
Biometrika (2015), 102, 2, pp. 421–437 doi: 10.1093/biomet/asv006
Printed in Great Britain Advance Access publication 2 April 2015

Effective dimension reduction for sparse functional data

BY F. YAO, E. LEI

Department of Statistical Sciences, University of Toronto, Toronto, Ontario M5S 3G3, Canada

fyao@utstat.toronto.edu edwin@utstat.toronto.edu

AND Y. WU

Department of Statistics, North Carolina State University, Raleigh,
North Carolina 27695, U.S.A.

wu@stat.ncsu.edu

SUMMARY

We propose a method of effective dimension reduction for functional data, emphasizing the
sparse design where one observes only a few noisy and irregular measurements for some or all
of the subjects. The proposed method borrows strength across the entire sample and provides a
way to characterize the effective dimension reduction space, via functional cumulative slicing.
Our theoretical study reveals a bias-variance trade-off associated with the regularizing truncation
and decaying structures of the predictor process and the effective dimension reduction space.
A simulation study and an application illustrate the superior finite-sample performance of the
method.
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1. INTRODUCTION

In functional data analysis, one is often interested in how a scalar response Y ∈R varies with a
smooth trajectory X (t), where t is an index variable defined on a closed interval T ; see Ramsay &
Silverman (2005). To be specific, one seeks to model the relationship Y = M(X; ε), where M is a
smooth functional and the error process ε has zero mean and finite variance σ 2 and is independent
of X . Although modelling M parametrically can be restrictive in many applications, modelling
M nonparametrically is infeasible in practice due to slow convergence rates associated with the
curse of dimensionality. Therefore a class of semiparametric index models has been proposed to
approximate M(X; ε) with an unknown link function g : R

K+1 →R; that is,

Y = g (〈β1, X〉, . . . , 〈βK , X〉; ε) , (1)

where K is the reduced dimension of the model, β1, . . . , βK are linearly independent index
functions, and 〈u, v〉 = ∫ u(t)v(t) dt is the usual L2 inner product. The functional linear model
Y = β0 +

∫
β1(t)X (t) dt + ε is a special case and has been studied extensively (Cardot et al.,

1999; Müller & Stadtmüller, 2005; Yao et al., 2005b; Cai & Hall, 2006; Hall & Horowitz, 2007;
Yuan & Cai, 2010).

In this article, we tackle the index model (1) from the perspective of effective dimension reduc-
tion, in the sense that the K linear projections 〈β1, X〉, . . . , 〈βK , X〉 form a sufficient statis-
tic. This is particularly useful when the process X is infinite-dimensional. Our primary goal
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is to discuss dimension reduction for functional data, especially when the trajectories are cor-
rupted by noise and are sparsely observed with only a few observations for some, or even all, of
the subjects. Pioneered by Li (1991) for multivariate data, effective dimension reduction meth-
ods are typically link-free, requiring neither specification nor estimation of the link function
(Duan & Li, 1991), and aim to characterize the K -dimensional effective dimension reduction
space SY |X = span(β1, . . . , βK ) onto which X is projected. Such index functions βk are called
effective dimension reduction directions, K is the structural dimension, and SY |X is also known
as the central subspace (Cook, 1998). Li (1991) characterized SY |X via the inverse mean E(X | Y )
by sliced inverse regression, which has motivated much work for multivariate data. For instance,
Cook & Weisberg (1991) estimated var(X | Y ), Li (1992) dealt with the Hessian matrix of the
regression curve, Xia et al. (2002) proposed minimum average variance estimation as an adaptive
approach based on kernel methods, Chiaromonte et al. (2002) modified sliced inverse regression
for categorical predictors, Li & Wang (2007) worked with empirical directions, and Zhu et al.
(2010) proposed cumulative slicing estimation to improve on sliced inverse regression.

The literature on effective dimension reduction for functional data is relatively sparse. Ferré &
Yao (2003) proposed functional sliced inverse regression for completely observed functional
data, and Li & Hsing (2010) developed sequential χ2 testing procedures to decide the struc-
tural dimension of functional sliced inverse regression. Apart from effective dimension reduc-
tion approaches, James & Silverman (2005) estimated the index and link functions jointly for an
additive form g(〈β1, X〉, . . . , 〈βK , X〉; ε)= β0 +

∑K
k=1 gk(〈βk, X〉)+ ε, assuming that the tra-

jectories are densely or completely observed and that the index and link functions are elements of
a finite-dimensional spline space. Chen et al. (2011) estimated the index and additive link func-
tions nonparametrically and relaxed the finite-dimensional assumption for theoretical analysis
but retained the dense design.

Jiang et al. (2014) proposed an inverse regression method for sparse functional data by estimat-
ing the conditional mean E{X (t) | Y = ỹ} with a two-dimensional smoother applied to pooled
observed values of X in a local neighbourhood of (t, ỹ). The computation associated with a two-
dimensional smoother is considerable and further increased by the need to select two different
bandwidths. In contrast, we aim to estimate the effective dimension reduction space by drawing
inspiration from cumulative slicing for multivariate data (Zhu et al., 2010). When adapted to
the functional setting, cumulative slicing offers a novel and computationally simple way of bor-
rowing strength across subjects to handle sparsely observed trajectories. This advantage has not
been exploited elsewhere. As we will demonstrate later, although extending cumulative slicing
to completely observed functional data is straightforward, it adopts a different strategy for the
sparse design via a one-dimensional smoother, with potentially effective usage of the data.

2. METHODOLOGY

2·1. Dimension reduction for functional data

Let T be a compact interval, and let X be a random variable defined on the real separa-
ble Hilbert space H ≡ L2(T ) endowed with inner product 〈 f, g〉 = ∫T f (t)g(t) dt and norm
‖ f ‖ = 〈 f, f 〉1/2. We assume that:

Assumption 1. X is centred and has a finite fourth moment,
∫
τ

E{X4(t)} dt <∞.

Under Assumption 1, the covariance surface of X is �(s, t)= E{X (s)X (t)}, which gen-
erates a Hilbert–Schmidt operator � on H that maps f to (� f )(t)= ∫

τ
�(s, t) f (s) ds. This

operator can be written succinctly as � = E(X ⊗ X), where the tensor product u ⊗ v denotes
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the rank-one operator on H that mapsw to (u ⊗ v)w= 〈u, w〉v. By Mercer’s theorem,� admits
a spectral decomposition � =∑∞

j=1 α jφ j ⊗ φ j , where the eigenfunctions {φ j } j=1,2,... form a
complete orthonormal system in H and the eigenvalues {α j } j=1,2,... are strictly decreasing and
positive such that

∑∞
j=1 α j <∞. Finally, recall that the effective dimension reduction directions

β1, . . . , βK in model (1) are linearly independent functions in H , and the response Y ∈R is
assumed to be conditionally independent of X given the K projections 〈β1, X〉, . . . , 〈βK , X〉.

