ScienceDirect

A mpoic di ib ion of nonparme rege ion e ima onfongi dinal of nc ional da a

Fang Yao
Department of Statistics, Colorado State University, Fort Collins, CO 80523, USA
Recei ed 28 Jan a-2005
A ailable online 28 Sep embe-2006

Abstract

The e ima ion of ane ion fc ion b kemel me hod fongi dinal f ional da ai con idered. In he con e of longi dinal da anal i, a ndom f nc ion picall en a bjec ha i of en ob emed a a mall n mber ime poin , hile in he die of f nc ional da a he ndom a ion i all mea on a den e ged. Ho e ere en iall he ame me hod can be applied o bo h ampling a eqge of longi dinal $o f$ nc ional da a A mpoic di \dot{s} ion fo he e ima of he mean and co a ance f nc ion ob ained fem noi ob emion ih he pe ence of i hin- bjec coma ion an died. The ea mpo ic nomali 1 acompamble ho andate obained fmindependen da a, hich i ill ed a im la ion d. Be ide, hi papemic e he condi ion a ocia ed i h ampling plan, hich are in fo -he alidi of local popere of kemel-ba ed e ima $0-\mathrm{fo}-$ longi dinal of nc ional da a.

2006 El e ie-Anc. All eqghered.

AMS 1991 subject classification: 62G08

Keywords: A mpo ic di $\dot{4}$ b ion; Co a comela ion

1. Introduction

Modem echnolog and ad anced comp ing en imnmen ha e facili a ed he collec ion and anal i of high-dimen ional da a, oda a ha a epea edl mea fora ample of bjec . The epea ed mea men ar of en ecoledo emperiod of ime, a on an clo ed and bo nded in e-al \mathcal{T}. I al o co ld be a pacial a $\dot{\text { table }}$, ch a in image ongeo cience applica ion .

[^0] ional meda i mone obed meof nc ion pe- bjec, hile in longi dinal die he epea ed mea emen all akeplace onafe ca edob emanal ime poin foreach bjec.A ignifican in $\dot{\boldsymbol{q}}$ n ic diffence be een o e ing lie in he perep ion ha f nc ional da a ar ob emed in he con in m i ho noi e[2,3], hera longi dinal da a a obeda
 ice f nc ional da a anal ed af e moo hing noi ob e-a ion [10], hich indica e ha he differnce be een oda a pe ela od o he a in hichapmblemi perei edarabl mo concep al han ac al. The fo in hi paperemel-ba ed ege ione ima o-ob ained f \boldsymbol{m} ob e-a ion a di ce ime poin conamina ih mea hemen han ob e-a ion in he con in m, an con ider fo-he e reali ic on. In he con e of kemelba ed nonpame ion, he effec of ampling plan on he ai icale ima on a in e iga ed.

A a li e ha been de eloped in he pa decade on he kemel-ba ed ion for independen and iden icall di $\dot{\boldsymbol{*} b}$ ed da a , fo mma- , ee Fan and Gijbel [5]. The ha been b an ial inecen in e ending he e i ing a mpoicelof of ional ongi dinal da a $[8,11,14,13,9]$. The i e ca ed b he i hin- bjec comela ion argo 1 adde ed in hi pape $-\mathrm{Ha}-$ and Weht [8] died he Ga e -M lle ima of he mean f nc ion fo mpea ed mea men ob emed on a lamed b a ming a iona-comelaion -c , and ho ed ha he infl ence of he i hin- bjec comela ion on he a mp o ic

