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EMPIRICAL DYNAMICS FOR LONGITUDINAL DATA

BY HANS-GEORG MÜLLER1 AND FANG YAO2

University of California, Davis and University of Toronto

We demonstrate that the processes underlying on-line auction price bids
and many other longitudinal data can be represented by an empirical first
order stochastic ordinary differential equation with time-varying coefficients
and a smooth drift process. This equation may be empirically obtained from
longitudinal observations for a sample of subjects and does not presuppose
specific knowledge of the underlying processes. For the nonparametric es-
timation of the components of the differential equation, it suffices to have
available sparsely observed longitudinal measurements which may be noisy
and are generated by underlying smooth random trajectories for each subject
or experimental unit in the sample. The drift process that drives the equation
determines how closely individual process trajectories follow a deterministic
approximation of the differential equation. We provide estimates for trajec-
tories and especially the variance function of the drift process. At each fixed
time point, the proposed empirical dynamic model implies a decomposition
of the derivative of the process underlying the longitudinal data into a com-
ponent explained by a linear component determined by a varying coefficient
function dynamic equation and an orthogonal complement that corresponds
to the drift process. An enhanced perturbation result enables us to obtain im-
proved asymptotic convergence rates for eigenfunction derivative estimation
and consistency for the varying coefficient function and the components of
the drift process. We illustrate the differential equation with an application to
the dynamics of on-line auction data.

1. Introduction. Recently, there has been increasing interest in analyzing on-
line auction data and in inferring the underlying dynamics that drive the bidding
process. Each series of price bids for a given auction corresponds to pairs of ran-
dom bidding times and corresponding bid prices generated whenever a bidder
places a bid [Jank and Shmueli (2005, 2006), Bapna, Jank and Shmueli (2008),
Reddy and Dass (2006)]. Related longitudinal data where similar sparsely and
irregularly sampled noisy measurements are obtained are abundant in the social
and life sciences; for example, they arise in longitudinal growth studies. While
more traditional approaches of functional data analysis require fully or at least

Received July 2009; revised November 2009.
1Supported in part by NSF Grant DMS-08-06199.
2Supported in part by a NSERC Discovery grant.
AMS 2000 subject classifications. 62G05, 62G20.
Key words and phrases. Functional data analysis, longitudinal data, stochastic differential equa-

tion, Gaussian process.

3458

http://www.imstat.org/aos/
http://dx.doi.org/10.1214/09-AOS786
http://www.imstat.org
http://www.ams.org/msc/


EMPIRICAL DYNAMICS 3459

densely observed trajectories [Kirkpatrick and Heckman (1989), Ramsay and Sil-
verman (2005), Gervini and Gasser (2005)], more recent extensions cover the case
of sparsely observed and noise-contaminated longitudinal data [Yao, Müller and
Wang (2005), Wang, Carroll and Lin (2005)].

A common assumption of approaches for longitudinal data grounded in func-
tional data analysis is that such data are generated by an underlying smooth
and square integrable stochastic process [Sy, Taylor and Cumberland (1997),
Staniswalis and Lee (1998), Rice (2004), Zhao, Marron and Wells (2004), Hall,
Müller and Wang (2006)]. The derivatives of the trajectories of such processes are
central for assessing the dynamics of the underlying processes [Ramsay (2000),
Mas and Pumo (2007)]. Although this is difficult for sparsely recorded data, var-
ious approaches for estimating derivatives of individual trajectories nonparamet-
rically by pooling data from samples of curves and using these derivatives for
quantifying the underlying dynamics have been developed [Gasser et al. (1984),
Reithinger et al. (2008), Wang, Li and Huang (2008), Wang et al. (2008)]. Related
work on nonparametric methods for derivative estimation can be found in Gasser
and Müller (1984), Härdle and Gasser (1985) and on the role of derivatives for the
functional linear model in Mas and Pumo (2009).