Zhu et al. (2010) observed that for a fixed ỹ ∈R, using two slices I1 = (−∞, ỹ] and
I2 = (ỹ,+∞) would maximize the use of data and minimize the variability in each slice. The
kernel of the sliced inverse regression operator var{E(X | Y )} is estimated by the two-slice ver-
sion
0(s, t; ỹ)∝ m(s, ỹ)m(t, ỹ), where m(t, ỹ)= E{X (t)1(Y � ỹ)} is an unconditional expec-
tation, in contrast to the conditional expectation E{X (t) | Y } of functional sliced inverse regres-
sion. Since 
0 with a fixed ỹ spans at most one direction of SY |X , it is necessary to combine all
possible estimates of m(t, ỹ) by letting ỹ run across the support of Ỹ , an independent copy of Y .
Therefore, the kernel of the proposed functional cumulative slicing is


(s, t)= E{m(s, Ỹ )m(t, Ỹ )w(Ỹ )}, (2)

wherew(ỹ) is a known nonnegative weight function. Denote the corresponding integral operator
of 
(s, t) by 
 also. The following theorem establishes the validity of our proposal. Analogous
to the multivariate case, a linearity assumption is needed.

Assumption 2. For any function b ∈ H , there exist constants c0, . . . , cK ∈R such that

E(〈b, X〉 | 〈β1, X〉, . . . , 〈βK , X〉)= c0 +
K∑

k=1

ck〈βk, X〉.

This assumption is satisfied when X has an elliptically contoured distribution, which is more
general than, but has a close connection to, a Gaussian process (Cambanis et al., 1981; Li &
Hsing, 2010).

THEOREM 1. If Assumptions 1 and 2 hold for model (1), then the linear space spanned
by {m(t, ỹ) : ỹ ∈R} is contained in the linear space spanned by {�β1, . . . , �βK }, i.e.,
span({m(t, ỹ) : ỹ ∈R})⊆ span(�β1, . . . , �βK ).

An important observation from Theorem 1 is that for any b ∈ H orthogonal to the space
spanned by {�β1, . . . , �βK } and for any x ∈ H , we have 〈b,
x〉 = 0, implying that range(
)⊆
span(�β1, . . . , �βK ). If
 has K nonzero eigenvalues, the space spanned by its eigenfunctions is
precisely span(�β1, . . . , �βK ). Recall that our goal is to estimate the central subspace SY |X , even
though the effective dimension reduction directions themselves are not identifiable. For speci-
ficity, we regard these eigenfunctions of�−1
 associated with the K largest nonzero eigenvalues
as the index functions β1, . . . , βK , unless stated otherwise.

As the covariance operator � is Hilbert–Schmidt, it is not invertible when defined from H
to H . Similarly to Ferré & Yao (2005), let R� denote the range of �, and let R−1

� = {b ∈
H :
∑∞

j=1 α
−1
j 〈b, φ j 〉φ j , b ∈ R�}. Then � is a one-to-one mapping from R−1

� ⊂ H onto R� ,

with inverse�−1 =∑∞
j=1 α

−1
j φ j ⊗ φ j . This is reminiscent of finding a generalized inverse of a

matrix. Let ξ j = 〈X, φ j 〉 denote the j th principal component, or generalized Fourier coefficient,
of X , and assume that:

Assumption 3.
∑∞

j=1
∑∞

l=1 α
−2
j α−1

l E2[E{ξ j 1(Y � Ỹ ) | Ỹ }E{ξl1(Y � Ỹ ) | Ỹ }]<∞.
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PROPOSITION 1. Under Assumptions 1–3, the eigenspace associated with the K nonnull
eigenvalues of �−1
 is well-defined in H.

This is a direct analogue of Theorem 4.8 in He et al. (2003) and Theorem 2.1 in Ferré & Yao
(2005).

2·2. Functional cumulative slicing for sparse functional data

For the data {(Xi , Yi ) : i = 1, . . . , n}, independent and identically distributed as (X, Y ), the
predictor trajectories Xi are observed intermittently, contaminated with noise, and collected
in the form of repeated measurements {(Ti j ,Ui j ) : i = 1, . . . , n; j = 1, . . . , Ni }, where Ui j =
Xi (Ti j )+ εi j with measurement error εi j that is independent and identically distributed as ε with
zero mean and constant variance σ 2

x , and independent of all other random variables. When only
a few observations are available for some or even all subjects, individual smoothing to recover
Xi is infeasible and one must pool data across subjects for consistent estimation.

To estimate the functional cumulative slicing kernel 
 in (2), the key quantity is the uncon-
ditional mean m(t, ỹ)= E{X (t)1(Y � ỹ)}. For sparsely and irregularly observed Xi , cross-
sectional estimation as used in multivariate cumulative slicing is inapplicable. To maximize the
use of available data, we propose to pool the repeated measurements across subjects via a scat-
terplot smoother, which works in conjunction with the strategy of cumulative slicing. We use a
local linear estimator m̂(t, ỹ)= â0 (Fan & Gijbels, 1996), solving

min
(a0,a1)

n∑
i=1

Ni∑
j=1

{
Ui j 1(Yi � ỹ)− a0 − a1(Ti j − t)

}2
K1

(
Ti j − t

h1

)
, (3)

where K1 is a nonnegative and symmetric univariate kernel density and h1 = h1(n) is the band-
width to control the amount of smoothing. We ignore the dependence among data from the same
individual (Lin & Carroll, 2000) and use leave-one-curve-out crossvalidation to select h1 (Rice &
Silverman, 1991). Then an estimator of the kernel function 
(s, t) is its sample moment


̂(s, t)= 1

n

n∑
i=1

m̂(s, Yi )m̂(t, Yi )w(Yi ). (4)

The distinction between our method and that of Jiang et al. (2014) lies in the inverse function
m(t, y) which forms the effective dimension reduction space. It is notable that (4) is a univariate
smoother that includes the effective data satisfying {Ti j ∈ (t − h1, t + h1), Yi � y}, roughly at an
order of (nh1)

1/2 for estimating m(t, y)= E{X (t)1(Y � y)} for a sparse design with E(Nn) <

∞, where Nn is the expected number of repeated observations per subject. By contrast, equation
(2·4) in Jiang et al. (2014) uses the data satisfying {Ti j ∈ (t − ht , t + ht ), Yi ∈ (y − hy, y + hy)}
for estimating m(t, y)= E{X (t) | Y = y}, roughly at an order of (nht hy)

1/2. This is reflected
in the faster convergence of the estimated operator 
̂ compared with ̂e in Jiang et al. (2014),
indicating potentially effective usage of the data based on univariate smoothing. The computation
associated with a two-dimensional smoother is considerable and further exacerbated by the need
to select different bandwidths ht and hy .