 ع 1 i in fac con i en $i h$ ha in Ha- and Weht [8] and applicable fo-geneme co aance -c i ho a iona- $\mathrm{a} \quad \mathrm{mp}$ ion. Thi p p blem a alodi c ed b S ani ali and Lee [12] and Lin and Camell [9], he he ed he he $\dot{\sim}$ ic am men of he local prepe of local pol nomial e ima ion and in ii el ignoed he i hin- bjec comela ion hile de ing he a mpoic a q in fo-he alidi of he local peper of kemel pe e ima o ob ained f $\boldsymbol{\sim}$ m longi dinal $o f n c$ ional da a. The e condi ion al ope ide pal ical g ideline fo-ampling preced \approx
 bo hone-dimen ional and o-dimen ional moo hing cone foral- al ed fncion iham g men hich f nc ional fomed b eigh ed a emge of longi dinal of nc ional da a . The e a mpoic nomali la compamble o ho e ob ained fomiden icall di $\dot{\boldsymbol{m}} \mathrm{ed}$ and independen da a. The e 1 applied o he kemel-ba ed e ima of he mean and co a ance f nc ion, hich ield a mpoic nomal di $\dot{\sin }$ ion of he ee ima o- In pa-ic-
 nonpameme e ima ion of co a ance f nc ion ob ained fom longi dinal of nc ional da a con amina ed ih mea emen e-
 onl ob emed fom a ingle a iona- ocha ic pece omndom field. Al ho gh he a mpo ic di $\dot{\boldsymbol{*}}$ ion are de formdom de ign in hi paper he men be ended o fi ed de ign and o he ampling plan ih appopa e modifica ion, and a mpoic bia and a ance em can al obe ob ained in imilamannerthi ill pe ide heo ical ba i and per icalg idance fo-he nonpame \boldsymbol{x} anal i of nc ional ongi dinal da a i himpom po en ial applica ion hich a ba ed on a mpoic di ib ion. T picale ample incl de he con -c ion of a mp o ic confidence band fore f fc ion and confidence egion
foro arance face, and al ofa elec ion of band id h foro a fance e ima ion ba ed on a mpoic mean q ared hemplica ion he con of moo hing independen da a can be e plow fo-he moo hing of longi dinal of nc ional da a ing kemel-ba ed e ima or.

The maindemf he paper onani eda follo. In Sec ion 2 edere he genema mpoic di $\dot{\boldsymbol{s} b}$ ion of one- and o-dimen ional moo he ob ained fem longi dinal of nc ional da a fomndom de ign. The e geneml a mpoic lapplied o commonl ed kemel- pe e ima of he mean c \boldsymbol{m} e and co a fance in Sec ion 3. E en ion ofi ed de ign i di c ed in Sec ion 4. A im la ion d i ped oe al ae he der a mpoic l fome ed da a in Sec ion 5, hile di c ion , incl ding po en ial applica ion of he ling a mp o ic nomali, affed in Sec ion 6.

2. General results of asymptotic distributions for random design

In hi ec ion e ill define geneml fncional ha kemel- eigh ed a emge of he da a fo-me-dimen ional and o-dimen ional moo hing. The in ced geneml f nc ional incl de he mo commonl ed pe of kemel-ba ed e ima o- a pecial ca e, ch a Ga e-M lle-e ima o-Nada a Wa on e ima orlocal pol nomial e ima orec. Since Nada a Wa on and local pol nomial e ima or mol ed in per ice, heia mp o ic beha $\mathrm{io}-$ in em of bia and a fance formdependen da a ha e been ho ghl
died in e i ing li e. Ho e e fo-longi dinal of nc ional da a, pa-ic lat in

o commonl ed e ima o- ill lasel nkno n. The foe in Sec ion 3, he genem a mpo ic 1 de eloped in hi ec ion applied o Nada a Wa on and local pol nomial e ima o- in boh one-dimen ional and o-dimen ional moo hing e ing. In pa-ic la he lack of a mpo ic 1 fo- he co arance face e ima of longi dinal $o f$ nc ional da a i an addi ional moi a ion fo- he defini ion of he o-dimen ional geneml f nc ional ha can be applied o de elop he a mpo ic di \dot{d} b ion fo- he e e ima o -

We fi- con idemdom de ign hile e en ion o o he ampling plan i defeed o Sec ion 4. In cla ical longi dinal die, mea emen a of en in ended o be on a lame ged. Ho e es ince indi id al ma mi ched led i i , he ling da a all become pame,
he onl fe ob e-a ion ab ained fo mo bjec , ih neq al mber of ed mea men per bjec and diffen mea men ime $T_{i j}$ pemindi id al. Thi ampling
arance σ^{2},

$$
\begin{equation*}
Y_{i j}=X_{i}\left(T_{i j}\right)+\varepsilon_{i j}=\mu\left(T_{i j}\right)+\sum_{k=1}^{\infty} \xi_{i k} \phi_{k}\left(T_{i j}\right)+\varepsilon_{i j}, \quad T_{i j} \in \mathcal{T}, \tag{1}
\end{equation*}
$$