We expand here on some of these approaches and investigate an empirical dy-
namic equation. This equation is distinguished from previous models that involve
differential equations in that it is empirically determined from a sample of tra-
jectories, and does not presuppose knowledge of a specific parametric form of a
differential equation which generates the data, except that we choose it to be a first
order equation. This stands in contrast to current approaches of modeling dynamic
systems, which are “parametric” in the sense that a prespecified differential equa-
tion is assumed. A typical example for such an approach has been developed by
Ramsay et al. (2007), where a prior specification of a differential equation is used
to guide the modeling of the data, which is done primarily for just one observed
trajectory. A problem with parametric approaches is that diagnostic tools to de-
termine whether these equations fit the data either do not exist, or where they do,
are not widely used, especially as nonparametric alternatives to derive differential
equations have not been available. This applies especially to the case where one
has data on many time courses available, providing strong motivation to explore
nonparametric approaches to quantify dynamics. Our starting point is a nonpara-
metric approach to derivative estimation by local polynomial fitting of the deriv-
ative of the mean function and of partial derivatives of the covariance function of
the process by pooling data across all subjects [Liu and Müller (2009)].

We show that each trajectory satisfies a first order stochastic differential equa-
tion where the random part of the equation resides in an additive smooth drift
process which drives the equation; the size of the variance of this process deter-
mines to what extent the time evolution of a specific trajectory is determined by
the nonrandom part of the equation over various time subdomains, and therefore is
of tantamount interest. We quantify the size of the drift process by its variance as a
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function of time. Whenever the variance of the drift process Z is small relative to
the variance of the process X, a deterministic version of the differential equation is
particularly useful as it then explains a large fraction of the variance of the process.

The empirical stochastic differential equation can be easily obtained for various
types of longitudinal data. This approach thus provides a novel perspective to as-
sess the dynamics of longitudinal data and permits insights about the underlying
forces that shape the processes generating the observations, which would be hard
to obtain with other methods. We illustrate these empirical dynamics by construct-
ing the stochastic differential equations that govern online auctions with sporadic
bidding patterns.

We now describe a data model for longitudinally collected observations, which
reflects that the data consist of sparse, irregular and noise-corrupted measurements
of an underlying smooth random trajectory for each subject or experimental unit
[Yao, Müller and Wang (2005)], the dynamics of which is of interest. Given n

realizations Xi of the underlying process X on a domain T and Ni of an integer-
valued bounded random variable N , we assume that Ni measurements Yij , i =
1, . . . , n, j = 1, . . . , Ni , are obtained at random times Tij , according to

Yij = Xi(Tij ) + εij , Tij ∈ T ,(1)

where εij are zero mean i.i.d. measurement errors, with var(εij ) = σ 2, independent
of all other random components.

The paper is organized as follows. In Section 2, we review expansions in eigen-
functions and functional principal components, which we use directly as the ba-
sic tool for dimension reduction—alternative implementations with B-splines or
P-splines could also be considered [Shi et al. (1996), Rice and Wu (2001), Yao
and Lee (2006)]. We also introduce the empirical stochastic differential equation
and discuss the decomposition of variance it entails. Asymptotic properties of es-
timates for the components of the differential equation, including variance func-
tion of the drift process, coefficient of determination associated with the dynamic
system and auxiliary results on improved rates of convergence for eigenfunction
derivatives are the theme of Section 3. Background on related perturbation results
can be found in Dauxois, Pousse and Romain (1982), Fine (1987), Kato (1995),
Mas and Menneteau (2003). Section 4 contains the illustration of the differential
equation with auction data, followed by a brief discussion of some salient features
of the proposed approach in Section 5. Additional discussion of some preliminary
formulas is provided in Appendix A.1, estimation procedures are described in Ap-
pendix A.2, assumptions and auxiliary results are in Appendix A.3 and proofs in
Appendix A.4.

2. Empirical dynamics.

2.1. Functional principal components and eigenfunction derivatives. A key
methodology for dimension reduction and modeling of the underlying stochastic
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processes X that generate the longitudinal data, which usually are sparse, irreg-
ular and noisy as in (1), is Functional Principal Component Analysis (FPCA).
Processes are assumed to be square integrable with mean function E{X(t)} =
μ(t) and auto-covariance function cov{X(t), X(s)} = G(t, s), s, t ∈ T , which is
smooth, symmetric and nonnegative definite. Using G as kernel in a linear opera-
tor leads to the Hilbert–Schmidt operator (Gf )(t) = ∫T G(t, s)f (s) ds. We denote
the ordered eigenvalues (in declining order) of this operator by λ1 > λ2 > · · · ≥ 0
and the corresponding orthonormal eigenfunctions by φk(t). We assume that all
eigenvalues are of multiplicity 1 in the sequel.