For the covariance operator �, following Yao et al. (2005a), denote the observed raw covari-
ances by Gi (Ti j , Til)=Ui jUil . Since E{Gi (Ti j , Til) | Ti j , Til} = cov{X (Ti j ), X (Til)} + σ 2δ jl ,
where δ jl is 1 if j = l and 0 otherwise, the diagonal of the raw covariances should be removed.
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Solving

min
(b0,b1,b2)

n∑
i=1

Ni∑
j |= l

{
Gi (Ti j , Til)− b0 − b1(Ti j − s)− b2(Til − t)

}2
K2

(
Ti j − s

h2
,

Til − t

h2

)

(5)

yields �̂(s, t)= b̂0, where K2 is a nonnegative bivariate kernel density and h2 = h2(n) is the
bandwidth chosen by leave-one-curve-out crossvalidation; see Yao et al. (2005a) for details
on the implementation. Since the inverse operator �−1 is unbounded, we regularize by pro-
jection onto a truncated subspace. To be precise, let sn be a possibly divergent sequence and
let �sn =

∑sn
j=1 φ j ⊗ φ j and �̂sn =

∑sn
j=1 φ̂ j ⊗ φ̂ j denote the orthogonal projectors onto the

eigensubspaces associated with the sn largest eigenvalues of � and �̂, respectively. Then �sn =
�sn��sn and �̂sn = �̂sn �̂�̂sn are two sequences of finite-rank operators converging to � and
�̂ as n →∞, with bounded inverses �−1

sn
=∑sn

j=1 α
−1
j φ j ⊗ φ j and �̂−1

sn
=∑sn

j=1 α̂
−1
j φ̂ j ⊗ φ̂ j ,

respectively. Finally, we obtain the eigenfunctions associated with the K largest nonzero eigen-
values of �̂−1

sn

̂ as the estimates of the effective dimension reduction directions {β̂k,sn }k=1,...,K .

The situation for completely observed Xi is similar to the multivariate case and consider-
ably simpler. The quantities m(t, ỹ) and �(s, t) are easily estimated by their respective sam-
ple moments m̂(t, ỹ)= n−1∑n

i=1 Xi (t)1(Yi � ỹ) and �̂(s, t)= n−1∑n
i=1 Xi (s)Xi (t), while the

estimate of 
 remains the same as (4). For densely observed Xi , individual smoothing can be
used as a pre-processing step to recover smooth trajectories, and the estimation error introduced
in this step can be shown to be asymptotically negligible under certain design conditions, i.e., it
is equivalent to the ideal situation of the completely observed Xi (Hall et al., 2006).

For small values of Yi , m̂(t, Yi ) obtained by (3) may be unstable due to the smaller number of
pooled observations in the slice. A suitable weight functionwmay be used to refine the estimator

̂(s, t). In our numerical studies, the naive choice of w≡ 1 performed fairly well compared
to other methods. Analogous to the multivariate case, choosing an optimal w remains an open
question.

Ferré & Yao (2005) avoided inverting � with the claim that for a finite-rank operator 
,
range(
−1�)= range(�−1
); however, Cook et al. (2010) showed that this requires more strin-
gent conditions that are not easily fulfilled.

The selection of Kn and sn deserves further study. For selecting the structural dimension K , the
only relevant work to date is Li & Hsing (2010), where sequential χ2 tests are used to determine
K for the method of Ferré & Yao (2003). How to extend such tests to sparse functional data, if
feasible at all, is worthy of further exploration. It is also important to tune the truncation parameter
sn that contributes to the variance-bias trade-off of the resulting estimator, although analytical
guidance for this is not yet available.

3. ASYMPTOTIC PROPERTIES

In this section we present asymptotic properties of the functional cumulative slicing kernel
operator and the effective dimension reduction directions for sparse functional data. The numbers
of measurements Ni and the observation times Ti j are considered to be random, to reflect a sparse
and irregular design. Specifically, we make the following assumption.

Assumption 4. The Ni are independent and identically distributed as a positive discrete ran-
dom variable Nn , where E(Nn) <∞, pr(Nn � 2) > 0 and pr(Nn � Mn)= 1 for some constant
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sequence Mn that is allowed to diverge, i.e., Mn →∞ as n →∞. Moreover, ({Ti j , j ∈
Ji }, {Ui j , j ∈ Ji }) are independent of Ni for Ji ⊆ {1, . . . , Ni }.

Writing Ti = (Ti1, . . . , Ti Ni )
T and Ui = (Ui1, . . . ,Ui Ni )

T, the data quadruplets Zi =
{Ti ,Ui , Yi , Ni } are thus independent and identically distributed. Extremely sparse designs are
also covered, with only a few measurements for each subject. Other regularity conditions are stan-
dard and listed in the Appendix, including assumptions on the smoothness of the mean and covari-
ance functions of X , the distributions of the observation times, and the bandwidths and kernel
functions used in the smoothing steps. Write ‖A‖2

H = ∫T ∫T A2(s, t) ds dt for A ∈ L2(T × T ).

THEOREM 2. Under Assumptions 1, 4 and A1–A4 in the Appendix, we have

∥∥
̂−
∥∥H = Op

(
n−1/2h−1/2

1 + h2
1

)
,
∥∥�̂ −�∥∥H = Op

(
n−1/2h−1

2 + h2
2

)
.

The key result here is the L2 convergence of the estimated operator 
̂, in which we exploit the
projections of nonparametric U -statistics together with a decomposition of m̂(t, ỹ) to overcome
the difficulty caused by the dependence among irregularly spaced measurements. The estimator

̂ is obtained by averaging the smoothers m̂(t, Yi ) over Yi , which is crucial in order to achieve
the univariate convergence rate for this bivariate estimator. The convergence of the covariance
operator � is presented for completeness, given in Theorem 2 of Yao & Müller (2010).

We are now ready to characterize the estimation of the central subspace SY |X =
span(β1, . . . , βK ). Unlike the multivariate or finite-dimensional case, where the convergence
of ŜY |X follows immediately from the convergence of �̂ and 
̂ given a bounded �−1, we have
to approximate �−1 with a sequence of truncated estimates �̂−1

sn
, which introduces additional

variability and bias inherent in a functional inverse problem. Since we specifically regarded the
index functions {β1, . . . , βK }
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THEOREM 3. Under Assumptions 1–7 and A1–A4 in the Appendix, for all k = 1, . . . , K ,

∥∥β̂k,sn − βk
∥∥= Op

{
s3a/2+1

n

(
n−1/2h−1/2

1 + h2
1

)
+ s2a+3/2

n

(
n−1/2h−1

2 + h2
2

)
+ s−b+1/2

n

}
.