he $E \varepsilon_{i j}=0, \operatorname{var}\left(\varepsilon_{i j}\right)=\sigma^{2}$, and he n mber ob e-a ion , $N_{i}(n)$ depending on he ample i e n, a con idedom. We make he follo ing a mpion,
 i h $N_{i}(n) \stackrel{\text { i.i.d }}{\sim} N(n)$, her $N(n)>0$ i a po i i e in ege - al ed endom arable ih $\lim \mathrm{p}_{n \rightarrow \infty} \operatorname{EN}(n)^{2} /[E N(n)]^{2}<\infty$ and $\lim \quad \mathrm{p}_{n \rightarrow \infty} \operatorname{EN}(n)^{4} / \operatorname{EN}(n) \operatorname{EN}(n)^{3}<\infty$.
In he eq el he dependence of $N_{i}(n)$ and $N(n)$ on he ample i e $n \mathrm{i}$ ppe ed fo-implici ; i.e., $N_{i}=N_{i}(n)$ and $N(n)=N$. The ob e-a ion ime and mea emen a a med obe independen of he n mbe - of mea emen , i.e., fo-an be $J_{i} \subseteq\left\{1, \ldots, N_{i}\right\}$ and fo-all $i=1, \ldots, n$,
(A1.2) $\left(\left\{T_{i j}: j \in J_{i}\right\},\left\{Y_{i j}: j \in J_{i}\right\}\right)$ i independen of N_{i}.
W ing $\boldsymbol{T}_{i}=\left(T_{i 1}, \ldots, T_{i N_{i}}\right)^{T}$ and $\boldsymbol{Y}_{i}=\left(Y_{i 1}, \ldots, Y_{i N_{i}}\right)^{T}$, i i ea \quad o ee ha he iple $\left\{\boldsymbol{T}_{i}, \boldsymbol{Y}_{i}, N_{i}\right\}$ an i.i.d..

2.1. Asymptotic normality of one-dimensional smoother

 define a ne pe of con in i ha diffe fem ho e hich commonl ed. We a ha a eal f nc ion $f(x, y): \Re^{p+q} \rightarrow \Re$ i con in o on $x \in A \subseteq \Re^{p}$ nifoml in $y \in \mathfrak{R}^{q}$, p. ided ha foman $x \in A$ and $\varepsilon>0$, he i a neighbowood of x no depending on y, a ing $U(x) \subseteq \Re^{p}, \quad$ ch ha $\left|f\left(x^{\prime}, y\right)-f(x, y)\right|<\varepsilon$ fo all $x^{\prime} \in U(x)$ and $y \in \Re^{q}$.
Fomndom de ign, $\left(T_{i j}, Y_{i j}\right)$ a med o ha e he iden ical di $\dot{*}$ b ion a (T, Y) i h join den i $g(t, y)$. A me ha he ob e-a ion ime $T_{i j}$ i.i.d. i h he masinal den i $f(t)$, b dependence i allo ed among $Y_{i j}$ and $Y_{i k}$ ha ab e-a ion made fo-he ame bjec o$\mathrm{cl} \mathrm{e}-\mathrm{Al}$ o deno e he join den i of $\left(T_{j}, T_{k}, Y_{j}, Y_{k}\right) \mathrm{b} g_{2}\left(t_{1}, t_{2}, y_{1}, y_{2}\right)$, he $j \neq k$. Le v, k be gi en in ege - , i $\mathrm{h} 0 \leqslant v<k$. We a me la condi ion fo-he marginal and join den i ie, $f(t), g(t, y), g_{2}\left(t_{1}, t_{2}, y_{1}, y_{2}\right)$ and he mean f nc ion of he nde ing prece $\quad X(t)$, i.e., $E[X(t)]=\mu(t)$, i h pec oa neighbohood of ain emoin $t \in \mathcal{T}$, a ming ha he e i a neighbowood $U(t)$ of t ch ha:
(B1.1) $\frac{d^{k}}{d u^{k}} f(u) \mathrm{e} \mathrm{i}$ and i con in $\mathrm{o} \quad$ on $u \in U(t)$, and $f(u)>0$ fo $u \in U(t)$;
(B1.2) $g(u, y)$ i con in o on $u \in U(t)$ nifoml in $y \in \mathfrak{R} ; \frac{d^{k}}{d u^{k}} g(u, y) \mathrm{e} \mathrm{i}$ andi con in o on $u \in U(t)$ nifo $m l$ in $y \in \mathfrak{R}$;
(B1.3) $g_{2}\left(u, v, y_{1}, y_{2}\right)$ i con in o on $(u, v) \in U(t)^{2}$ nifoml in $\left(y_{1}, y_{2}\right) \in \mathfrak{R}^{2}$;
(B1.4) $\frac{d^{k}}{d u^{k}} \mu(u) \mathrm{e} \mathrm{i} \quad$ and i con in o on $u \in U(t)$.
Le $K_{1}(\cdot)$ be nonnega i e ni a e kemel f nc ion in one-dimen ional moo hing. The a mp ion fo kemel $K_{1}: \Re \rightarrow \Re$ a follo. We a ha a ni a $\mathfrak{i c}$ e kemel f nc ion $K_{1} \mathrm{i}$ of ode $-(v, k)$, if