It is well known that the kernel G has the representation G(t, s) =∑∞
k=1 λk ×

φk(t)φk(s) and the trajectories generated by the process satisfy the Karhunen–
Loève representation [Grenander (1950)] Xi(t) = μ(t) +∑∞

k=1 ξikφk(t). Here the
ξik = ∫T {Xi(t)−μ(t)}φk(t) dt , k = 1, 2, . . . , i = 1, . . . , n, are the functional prin-
cipal components (FPCs) of the random trajectories Xi . The ξk are uncorrelated
random variables with E(ξk) = 0 and Eξ2

k = λk , with
∑

k λk < ∞. Upon differen-
tiating both sides, one obtains

X
(1)
i (t) = μ(1)(t) +

∞∑
k=1

ξikφ
(1)
k (t),(2)

where μ(1)(t) and φ
(1)
k (t) are the derivatives of mean and eigenfunctions.

The eigenfunctions φk are the solutions of the eigen-equations
∫

G(t, s) ×
φk(s) ds = λkφk(t), under the constraint of orthonormality. Under suitable reg-
ularity conditions, one observes

d

dt

∫
T

G(t, s)φk(s) ds = λk

d

dt
φk(t),

(3)

φ
(1)
k (t) = 1

λk

∫
T

∂

∂t
G(t, s)φ



3462 H.-G. MÜLLER AND F. YAO

and suitable estimates φ
(1)
k for eigenfunction derivatives, then directly decom-

posing cov{X(1)(t), X(1)(s)} into eigenfunctions and eigenvalues. This leads to
cov{X(1)(t), X(1)(s)} =∑∞

k=1 λk,1φk,1(t)φk,1(s) and the Karhunen–Loève repre-

sentation X
(1)
i (t) = μ(1)(t) +∑∞

k=1 ξik,1φk,1(t), with orthonormal eigenfunctions
φk,1 [Liu and Müller (2009)].

2.2. Empirical stochastic differential equation. In the following we consider
differentiable Gaussian processes, for which the differential equation introduced
below automatically applies. In the absence of the Gaussian assumption, one may
invoke an alternative least squares-type interpretation. Gaussianity of the processes
implies the joint normality of centered processes {X(t) − μ(t), X(1)(t) − μ(1)(t)}
at all points t ∈ T , so that(

X(1)(t) − μ(1)(t)

X(t) − μ(t)

)

=

⎛
⎜⎜⎜⎜⎝

∞∑
k=1

ξkφ
(1)
k (t)

∞∑
k=1

ξkφk(t)

⎞
⎟⎟⎟⎟⎠(5)

∼ N2

⎛
⎜⎜⎜⎜⎝
(

0
0

)
,

⎛
⎜⎜⎜⎜⎝

∞∑
k=1

λkφ
(1)
k (t)2

∞∑
k=1

λkφ
(1)
k (t)φk(t)

∞∑
k=1

λkφ
(1)
k (t)φk(t)

∞∑
k=1

λkφk(t)2

⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎠ .

This joint normality immediately implies a “population” differential equation
of the form E{X(1)(t) − μ(1)(t)|X(t)} = β(t){X(t) − μ(t)}, as has been observed
in Liu and Müller (2009); for additional details see Appendix A.1. However, it is
considerably more interesting to find a dynamic equation which applies to the indi-
vidual trajectories of processes X. This goal necessitates inclusion of a stochastic
term which leads to an empirical stochastic differential equation that governs the
dynamics of individual trajectories Xi .