(6)

This result associates the convergence of β̂k,sn with the truncation parameter sn and the decay
rates of α j and bkj , indicating a bias-variance trade-off with respect to sn . One can view sn as a
tuning parameter that is allowed to diverge slowly and which controls the resolution of the covari-
ance estimation. Specifically, the first two terms on the right-hand side of (6) are attributed to
the variability of estimating �−1

sn

 with �̂−1

sn

̂, and the last term corresponds to the approxima-

tion bias of �−1
sn

. The first term of the variance is due to ‖�̂−1

sn

̂�̂

−1/2
sn − �̂−1

sn

�̂

−1/2
sn ‖H and

becomes increasingly unstable with a larger truncation. The second part of the variance is due to
‖(�−1

sn
− �̂−1

sn
)
�

−1/2
sn ‖H, and the approximation bias is determined by the smoothness of βk ;

for instance, a smoother βk with a larger b leads to a smaller bias.

4. SIMULATIONS

In this section we illustrate the performance of the proposed functional cumulative slicing
method in terms of estimation and prediction. Although our proposal is link-free for estimat-
ing index functions βk , a general index model (1) may lead to model predictions with high
variability, especially given the relatively small sample sizes frequently encountered in func-
tional data analysis. Thus we follow Chen et al. (2011) in assuming an additive structure for
the link function g in (1), i.e., Y = β0 +

∑K
k=1 gk(〈βk, X〉)+ ε. In each Monte Carlo run, a

sample of n = 200 functional trajectories is generated from the process Xi (t)=
∑50

j=1 ξi jφ j (t),
where φ j (t)= sin(π t j/5)/

√
5 for j even and φ j (t)= cos(π t j/5)/

√
5 for j odd, the functional

principal component scores ξi j are independent and identically distributed as N (0, j−1·5), and
T = [0, 10]. For the setting of sparsely observed functional data, the number of observations per
subject, Ni , is chosen uniformly from {5, . . . , 10}, the observational times Ti j are independent
and identically distributed as Un[0, 10], and the measurement error εi j is independent and iden-
tically distributed as N (0, 0·1). The effective dimension reduction directions are generated by
β1(t)=

∑50
j=1 b jφ j (t), where b j = 1 for j = 1, 2, 3 and b j = 4( j − 2)−3 for j = 4, . . . , 50, and

β2(t)= 0·31/2(t/5 − 1), which cannot be represented with finite Fourier terms. The following
single- and multiple-index models are considered:

Model I: Y = sin (π〈β1, X〉/4)+ ε,
Model II: Y = arctan (π〈β1, X〉/2)+ ε,
Model III: Y = sin (π〈β1, X〉/3)+ exp (〈β2, X〉/3)+ ε,
Model IV: Y = arctan (π〈β1, X〉)+ sin (π〈β2, X〉/6) /2 + ε,

where the regression error ε is independent and identically distributed as N (0, 1) for all models.
We compare our method with that of Jiang et al. (2014) for sparse functional data in terms

of estimation and prediction. Denote the true structural dimension by K0. Due to the noniden-
tifiability of the βk , we examine the projection operator of the effective dimension space, i.e.,
P =∑K0

k=1 βk ⊗ βk and P̂K ,sn =
∑K

k=1 β̂K ,sn ⊗ β̂K ,sn . To assess the estimation of the effective
dimension reduction space, we calculate ‖P̂K ,sn − P‖H as the estimation error. To assess model
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Table 1. Estimation error and relative prediction error, multiplied by 100, obtained
from 100 Monte Carlo repetitions (with standard errors in parentheses) for sparse

functional data
Model Metric FCS IRLD Metric FCS IRLD

I 61·1 (1·1) 61·3 (1·1) 17·7 (0·6) 17·9 (0·5)
II Estimation 59·3 (1·0) 59·5 (1·0) Prediction 19·6 (0·6) 19·4 (0·5)
III error 63·7 (0·8) 63·9 (0·9) error 18·8 (0·5) 19·5 (0·4)
IV 63·8 (0·8) 63·9 (0·9) 45·2 (1·1) 45·4 (1·1)

FCS, functional cumulative slicing; IRLD, the method of Jiang et al. (2014), where (K , sn) is selected
by minimizing the estimation and prediction errors.

Table 2. Estimation error and relative prediction error, multiplied by 100, obtained
from 100 Monte Carlo repetitions (with standard errors in parentheses) for dense

functional data
Metric Model FCS IRLD FSIR5 FSIR10 FIND

I 39·2 (1·6) 45·5 (1·5) 59·4 (2·1) 61·7 (2·2) 47·1 (1·6)
Estimation II 35·5 (1·4) 38·1 (1·3) 56·1 (1·8) 57·8 (1·9) 44·5 (1·5)

error III 59·6 (0·8) 63·1 (0·8) 72·6 (1·1) 74·1 (1·3) 63·6 (0·9)
IV 57·2 (0·6) 59·0 (0·6) 69·3 (1·0) 68·9 (0·9) 61·0 (0·8)

I 11·1 (0·6) 12·7 (0·5) 17·1 (0·7) 16·7 (0·6) 16·1 (1·1)
Prediction II 9·8 (0·5) 10·5 (0·4) 15·5 (0·7) 16·9 (1·0) 14·9 (0·8)

error III 13·5 (0·5) 15·2 (0·5) 15·8 (0·6) 16·6 (0·5) 14·7 (0·6)
IV 19·9 (0·7) 21·9 (0·7) 31·1 (1·4) 32·2 (1·4) 24·2 (1·2)

FCS, functional cumulative slicing; IRLD, inverse regression for longitudinal data (Jiang et al., 2014);
FSIR5, functional sliced inverse regression (Ferré & Yao, 2003) with five slices; FSIR10, functional
sliced inverse regression (Ferré & Yao, 2003) with ten slices; FIND, functional index model (Chen
et al., 2011).

prediction, we estimate the link functions gk nonparametrically by fitting a generalized addi-
tive model Yi = β0 +

∑K
k=1 gk(Zik)+ εi (Hastie & Tibshirani, 1990), where Zik = 〈β̂k,sn , X̃i 〉

with X̃i being the best linear unbiased predictor of Xi (Yao et al., 2005a). We generate a val-
idation sample of size 500 in each Monte Carlo run and calculate the average of the relative
prediction errors, 500−1∑500

i=1(Ŷ
∗
i − Y ∗

i )
2/σ 2, over different values of (K , sn), where σ 2 = 1

and Ŷ ∗
i = β̂0 +

∑K
k=1 ĝk(Z∗

ik)with Z∗
ik = 〈β̂k,sn , X∗

i 〉, the X∗
i being the underlying trajectories in

the testing sample. We report in Table 1 the average estimation and prediction errors, minimized
over (K , sn), along with their standard errors over 100 Monte Carlo repetitions. For estimation
and prediction, both methods selected (K , sn)= (1, 3) for the single-index models I and II, and
selected (K , sn)= (2, 2) for the multiple-index models III and IV. The two approaches perform
comparably in this sparse setting, which could be due to the inverse covariance estimation that
dominates the overall performance. Our method takes one-third of the computation time of the
method of Jiang et al. (2014) for this sparse design.