$$
\int u^{\ell} K_{1}(u) d u= \begin{cases}0, & 0 \leqslant \ell<k, \quad \ell \neq v \tag{2}\\ (-1)^{v} v!, & \ell=v \\ \neq 0, & \ell=k\end{cases}
$$

(B2.1) K_{1} i compac $1 \quad$ ppoed, $\left\|K_{1}\right\|^{2}=\int K_{1}^{2}(u) d u<\infty$;
(B2.2) K_{1} i a kemel fac ion of $\mathrm{ol}(v, \ell)$.
Le $b=b(n)$ be a eq ence of band id ha a ed in one-dimen ional moo hing. We de elop a mpoic a $n \rightarrow \infty$, and eq ie
(B3) $b \rightarrow 0, n(E N) b^{v+1} \rightarrow \infty, b(E N) \rightarrow 0$, and $n(E N) b^{2 k+1} \rightarrow d^{2}$ fo- ome d ih $0 \leqslant d<\infty$.
One co ld ee in he prof of Theom 1 ha he a mp ion (B3) combined ih(A1.1) pe ide he condi ion ch ha he local pope of kemel- pe e ima o- hold fo-longi dinal of nc ional da a ih he pe ence of i hin- bjec comla ion.

Le $\left\{\psi_{\lambda}\right\}_{\lambda=1, \ldots, l}$ be a collec ion of eal f nc ion $\psi_{\lambda}: \mathfrak{R}^{2} \rightarrow \mathfrak{R}$, hich a if :
(B4.1) $\psi_{\lambda}(t, y)$ ae con in o on $\{t\}$ nifo m in $y \in \mathfrak{R}$;
(B4.2) $\frac{d^{k}}{d t^{k}} \psi_{\lambda}(t, y) \mathrm{e}$ i foall an men (t, y) and con in o $\{t\}$ nifoml in $y \in \Re$.
Then e define he geneml eigh ed a emge

$$
\Psi_{\lambda n}=\frac{1}{n E N b^{v+1}} \sum_{i=1}^{n} \sum_{j=1}^{N_{i}} \psi_{\lambda}\left(T_{i j}, Y_{i j}\right) K_{1}\left(\frac{t-T_{i j}}{b}\right), \quad \lambda=1, \ldots, l .
$$

and

$$
\mu_{\lambda}=\mu_{\lambda}(t)=\frac{d^{v}}{d t^{v}} \int \psi_{\lambda}(t, y) g(t, y) d y, \quad \lambda=1, \ldots, l
$$

Le

$$
\sigma_{\kappa \lambda}=\sigma_{\kappa \lambda}(t)=\int \psi_{\kappa}(t, y) \psi_{\lambda}(t, y) g(t, y) d y\left\|K_{1}\right\|^{2}, \quad 1 \leqslant \lambda, \kappa \leqslant l
$$

and $H: \mathfrak{R}^{l} \rightarrow \mathfrak{R}$ be a f nc ion ih con in o fi- oder a i e. We deno e he gedien ec o $\left(\left(\partial H / \partial x_{1}\right)(v), \ldots,\left(\partial H / \partial x_{l}\right)(v)\right)^{T} \mathrm{~b} \quad D H(v)$ and $\bar{N}=\sum_{i=1}^{n} N_{i} / n$.