THEOREM 1. For a differentiable Gaussian process, it holds that

X(1)(t) − μ(1)(t) = β(t){X(t) − μ(t)} + Z(t), t ∈ T ,(6)

where

β(t) = cov{X(1)(t), X(t)}
var{X(t)} =

∑∞
k=1 λkφ

(1)
k (t)φk(t)∑∞

k=1 λkφk(t)2

(7)

= 1

2

d

dt
log[var{X(t)}], t ∈ T ,
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and Z is a Gaussian process such that Z(t), X(t) are independent at each t ∈ T
and where Z is characterized by E{Z(t)} = 0 and cov{Z(t), Z(s)} = Gz(t, s),
with

Gz(t, s) =
∞∑

k=1

λkφ
(1)
k (t)φ

(1)
k (s) − β(t)

∞∑
k=1

λkφk(t)φ
(1)
k (s)

(8)

− β(s)

∞∑
k=1

λkφ
(1)
k (t)φk(s) + β(t)β(s)

∞∑
k=1

λkφk(t)φk(s).

Equation (6) provides a first order linear differential equation which includes
a time-varying linear coefficient function β(t) and a random drift process Z(t).
The process Z “drives” the equation at each time t . It is square integrable and
possesses a smooth covariance function and smooth trajectories. It also provides
an alternative characterization of the individual trajectories of the process. The
size of its variance function var(Z(t)) determines the importance of the role of the
stochastic drift component.

We note that the assumption of differentiability of the process X in Theorem 1
can be relaxed. It is sufficient to require weak differentiability, assuming that
X ∈ W 1,2, where H 1 = W 1,2 denotes the Sobolev space of square integrable func-
tions with square integrable weak derivative [Ziemer (1989)]. Along these lines,
equation (6) may be interpreted as a stochastic Sobolev embedding. Observe also
that the drift term Z can be represented as an integrated diffusion process. Upon
combining (2) and (6), and observing that functional principal components can be
represented as ξk = √

λk/γk

∫
T hk(u) dW(u), where hk is the kth eigenfunction of

the Wiener process W on domain T = [0, T ] and γk the associated eigenvalue,
such a representation is given by

Z(t) =
∞∑

k=1

√
λk

2T 3 (2k − 1)π

∫ T

0
sin
{

(2k − 1)π

2T
u

}{
φ

(1)
k (t) − β(t)φ(t)

}
dW(u).

Another observation is that the joint normality in (5) can be extended to joint
normality for any finite number of derivatives, assuming these are well defined.
Therefore, higher order stochastic differential equations can be derived analo-
gously to (6). However, these higher-order analogues are likely to be much less
relevant practically, as higher-order derivatives of mean and eigenfunctions cannot
be well estimated for the case of sparse noisy data or even denser noisy data.

Finally, it is easy to see that the differential equation (6) is equivalent to the
following stochastic integral equation:

X(t) = X(s) + {μ(t) − μ(s)}
+
∫ t

s
β(u){X(u) − μ(u)}du +

∫ t

s
Z(u) du(9)

for any s, t ∈ T , 0 ≤ s < t,
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in the sense that X is the solution of both equations. For a domain with left end-
point at time 0, setting s = 0 in (9) then defines a classical initial value problem.
Given a trajectory of the drift process Z and a varying coefficient function β , one
may obtain a solution for X numerically by Euler or Runga–Kutta integration or
directly by applying the known solution formula for the initial value problem of an
inhomogeneous linear differential equation.

2.3. Interpretations and decomposition of variance. We note that equations
(6) and (9) are of particular interest on domains T or subdomains defined by those
times t for which the variance function var{Z(t)} is “small.” From (7) and (8) one
finds

V (t) = var{Z(t)}
= (var

{
X(1)(t)

}
var{X(t)} − [cov

{
X(1)(t), X(t)

}]2)
/ var{X(t)}

(10)

=
( ∞∑

k=1

λk

(
φ

(1)
k (t)

)2 ∞∑
k=1

λkφ�k=1λkφ(1)
k.554 tk∫( ∞

∑ k=1 λ
k φ
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and Z(t) such that

var
{
X(1)(t)

}= β(t)2 var{X(t)} + var{Z(t)}.
It is therefore of interest to determine the fraction of the variance of X(1)(t) that is
explained by the differential equation itself, that is, the “coefficient of determina-
tion”