We also present simulation results for dense functional data, where Ni = 50 and the Ti j are
sampled independently and identically from Un[0, 10]. With (K , sn) selected so as to minimize
the estimation and prediction errors, we compare our proposal with the method of Jiang et al.
(2014), functional sliced inverse regression (Ferré & Yao, 2003) using five or ten slices, and
the functional index model of Chen et al. (2011). Table 2 indicates that our method slightly
outperforms the method of Jiang et al. (2014), followed by the method of Chen et al. (2011),
while functional sliced inverse regression (Ferré & Yao, 2003) is seen to be suboptimal. Our
method takes only one-sixth of the time required by Jiang et al. (2014) for this setting.

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

et/article/102/2/421/246931 by Peking U
niversity user on 01 Septem

ber 2020



Functional cumulative slicing 429

1 3 5 7
−4
−2

0
2
4

Day of auction
L

og
 b

id
 p

ri
ce

L
og

 b
id

 p
ri

ce
L

og
 b

id
 p

ri
ce

1 3 5 7
−4
−2

0
2
4

1 3 5 7
−4
−2

0
2
4

1 3 5 7
−4
−2

0
2
4

1 3 5 7
−4
−2

0
2
4

1 3 5 7
−4
−2

0
2
4

1 3
Day of auction Day of auction Day of auction

5 7
−4
−2

0
2
4

1 3 5 7
−4
−2

0
2
4

1 3 5 7
−4
−2

0
2
4

Fig. 1. Observed bid prices over the seven-day auction period of nine randomly
selected auctions, after log-transform.

5. DATA APPLICATION

In this application, we study the relationship between the winning bid price of 156 Palm M515
PDA devices auctioned on eBay between March and May of 2003 and the bidding history over
the seven-day period of each auction. Each observation from a bidding history represents a live
bid, the actual price a winning bidder would pay for the device, known as the willingness-to-
pay price. Further details on the bidding mechanism can be found in Liu & Müller (2009). We
adopt the view that the bidding histories are independent and identically distributed realizations
of a smooth underlying price process. Due to the nature of online auctions, the j th bid of the
i th auction usually arrives irregularly at time Ti j , and the number of bids Ni can vary widely,
from nine to 52 for this dataset. As is usual in modelling prices, we take the log-transform of the
bid prices. Figure 1 shows a sample of nine randomly selected bid histories over the seven-day
period of the respective auction. Typically, the bid histories are sparse until the final hours of
each auction, when bid sniping occurs. At this point, snipers place their bids at the last possible
moment to try to deny competing bidders the chance of placing a higher bid.

Since our main interest is in the predictive power of price histories up to time T for the win-
ning bid prices, we consider the regression of the winning price on the history trajectory X (t)
(t ∈ [0, T ]), and set T = 4·5, 4·6, 4·7, . . . , 6·8 days. For each analysis on the domain [0, T ], we
select the optimal structural dimension K and the truncation parameter sn by minimizing the
average five-fold crossvalidated prediction error over 20 random partitions. Figure 2(a) shows
the minimized average crossvalidated prediction errors, compared with those obtained using
the method of Jiang et al. (2014). With the increasing prediction power as the bidding histories
encompass more data, the proposed method appears to yield more favourable prediction across
different time domains.

As an illustration, we present the analysis for T = 6. The estimated model components using
the proposed method are shown in Fig. 2(b), with the parameters chosen as K = 2 and sn = 2.
The first index function assigns contrasting weights to bids made before and after the first
day, indicating that some bidders tend to underbid at the beginning only to quickly overbid
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Fig. 2. (a) Average five-fold crossvalidated prediction errors for functional cumulative slicing (circles) and the
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eBay auction data. (b) Estimated model components for eBay auction data using functional cumulative slicing with
K = 2 and sn = 2; the upper panels show the estimated index functions, i.e., the effective dimension reduction direc-

tions, and the lower panels show the additive link functions.
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APPENDIX

Regularity conditions and auxiliary lemmas

Without loss of generality, we assume that the known weight function is w(·)= 1. Write T = [a, b]
and T δ = [a − δ, b + δ] for some δ > 0; denote a single observation time by T and a pair of observation
times by (T1, T2)

T, with densities f (t) and f2(s, t), respectively. Recall the unconditional mean function
m(t, y)= E{X (t)1(Y � y)}. The regularity conditions for the underlying moment functions and design
densities are as follows, where �1 and �2 are nonnegative integers. We assume that:

Assumption A1. ∂2�/(∂s�1∂t�2) is continuous on T δ × T δ for �1 + �2 = 2, and ∂2m/∂t2 is bounded
and continuous with respect to t ∈ T for all y ∈R.

Assumption A2. f (1)1 (t) is continuous on T δ with f1(t) > 0, and ∂ f2/(∂s�1∂t�2) f2 is continuous on
T δ × T δ for �1 + �2 = 1 with f2(s, t) > 0.

Assumption A1 can be guaranteed by a twice-differentiable process, and Assumption A2 is standard
and implies the boundedness and Lipschitz continuity of f . Recall the bandwidths h1 and h2 used in the
smoothing steps for m̂ in (3) and �̂ in (5), respectively; we assume that:

Assumption A3. h1 → 0, h2 → 0, nh3
1/ log n →∞, and nh2

2 →∞.

We say that a bivariate kernel function K2 is of order (ν, �), where ν is a multi-index ν = (ν1, ν2)
T, if

∫ ∫
u�1v�2 K2(u, v) du dv

⎧⎪⎨
⎪⎩
= 0, 0 � �1 + �2 < �, �1 |= ν1, �2 |= ν2,

= (−1)|ν|ν1! ν2!, �1 = ν1, �2 = ν2,

|= 0, �1 + �2 = �,

where |ν| = ν1 + ν2 < �. The univariate kernel K is said to be of order (ν, �) for a univariate ν = ν1 if this
definition holds with �2 = 0 on the right-hand side, integrating only over the argument u on the left-hand
side. The following standard conditions on the kernel densities are required.

Assumption A4. The kernel functions K1 and K2 are nonnegative with compact supports, bounded,
and of order (0, 2) and {(0, 0)T, 2}, respectively.

Lemma A1 is a mean-squared version of Theorem 1 in Martins-Filho & Yao (2006), which asserts
the asymptotic equivalence of a nonparametric V -statistic to the projection of the corresponding U -
statistic. Lemma A2 is a restatement of Lemma 1(b) of Martins-Filho & Yao (2007) adapted to sparse
functional data.