Theorem 1. If the assumptions (A1.1), (A1.2) and (B1.1) (B4.2) hold, then

$$
\begin{align*}
& \sqrt{n \bar{N} b^{2 v+1}}\left[H\left(\Psi_{1 n}, \ldots, \Psi_{l n}\right)-H\left(\mu_{1}, \ldots, \mu_{l}\right)\right] \xrightarrow{\mathcal{D}} \mathcal{N}\left(\beta,\left[D H\left(\mu_{1}, \ldots, \mu_{l}\right)\right]^{T}\right. \\
& \left.\quad \Sigma\left[D H\left(\mu_{1}, \ldots, \mu_{l}\right)\right]\right) \tag{3}
\end{align*}
$$

where

$$
\beta=\frac{(-1)^{k} d}{k!} \int u^{k} K_{1}(u) d u \sum_{\lambda=1}^{l} \frac{\partial H}{\partial \mu_{\lambda}}\left\{\left(\mu_{1}, \ldots, \mu_{l}\right)^{T}\right\} \frac{d^{k-v}}{d t^{k-v}} \mu_{\lambda}(t), \quad \Sigma=\left(\sigma_{\kappa \lambda}\right)_{1 \leqslant \kappa, \lambda \leqslant l} .
$$

Proof. I i een ha \bar{N} can be eplaced ih $E N$ b Sl k Theoem nde-A1.1). We no ho ha

$$
\begin{equation*}
\sqrt{n(E N) b^{2 v+1}}\left[H\left(E \Psi_{1 n}, \ldots, E \Psi_{l n}\right)-H\left(\mu_{1}, \ldots, \mu_{l}\right)\right] \longrightarrow \beta \tag{4}
\end{equation*}
$$

Since (A1.1) and (A1.2) hold, and K_{1} i of ode (v, k), ing Ta lo pan ion o ode one ob ain

$$
\begin{align*}
E \Psi_{\lambda n} & =\frac{1}{n b^{v+1}} E\left\{\sum_{i=1}^{n} \frac{1}{E N} \sum_{j=1}^{N_{i}} \psi_{\lambda}\left(T_{i j}, Y_{i j}\right) K_{1}\left(\frac{t-T_{i j}}{b}\right)\right\} \\
& =\frac{1}{b^{v+1} E N} E\left\{\sum_{j=1}^{N} E\left[\left.\psi_{\lambda}\left(T_{j}, Y_{j}\right) K_{1}\left(\frac{t-T_{j}}{b}\right) \right\rvert\, N\right]\right\} \\
& =\frac{1}{b^{v+1}} E\left\{\psi_{\lambda}(T, Y) K_{1}\left(\frac{t-T}{b}\right)\right\} \\
& =\mu_{\lambda}+\frac{(-1)^{k}}{k!} \int u^{k} K_{1}(u) d u \frac{d^{k-v}}{d t^{k-v}} \mu_{\lambda}(t) b^{k-v}+o\left(b^{k-v}\right) \tag{5}
\end{align*}
$$

Then (4) follo fem an l-dimen ional Ta lom pan ion of H of ole and $\left(\mu_{1}, \ldots, \mu_{l}\right)^{T}$, co pled ih(5). If e can ho

$$
\begin{equation*}
\sqrt{n(E N) b^{2 v+1}}\left[\left(\Psi_{1 n}, \ldots, \Psi_{l n}\right)^{T}-\left(E \Psi, \ldots, E \Psi_{l n}\right)^{T}\right] \xrightarrow{\mathcal{D}} \mathcal{N}(0, \Sigma), \tag{6}
\end{equation*}
$$

in analog o Bha acha-a and M lle-[1], and con in i of DH a $\left(\mu_{1}, \ldots, \mu_{l}\right)^{T}$ and appl ing imilam men ed in (5), e find $\operatorname{DH}\left(E \Psi_{1 n}, \ldots, E \Psi_{l n}\right) \rightarrow D H\left(\mu_{1}, \ldots, \mu_{l}\right)$. Then Camè - Wold de ice ield