R2(t) = var{β(t)X(t)}
var{X(1)(t)} = 1 − var{Z(t)}

var{X(1)(t)} ,(12)

which is seen to be equivalent to the squared correlation between X(t), X(1)(t),

R2(t) = [cov{X(t), X(1)(t)}]2

var{X(t)}var{X(1)(t)} = {∑∞
k=1 λkφ

(1)
k (t)φk(t)}2∑∞

k=1 λkφk(t)2∑∞
k=1 λkφ

(1)
k (t)2

.(13)

We are then particularly interested in subdomains of T where R2(t) is large,
say, exceeds a prespecified threshold of 0.8 or 0.9. On such subdomains the drift
process Z is relatively small compared to X(1)(t) so that the approximating deter-
ministic first order linear differential equation (11) can substitute for the stochastic
dynamic equation (6). In this case, short-term prediction of X(t +�) may be possi-
ble for small �, by directly perusing the approximating differential equation (11).

It is instructive to visualize an example of the function R2(t) for the case of
fully specified eigenfunctions and eigenvalues. Assuming that the eigenfunctions
correspond to the trigonometric orthonormal system {√2 cos(2kπt), k = 1, 2, . . .}
on [0, 1], we find from (13)

R2(t) =
[∑

λkk cos(2kπt) sin(2kπt)
]2

/[∑
λk(cos(2kπt))2

∑
λkk(sin(2kπt))2

]
, t ∈ [0, 1].

Choosing λk = k−4, λk = 2−k and numerically approximating these sums, one ob-
tains the functions R2(t) as depicted in Figure 1. This illustration shows that the
behavior of this function often will fluctuate between small and large values and
also depends critically on both the eigenvalues and the shape of the eigenfunctions.

3. Asymptotic properties. We obtain asymptotic consistency results for esti-
mators of the varying coefficient functions β , for the variance function var{Z(t)}
of the drift process and for the variance explained at time t by the deterministic part
(11) of the stochastic equation (6), quantified by R2(t). Corresponding estimators
result from plugging in estimators for the eigenvalues λk , eigenfunctions φk and
eigenfunction derivatives φ

(1)
k into the representations (7) for the function β(t),

(10) for the variance function of Z and (13) for R2(t). Here one needs to truncate
the expansions at a finite number K = K(n) of included eigen-components.

Details about the estimation procedures, which are based on local linear smooth-
ing of one- and two-dimensional functions, are deferred to Appendix A.2. Our
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FIG. 1. “Coefficient of determination” functions R2(t) (12), (13), quantifying the fraction of vari-
ance explained by the deterministic part of the dynamic equation (6), illustrated for the trigono-
metric basis {√2 cos(2kπt), k = 1, 2, . . .} on [0, 1] and eigenvalue sequences λk = k−4 (solid) and
λk = 2−k (dashed).

asymptotic consistency results focus on L2 convergence rates. They peruse aux-
iliary results on the convergence of estimates of eigenvalues, eigenfunctions and
eigenfunction derivatives, complementing and improving upon related results of
Liu and Müller (2009), which were derived for convergence in the sup norm. Im-
proved rates of convergence in the L2 distance are the consequence of a special
decomposition that we employ in the proofs to overcome the difficulty caused by
the dependence of the repeated measurements.

Required regularity conditions include assumptions for the distribution of the
design points, behavior of eigenfunctions φk and eigenvalues λk as their order
k increases and the large sample behavior of the bandwidths hμ,0, hμ,1 for the
estimation of the mean function μ and its first derivative μ(1)(t), and hG,0, hG,1
for the estimation of the covariance surface and its partial derivative. We note that
extremely sparse designs are covered, with only two measurements per trajectory;
besides being bounded, the number of measurements Ni for the ith trajectory is
required to satisfy P (Ni ≥ 2) > 0.

Specifically, for the observations (Tij , Yij ), i = 1, . . . , n, j = 1, . . . , Ni , made
for the ith trajectory, we require that:

(A1) Ni are random variables with Ni
i.i.d.∼ N , where N is a bounded positive dis-

crete random variable with and P {N ≥ 2} > 0, and ({Tij , j ∈ Ji}, {Yij , j ∈
Ji}) are independent of Ni , for Ji ⊆ {1, . . . , Ni}.