LEMMA A1. Let {Zi }n
i=1 be a sequence of independent and identically distributed random vari-

ables, and let un and vn be U- and V -statistics with kernel function ψn(Z1, . . . , Zk). In addition, let
ûn = n−1k

∑n
i=1{ψ1n(Zi )− φn} + φn, where ψ1n(Zi )= E{ψn(Zi1, . . . , Zik) | Zi } for i ∈ {i1, . . . , ik} and

φn = E{ψn(Z1, . . . , Zk)}. If E{ψ2
n (Z1, . . . , Zk)} = o(n), then nE{(vn − ûn)

2} = o(1).

LEMMA A2. Given Assumptions 1–4 and A1–A4, let

sk(t)=
n∑

i=1

Mn∑
j=1

1(Ni � j)

nh1
K1

(
Ti j − t

h1

)(
Ti j − t

h1

)k

.

Then supt∈T h−1
1 |sk(t)− E{sk(t)}| = Op(1) for k = 0, 1, 2.

Proofs of the theorems

Proof of Theorem 1. This theorem is an analogue of Theorem 1 in Zhu et al. (2010); thus its proof is
omitted. �
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Proof of Theorem 2. For brevity, we write Mn and Nn as M and N , respectively. Let

Sn(t)=
n∑

i=1

M∑
j=1

1(Ni � j)

nh1 E(N )
K1

(
Ti j − t

h1

)(
1 (Ti j − t)/h1

(Ti j − t)/h1 {(Ti j − t)/h1}2

)
,

S(t)=
(

fT (t) 0
0 fT (t)σ 2

K

)
,

where σ 2
K = ∫ u2 K (u) du. The local linear estimator of m(t, ỹ) with kernel K1 is

m̂(t, ỹ)

= (1, 0)S−1
n (t)

( ∑
i

∑
j 1(Ni � j){nh1 E(N )}−1 K1

{
(Ti j − t)/h1

}
Ui j 1(Yi � ỹ)∑

i

∑
j 1(Ni � j){nh1 E(N )}−1 K1

{
(Ti j − t)/h1

}{
(Ti j − t)/h1

}
Ui j 1(Yi � ỹ)

)
.

Let U ∗
i j (t, ỹ)=Ui j 1(Yi � ỹ)− m(t, ỹ)− m(1)(t, ỹ)(Ti j − t), Wn(z, t)= (1, 0)S−1

n (t)(1, z)T K1(z).

Then

m̂(t, ỹ)− m(t, ỹ)= 1

n

n∑
i=1

M∑
j=1

1(Ni � j)

h1 E(N )
Wn

(
Ti j − t

h1
, t

)
U ∗

i j (t, ỹ).

Denote a point between Ti j and t by t∗i j ; by Taylor expansion, U ∗
i j (ỹ)=Ui j 1(Yi � ỹ)− m(Ti j , ỹ)+

m(2)(t∗i j , ỹ)(Ti j − t)2/2. Finally, let ei j (ỹ)=Ui j 1(Yi � ỹ)− m(Ti j , ỹ). Then

m̂(t, ỹ)− m(t, ỹ)= 1

n

n∑
i=1

M∑
j=1

1(Ni � j)

h1 E(N ) fT (t)
K1

(
Ti j − t

h1

)
ei j (ỹ)

+ 1

2n

n∑
i=1

M∑
j=1

h11(Ni � j)

E(N ) fT (t)
K1

(
Ti j − t

h1

)(
Ti j − t

h1

)2

m(2)(t∗i j , ỹ)+ An(t, ỹ),

where

An(t, ỹ)= m̂(t, ỹ)− m(t, ỹ)− {nh1 E(N ) fT (t)}−1
∑

i

∑
j

1(Ni � j)K1{(Ti j − t)/h1}U ∗
i j (t, ỹ).

This allows us to write 
̂(s, t)−
(s, t)= I1n(s, t)+ I2n(s, t)+ I3n(s, t), where

I1n(s, t)= 1

n

n∑
k=1

[
m(s,Yk){m̂(t,Yk)− m(t,Yk)} + m(t,Yk){m̂(s,Yk)− m(s,Yk)}

]
,

I2n(s, t)= 1

n

n∑
k=1

{
m̂(s,Yk)− m(s,Yk)

}{
m̂(t,Yk)− m(t,Yk)

}
,

I3n(s, t)= 1

n

n∑
k=1

m(s,Yk)m(t,Yk)−
(s, t),

which implies, by the Cauchy–Schwarz inequality, that ‖
̂−
‖2
H = Op(‖I1n‖2

H + ‖I2n‖2
H + ‖I3n‖2

H). In
the rest of the proofs, we drop the subscript H and the dummy variable in integrals for brevity. Recall
that we defined Zi as the underlying data quadruplet (Ti ,Ui ,Yi , Ni ). Further, let

∑
(p) hi1,...,i p denote

the sum of hi1,...,i p over the permutations of i1, . . . , i p. Finally, by Assumptions A1, A2 and A4, write
0< BL

T � f (t)� BU

T <∞ for the lower and upper bounds of the density function of T , |K1(x)|� BK <∞
for the bound on the kernel function K1, and |∂2m/∂t2|� B2m <∞ for the bound on the second partial
derivative of m(t, ỹ) with respect to t .
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(a) We further decompose I1n(s, t) into I1n(s, t)= I11n(s, t)+ I12n(s, t)+ I13n(s, t), where

I11n(s, t)= 1

n2

n∑
k=1

n∑
i=1

M∑
j=1

{
1(Ni � j)

h1 E(N ) fT (t)
K1

(
Ti j − t

h1

)
ei j (Yk)m(s,Yk)

+ 1(Ni � j)

h1 E(N ) fT (s)
K1

(
Ti j − s

h1

)
ei j (Yk)m(t,Yk)

}

I12n(s, t)= 1

2n2

n∑
k=1

n∑
i=1

M∑
j=1

{
h11(Ni � j)

E(N ) fT (t)
K1

(
Ti j − t

h1

)(
Ti j − t

h1

)2

m(2)(t∗i j ,Yk)m(s,Yk)

+ h11(Ni � j)

E(N ) fT (s)
K1

(
Ti j − s

h1

)(
Ti j − s

h1

)2

m(2)(t∗i j ,Yk)m(t,Yk)

}

I13n(s, t)= 1

n

n∑
k=1

{
m(s,Yk)An(t,Yk)+ m(t,Yk)An(s,Yk)

}
,

which we analyse individually below.
We first show that E‖I11n‖2 = O(n−1h−1

1 ). We write I11n(s, t) as

I11n(s, t)= 1

2n2

n∑
k=1

n∑
i=1

∑
(2)

{
hik(s, t)+ hik(t, s)

} = 1

2n2

n∑
k=1

n∑
i=1

ψn(Zi , Zk; s, t)= 1

2
vn(s, t),

where vn(s, t) is a V -statistic with symmetric kernel ψn(Zi , Zk; s, t) and

hik(s, t)=
M∑

j=1

1(Ni � j)

h1 E(N ) fT (t)
K1

(
Ti j − t

h1

)
ei j (Yk)m(s,Yk).

