo sample, where we take the median σ̂2 =
n−1med.‖YÅ·j‖2/. Moreover, we have successfully detected the three change points in nearly all
the 100 Monte Carlo samples.

6. Supplementary material

For brevity, we collect some additional simulation and theoretical results, and the proofs of
main lemmas, theorems and propositions in the on-line supplementary material.
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