Writing Ti = (Ti1, . . . , TiNi
)T and Yi = (Yi1, . . . , YiNi

)T , the triples {Ti , Yi , Ni}
are assumed to be i.i.d. For the bandwidths used in the smoothing steps for μ(t)
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and μ(1)(t) in (21), G(t, s) and G(1,0)(t, s) in (22), we require that, as n → ∞,

(A2) max(hμ,0, hμ,1, hG,0, hG,1) → 0, nhμ,0 → ∞, nh3
μ,1 → ∞, nh2

G,0 → ∞,

nh4
G,1 → ∞.

To characterize the behavior of estimated eigenfunction derivatives φ̂(1)(t), define

δ1 = λ1 − λ2, δk = min
j≤k

(λj−1 − λj , λj − λj+1), k ≥ 2.(14)

For the kernels used in the local linear smoothing steps and underlying density
and moment functions, we require assumptions (B1) and (B2) in the Appendix.
Denote the L2 norm by ‖f ‖ = {∫T f 2(t) dt}1/2, the Hilbert–Schmidt norm by
‖�‖s = {∫T

∫
T {�2(t, s) dt ds}1/2 and also define ‖�‖2

u = {∫T �2(t, t) dt}1/2.
The following result provides asymptotic rates of convergence in the L2 norm

for the auxiliary estimates of mean functions and their derivatives as well as co-
variance functions and their partial derivatives, which are briefly discussed in Ap-
pendix A.2. A consequence is a convergence result for the eigenfunction derivative
estimates φ̂

(1)
k , with constants and rates that hold uniformly in the order k ≥ 1.

THEOREM 2. Under (A1) and (A2) and (B1)–(B3), for ν ∈ {0, 1},
∥∥μ̂(ν) − μ(ν)

∥∥= Op

(
1√

nh2ν+1
μ,ν

+ h2
μ,ν

)
,

(15) ∥∥Ĝ(ν,0) − G(ν,0)
∥∥

s = Op

(
1√

nhν+1
G,ν

+ h2
G,ν

)
.

For φ
(1)
k (t) corresponding to λk of multiplicity 1,∥∥φ̂(1)

k (t) − φ
(1)
k (t)

∥∥
(16)

= Op

(
1

λk

{
1√

nh2
G,1

+ h2
G,1 + 1

δk

(
1√

nhG,0
+ h2

G,0

)})
,

where the Op(·) term in (16) is uniform in k ≥ 1.

An additional requirement is that variances of processes X and X(1) are bounded
above and below, since these appear in the denominators of various representa-
tions, for example, in (10) and (13),

(A3) inft∈T G(ν,ν)(s, s) ≥ c > 0 and ‖G(ν,ν)‖u < ∞ for ν = 0, 1,

implying that ‖G(ν,ν)‖s < ∞ by the Cauchy–Schwarz inequality. Define remain-
der terms

RK,ν(t) =
∞∑

k=K+1

λk

{
φ(ν)(t)

}2
, R∗

K,ν(s, t) =
∞∑

k=K+1

λkφ(ν)(s)φ(ν)(t);(17)
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by the Cauchy–Schwarz inequality, ‖R∗
K,ν‖s ≤ ‖RK,ν‖u.

In order to obtain consistent estimates of various quantities, a necessary require-
ment is that the first K eigen-terms approximate the infinite-dimensional process
sufficiently well. The increase in the sequence K = K(n) as n → ∞ therefore
needs to be tied to the spacing and decay of eigenvalues,

(A4) K = o
(
min

{√
nh2

G,1, h−2
G,1

})
,

K∑
k=1

δ−1
k = o

(
min

(√
nhG,0, h−2

G,0

})
,

max
ν=0,1

‖RK,ν‖ → 0 as n → ∞.