Since E{ei j (Yk) | Ti j ,Yk} = 0, it is easy to show that E{hik(s, t)} = E{hik(t, s)} = E{hki (s, t)} =
E{hki (t, s)} = 0. Thus θn(s, t)= E{ψn(Zi , Zk; s, t)} = 0. Additionally,

ψ1n(Zi ; s, t)= E{ψn(Zi , Zk; s, t) | Zi }

=
M∑

j=1

1(Ni � j)

h1 E(N ) fT (t)
K1

(
Ti j − t

h1

)
E{ei j (Yk)m(s,Yk) | Zi }

+
M∑

j=1

1(Ni � j)

h1 E(N ) fT (s)
K1

(
Ti j − s

h1

)
E{ei j (Yk)m(t,Yk) | Zi }.

If E{ψ2
n (Zi , Zk; s, t)} = o(n), Lemma A1 gives nE{vn(s, t)− ũn(s, t)}2 = o(1), where ũn(s, t)=

2n−1
∑n

i=1 ψ1n(Zi ; s, t) is the projection of the corresponding U -statistic. Since the projection of a U -
statistic is a sum of independent and identically distributed random variables ψ1n(Zi ; s, t), E‖I11n‖2 �
2n−1

∫∫
var[E{hik(s, t) | Zi }] + 2n−1

∫∫
var[E{hik(t, s) | Zi }] + o(n−1), where

2

n

∫ ∫
var [E{hik(s, t) | Zi }] ds dt

�
M∑

j=1

2P(Ni � j)

nh2
1 E(N )

∫ ∫
f −2
T (t)E

[
K 2

1

(
Ti j − t

h1

)
E2{ei j (Yk)m(s,Yk) | Zi }

]
ds dt

=
M∑

j=1

2P(Ni � j)

nh1 E(N )

∫ ∫ ∫
f −2
T (t)K 2

1 (u)
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× EXi ,Yi ,εi

[
E2

Yk
{ei j (Yk)m(s,Yk) | Ti j = t + uh1}

]
fT (t + uh1) du ds dt

→
M∑

j=1

2‖K1‖2 P(Ni � j)

nh1 E(N )

∫ ∫
f −1
T (t)EXi ,Yi ,εi

[
E2

Yk
{ei j (Yk)m(s,Yk) | Ti j = t}]

� 8‖K1‖2

nh1 BL

T E(N )
E‖X4‖ + 4‖K1‖2σ 2

nh1 BL

T E(N )
E‖X2‖ = O

(
1

nh1

)
,

where the first line follows from the Cauchy–Schwarz inequality, the second line is obtained by let-
ting u = h−1

1 (Ti j − t) and observing that Ti j is independent of Xi ,Yi and εi , and the third line follows
from a variant of the dominated convergence theorem (Prakasa Rao, 1983, p. 35) that allows us to derive
rates of convergence for nonparametric regression estimators. Thus E‖I11n‖2 = O(n−1h−1

1 ), provided that
E{ψ2

n (Zi , Zk; s, t)} = o(n) for all i and k, which we will show below. For i |= k,

E{ψ2
n (Zi , Zk; s, t)} = 2E{h2

ik(s, t)} + 2E{h2
ik(t, s)} + 4E{hik(s, t)hik(t, s)}

+ 4E{hik(s, t)hki (s, t)} + 4E{hik(s, t)hki (t, s)}.

Observe that

1

n
E{h2

ik(s, t)} =
M∑
j=l

M∑
l=1

P{Ni � max( j, l)}
E2(N ) f 2

T (t)

× E

{
(nh2

1)
−1 K1

(
Ti j − t

h1

)
K1

(
Til − t

h1

)
ei j (Yk)eil(Yk)m

2(s,Yk)

}
.

For j = l, applying the dominated convergence theorem to the expectation on the right-hand side gives
n−1h−1

1 ‖K1‖2 fT (t)E{e2
i j (Yk)m2(s,Yk) | Ti j = t}, and hence n−1 E{h2

ik(s, t)} = o(1) by Assumption A3.
For j |= l, a similar argument gives n−1 f 2

T (t)E{ei j (Yk)eil(Yk)m2(s,Yk) | Ti j = Til = t}. The next two terms,
E{h2

ik(t, s)} and E{hik(s, t)hik(t, s)}, can be handled similarly, as well as E{hik(s, t)hki (s, t)} = o(n) and
the case of i = k. Thus E{ψ2

n (Zi , Zk; s, t)} = o(n).
Using similar derivations, one can show that E‖I12n‖2 = O(h4

1)+ o(n−1).
We next show that ‖I13n‖2 = Op(n−1h1 + h6

1). Following Lemma 2 of Martins-Filho & Yao (2007),

|An(t,Yk)| =
∣∣∣∣∣∣

M∑
j=1

n∑
i=1

1(Ni � j)

nh1 E(N )

{
Wn

(
Ti j − t

h1
, t

)
− f −1

T (t) K1

(
Ti j − t

h1

)}
U ∗

i j (t,Yk)

∣∣∣∣∣∣
� h−1

1

[
(1, 0)

{
S−1

n (t)− S−1(t)
}2
(1, 0)T

]1/2

×
⎧⎨
⎩
∣∣∣∣∣∣
∑

j

∑
i

1(Ni � j)

nE(N )
K1

(
Ti j − t

h1

)
U ∗

i j (t,Yk)

∣∣∣∣∣∣
+
∣∣∣∣∣∣
∑

j

∑
i

1(Ni � j)

nE(N )
K1

(
Ti j − t

h1

)(
Ti j − t

h1

)
U ∗

i j (t,Yk)

∣∣∣∣∣∣
⎫⎬
⎭

= h−1
1

[
(1, 0)

{
S−1

n (t)− S−1(t)
}2
(1, 0)T

]1/2
Rn(t,Yk).

Lemma A2 gives supt∈T h−1
1 |[(1, 0){S−1

n (t)− S−1(t)}2(1, 0)T]1/2| = Op(1). Next, Rn(t,Yk)�
|Rn1(t,Yk)| + |Rn2(t,Yk)| + |Rn3(t,Yk)| + |Rn4(t,Yk)|, where

Rn1(t,Yk)=
M∑

j=1

n∑
i=1

1(Ni � j)

nE(N )
K1

(
Ti j − t

h1

)
ei j (Yk),
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Rn2(t,Yk)=
M∑

j=1

n∑
i=1

h2
11(Ni � j)

2nE(N )
K1

(
Ti j − t

h1

)(
Ti j − t

h1

)2

m(2)(t∗i j ,Yk),

Rn3(t,Yk)=
M∑

j=1

n∑
i=1

1(Ni � j)

nE(N )
K1

(
Ti j − t

h1

)(
Ti j − t

h1

)
ei j (Yk),

Rn4(t,Yk)=
M∑

j=1

n∑
i=1

h2
11(Ni � j)

2nE(N )
K1

(
Ti j − t

h1

)(
Ti j − t

h1

)3

m(2)(t∗i j ,Yk).

Thus n−1
∑

k m(s,Yk)Rn1(t,Yk)= h1 fT (t)I11n(s, t) leads to ‖h1 fT I11n‖2 = Op(n−1h1), and
n−1
∑

k m(s,Yk)Rn2(t,Yk)= h1 fT (t)I12n(s, t) leads to ‖h1 fT I12n‖2 = Op(h6
1). It follows similarly that

the third and fourth terms are Op(n−1h1) and Op(h6
1), respectively. Hence, ‖I13n‖2 = Op(n−1h1 + h6

1).
Combining the previous results gives ‖I1n‖2 = Op{(nh1)

−1 + h4
1}.

(b) These terms are of higher order and are omitted for brevity.

(c) By the law of large numbers, ‖n−1
∑n

i=1 m(· ,Yi )m(· ,Yi )−
‖2 = Op(n−1).

Combining the above results leads to ‖
̂−
‖2 = Op(n−1h−1
1 + h4

1). �

Proof of Theorem 3. To facilitate the theoretical derivation, for each k = 1, . . . , K let ηk =�1/2βk and
η̂k,sn = �̂1/2

sn
β̂k,sn be, respectively, the normalized eigenvectors of the equations�−1
�−1/2ηk = λkβk and

�̂−1
sn

̂�̂−1/2

sn
η̂k,sn = λ̂k,sn β̂k,sn . Then∥∥β̂k,sn − βk

∥∥�
∥∥λ̂−1

k,sn
�̂−1

sn

̂�̂−1/2

sn
− λ−1

k �−1
�−1/2
∥∥+ λ−1

k

∥∥�−1
�−1/2
∥∥∥∥η̂k,sn − ηk

∥∥
� λ̂−1

k,sn

∥∥�̂−1
sn

̂�̂−1/2

sn
−�−1
�−1/2

∥∥
+ ∥∥�−1
�−1/2

∥∥(∣∣λ̂−1
k,sn

− λ−1
k

∣∣+ λ−1
k

∥∥η̂k,sn − ηk

∥∥) ,
using the fact that λ̂−1

k,sn
� λ−1

k + |λ̂−1
k,sn

− λ−1
k |. Applying standard theory for self-adjoint compact operators

(Bosq, 2000) gives∣∣λ̂k,sn − λk

∣∣� ∥∥�̂−1/2
sn


̂�̂−1/2
sn

−�−1/2
�−1/2
∥∥,∥∥η̂k,sn − ηk

∥∥� C
∥∥�̂−1/2

sn

̂�̂−1/2

sn
−�−1/2
�−1/2

∥∥ (k = 1, . . . , K ),

where C > 0 is a generic positive constant. Thus ‖β̂k,sn − βk‖2 = Op (I1n + I2n), where

I1n =
∥∥∥�̂−1

sn

̂�̂−1/2

sn
−�−1
�−1/2

∥∥∥2
, I2n =

∥∥∥�̂−1/2
sn


̂�̂−1/2
sn

−�−1/2
�−1/2
∥∥∥2
.

It suffices to show that I1n = Op{s3a+2
n (n−1/2h−1/2

1 + h2
1)+ s(4a+3)

n (n−1/2h−1
2 + h2

2)+ s−2b+13

n
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� C
K∑

k=1

λ2
k

∑
i>sn

i−2b = O(s−2b+1
n );

similarly, ‖�−1
�−1/2�⊥
sn
‖2 = O(s−2b+1

n ).

We decompose I12n as I12n � 3I121n + 3I122n + 3I123n , where I121n = ‖(�−1
sn

− �̂−1
sn
)
�−1/2

sn
‖2,

I122n = ‖�−1
sn

(�−1/2

sn
− �̂−1/2

sn
)‖2 and I123n = ‖(�−1

sn
− �̂−1

sn
)
(�−1/2

sn
− �̂−1/2

sn
)‖2. Note that I121n �

6‖
�−1/2�sn‖2(I1211n + I1212n), where

I1211n =
∥∥∥∥∥∥

sn∑
j=1

(α−1
j − α̂−1

j )φ̂ j ⊗ φ̂ j

∥∥∥∥∥∥
2

, I1212n =
∥∥∥∥∥∥

sn∑
j=1

α−1
j (φ̂ j ⊗ φ̂ j − φ j ⊗ φ j )

∥∥∥∥∥∥
2

.

Under Assumption 7, for all 1 � j � sn , |α̂ j − α j |� ‖�̂ −�‖� 2−1(α j − α j+1) implies that α̂ j �
2−1(α j + α j+1)� C−1 j−a , i.e., α̂−1

j � C ja for some C > 0. Thus

I1211n �
sn∑

j=1

(α̂ j − α j )
2(α j α̂ j )

−2 � C‖�̂ −�‖2
sn∑

j=1

j4a = Op

{
s4a+1

n (n−1h−2
2 + h4

2)
}
.

For I1212n , using the fact that ‖φ̂ j − φ j‖� 2
√

2δ−1
j ‖�̂ −�‖ (Bosq, 2000), where δ1 = α1 − α2 and δ j =

min2��� j (α�−1 − α�, α� − α�+1) for j > 1, we have that δ−1
j � j a+1 and

I1212n � 2
sn∑

j=1

α−2
j ‖φ̂ j − φ j‖2 � C‖�̂ −�‖2

sn∑
j=1

j4a+2 = Op

{
s4a+3

n (n−1h−2
2 + h4

2)
}
.

Using 
�−1/2ηk = λk�βk , we obtain ‖
�−1/2�sn‖2 �
∑K

k=1 λ
2
k‖
∑sn

i=1 αi
∑∞

j=1 bk j 〈φi , φ j 〉 φi‖2 �∑K
k=1 λ

2
k

∑sn
i=1 α

2
i b2

ki <∞. Thus I121n = Op{s4a+3
n (n−1h−2

2 + h4
2)}. Using decompositions similar to the

one for I121n , both I122n and I123n can be shown to be op{s4a+3
n (n−1h−2

2 + h4
2)}. This leads to I12n =

Op{s4a+3
n (n−1h−2

2 + h4
2)}.

Note that I13n � ‖�̂−1
sn
‖2‖
̂−
‖2‖�̂−1/2

sn
‖2, where ‖�̂−1

sn
‖2 �

∑sn
j=1 α̂

−2
j � C

∑sn
j=1 j2a = Op(s2a+1

n )

and, similarly, ‖�̂−1/2
sn

‖2 = Op(sa+1
n ). From Theorem 2, we have I13n = Op{s3a+2

n (n−1h−1
1 + h4

1)}. Com-
bining the above results leads to (6). �
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