If the eigenvalues decrease rapidly and merely a few leading terms are needed,

condition (A4) is easily satisfied. We use “
p�” to connect two terms which are

asymptotically of the same order in probability, that is, the terms are Op of each
other. Define the sequence

αn = K
{(√

nh2
G,1
)−1 + h2

G,1
}+

(
K∑

k=1

δ−1
k

){(√
nhG,0

)−1 + h2
G,0
}
.(18)

Note that cov{X(1)(s), X(1)(t)} = G(1,1)(s, t) = ∑∞
k=1 λkφ

(1)
k (s)φ

(1)
k (t) with

corresponding plug-in estimate Ĝ
(1,1)
K (s, t) =∑K

k=1 λ̂kφ̂
(1)
k (s)φ̂

(1)
k (t), where K =

K(n) is the included number of eigenfunctions. The plug-in estimate for β(t) is
based on (7) and given by β̂K(t) =∑K

k=1 λ̂kφ̂
(1)
k (t)φ̂k(t)/

∑K
k=1 λ̂kφ̂k(t)2 and anal-

ogously the plug-in estimate Ĝz,K of Gz is based on representation (8), using the
estimate β̂K . In a completely analogous fashion one obtains the estimates R̂2

K(t)

of R2(t) from (13) and V̂K(t) of the variance function V (t) = var(Z(t)) of the
drift process from (10). The L2 convergence rates of these estimators of various
components of the dynamic model (6) are given in the following result.

THEOREM 3. Under (A1)–(A4) and (B1)–(B3),∥∥Ĝ(1,1)
K − G(1,1)

∥∥
s = Op(αn + ‖R∗

K,1‖s),
(19) ∥∥Ĝ(1,1)

K − G
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this result. To see this, one may use supk≥1 |ρ̂k − ρk| = Op(‖Ĝz − Gz‖s) and

‖ψ̂k −ψk‖ = δ∗−1
k Op(‖Ĝz −Gz‖s) where Ĝz is any estimate of Gz [Bosq (2000)].

Here the Op(·) terms are uniform in k and δ∗
1 = ρ1 − ρ2, δ∗

k = minj≤k(ρj−1 −
ρj , ρj − ρj+1) for k ≥ 2.

4. Application to online auction data.

4.1. Data and population level analysis. To illustrate our methods, we analyze
the dynamic system corresponding to online auction data, specifically using eBay
bidding data for 156 online auctions of Palm Personal Digital Assistants in 2003
(courtesy of Wolfgang Jank). The data are “live bids” that are entered by bidders at
irregular times and correspond to the actual price a winning bidder would pay for
the item. This price is usually lower than the “willingness-to-pay” price, which is
the value a bidder enters. Further details regarding the proxy bidding mechanism
for the 7-day second-price auction design that applies to these data can be found
in Jank and Shmueli (2005, 2006), Liu and Müller (2008, 2009).

The time unit of these 7-day auctions is hours and the domain is the interval
[0, 168]. Adopting the customary approach, the bid prices are log-transformed
prior to the analysis. The values of the live bids Yij are sampled at bid arrival times
Tij , where i = 1, . . . , 156 refers to the auction index and j = 1, . . . , Ni to the total
number of bids submitted during the ith auction; the number of bids per auction
is found to be between 6 and 49 for these data. We adopt the point of view that
the observed bid prices result from an underlying price process which is smooth,
where the bids themselves are subject to small random aberrations around underly-
ing continuous trajectories. Since there is substantial variability of little interest in
both bids and price curves during the first three days of an auction, when bid prices
start to increase rapidly from a very low starting point to more realistic levels, we
restrict our analysis to the interval [96, 168] (in hours), thus omitting the first three
days of bidding. This allows us to focus on the more interesting dynamics in the
price curves taking place during the last four days of these auctions.

Our aim is to explore the price dynamics through the empirical stochastic dif-
ferential equation (6). Our study emphasizes description of the dynamics over pre-
diction of future auction prices and consists of two parts: a description of the dy-
namics of the price process at the “population level” which focuses on patterns
and trends in the population average and is reflected by dynamic equations for
conditional expectations. The second and major results concern the quantification
of the dynamics of auctions at the individual or “auction-specific level” where one
studies the dynamic behavior for each auction separately, but uses the informa-
tion gained across the entire sample of auctions. Only the latter analysis involves
the stochastic drift term Z in the stochastic differential equation (6). We begin by
reviewing the population level analysis, which is characterized by the determinis-
tic part of (6), corresponding to the equation E(X(1)(t) − μ(1)(t)|X(t) − μ(t)) =
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FI G . 2 . Smoothestimateofthemeanfunctionoflog(Price)intheleftpanelandofits¥rstderivative

intherightpanel .β ( t ){X ( t ) −� ( t ) }.Thisequationdescribesarelationshipthatholdsforconditional

meansbutnotnecessarilyforindividualtrajectories.Forthepopulationlevelanalysis,werequireestimatesofthemeanpricecurveμandits4rstderivativeμ( 1),andtheseareobtainedbyapplyinglinearsmoothersto(21)tothepooledscatterplotsthataredisplayedinFigure2(formoredetails,

seeAppendixA . 2 ).One4ndsthatbothlogpricesandlogpricederivativesareincreasingthroughout,sothatatthelog-scalethepriceincreasesareacceleratinginthemeanastheauctionsproceed.Asecondingredientforouranalysisareestimatesfortheeigenfunctionsandeigenvalues(detailsinAppendixA . 2 ).Sincethe4rstthreeeigenfunctionswerefoundtoexplain84.3%,14.6%and477%ofthetotalvariance,threecomponents wereselected.TheeigenfunctionestimatesareshownintheleftpanelofFigure3,alongwiththeestimatesofthecorrespondingeigenfunctionderivativesintheright panel.Fortheinterpretationoftheeigenfunctionsitishelpfultonotethatthesignoftheeigenfunctionsisarbitrary.Wealsonotethatvariationinthedirectionofthe4rsteigenfunctionδ1correspondstothemajorpartofthevariance.Thevariances�1δ21(t)thatareattributabletothiseigenfunctionareseentosteadilydecreaseastisincreasing,sothatthiseigenfunctionrepresentsastrongtrendofhigherearlierandsmallerlatervarianceinthelogpricetrajectories.Thecontrastbetweenlargevarianceofthetrajectoriesatearliertimesandsmallervarianceslaterre7ectsthefactthatauctionpricetrajectoriesarelessde-terminedearlyonwhenbothrelativelyhighaswellaslowpricesareobserved, whileatlaterstagespricesdifferlessastheendoftheauctionisapproached andpricesareconstrainedintoanarrowerrange.Correspondingly,the4rsteigen- functionderivativeissteadilyincreasing(decreasingifthesignisswitched),with
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FIG. 3. Smooth estimates of the first (solid), second (dashed) and third (dotted) eigenfunctions of

process X (left panel) and of their derivatives (right panel), φ̂
(1)
1 (solid), φ̂

(1)
2 (dashed) and φ̂

(1)
3

(dash-dotted).

notably larger increases (decreases) both at the beginning and at the end and a
relatively flat positive plateau in the middle part.

The second eigenfunction corresponds to a contrast between trajectory levels
during the earlier and the later part of the domain, as is indicated by its steady
increase and the sign change, followed by a slight decrease at the very end. This
component thus reflects a negative correlation between early and late log price
levels. The corresponding derivative is positive and flat, with a decline and nega-
tivity toward the right endpoint. The third eigenfunction, explaining only a small
fraction of the overall variance, reflects a more complex contrast between early
and late phases on one hand and a middle period on the other, with equally more
complex behavior reflected in the first derivative.

The eigenfunctions and their derivatives in conjunction with the eigenvalues
determine the varying coefficient function β , according to (7). The estimate of
this function is obtained by plugging in the estimates for these quantities and is
visualized in the left panel of Figure 5, demonstrating small negative values for
the function β throughout most of the domain, with a sharp dip of the function
into the negative realm near the right end of the auctions.

For subdomains of functional data, where the varying coefficient or “dynamic
transfer” function β is negative, as is the case for the auction data throughout
the entire time domain, one may interpret the population equation E(X(1)(t) −
μ(1)(t)|X(t) − μ(t)) = β(t){X(t) − μ(t)} as indicating “dynamic regression to
the mean.” By this we mean the following: when a trajectory value at a current
time t falls above (resp., below) the population mean trajectory value at t , then
the conditional mean deriva