$$
\begin{align*}
& \sqrt{n(E N) b^{2 v+1}}\left[H\left(\Psi_{1 n}, \ldots, \Psi_{l n}\right)-H\left(E \Psi, \ldots, E \Psi_{l n}\right)\right] \xrightarrow{\mathcal{D}} \mathcal{N}\left(0, D H\left(\mu_{1}, \ldots, \mu_{l}\right)^{T}\right. \\
& \left.\quad \Sigma D H\left(\mu_{1}, \ldots, \mu_{l}\right)\right) \tag{7}
\end{align*}
$$

combined ih(4), leading o (3).
I emain o ho (6). Ob e-ing (A1.1) and (A1.2), one ha

$$
\begin{aligned}
& n(E N) b^{2 v+1} \operatorname{cov}\left(\Psi_{\lambda n}, \Psi_{\kappa n}\right) \\
& \quad=\frac{1}{b} E\left\{\frac{1}{E N}\left[\sum_{j=1}^{N} \psi_{\lambda}\left(T_{j}, Y_{j}\right) K_{1}\left(\frac{t-T_{j}}{b}\right)\right]\left[\sum_{k=1}^{N} \psi_{\kappa}\left(T_{k}, Y_{k}\right) K_{1}\left(\frac{t-T_{k}}{b}\right)\right]\right\} \\
& \quad-\frac{E N}{b} E\left[\frac{1}{E N} \sum_{j=1}^{N} \psi_{\lambda}\left(T_{j}, Y_{j}\right) K_{1}\left(\frac{t-T_{j}}{b}\right)\right] \\
& \quad \times E\left[\frac{1}{E N} \sum_{k=1}^{N} \psi_{\kappa}\left(T_{k}, Y_{k}\right) K_{1}\left(\frac{t-T_{k}}{b}\right)\right] \\
& \quad \equiv I_{1}-I_{2}
\end{aligned}
$$

I i ob io ha $I_{2}=O(b)=o(1) \mathrm{f} \oplus \mathrm{m}$ he de $\dot{\boldsymbol{r}} \mathrm{a}$ ion of (5). Fo \boldsymbol{I}_{1}, i can be $\dot{\rightarrow}$ en a

$$
\begin{aligned}
I_{1}= & \frac{1}{b} E\left[\frac{1}{E N} \sum_{j=1}^{N} \psi_{\lambda}\left(T_{j}, Y_{j}\right) \psi_{\kappa}\left(T_{j}, Y_{j}\right) K_{1}^{2}\left(\frac{t-T_{j}}{b}\right)\right] \\
& +\frac{1}{b} E\left[\frac{1}{E N} \sum_{1 \leqslant j \neq k \leqslant N} \psi_{\lambda}\left(T_{j}, Y_{j}\right) \psi_{\kappa}\left(T_{k}, Y_{k}\right) K_{1}\left(\frac{t-T_{j}}{b}\right) K_{1}\left(\frac{t-Y_{k}}{b}\right)\right] \\
\equiv & Q_{1}+Q_{2} .
\end{aligned}
$$

Appl ing (A1.1) and (A1.2), one ha

$$
\begin{aligned}
Q_{1} & =\frac{1}{b} E\left\{\frac{1}{E N} \sum_{j=1}^{N} E\left[\left.\psi_{\lambda}\left(T_{j}, Y_{j}\right) \psi_{\kappa}\left(T_{j}, Y_{j}\right) K_{1}^{2}\left(\frac{t-T_{j}}{b}\right) \right\rvert\, N\right]\right\} \\
& =\frac{1}{b} E\left[\psi_{\lambda}(T, Y) \psi_{\kappa}(T, Y) K_{1}^{2}\left(\frac{t-Y}{b}\right)\right]=\sigma_{\lambda \kappa}+o(1)
\end{aligned}
$$

Then (4) ill hold, ob eming (A1.1) and he follo ing asen ha g an ee he local pepeof he kemel-ba ede ima o- ih he pe ence of i hin- bjec comela ion in longi dinal of nc ional da a,

$$
\begin{aligned}
Q_{2}= & \frac{1}{b E N} E\left\{\sum_{1 \leqslant j \neq k \leqslant N}^{N} E\left[\left.\psi_{\lambda}\left(T_{j}, Y_{j}\right) \psi_{\kappa}\left(T_{k}, Y_{k}\right) K_{1}\left(\frac{t-T_{j}}{b}\right) K_{1}\left(\frac{t-T_{k}}{b}\right) \right\rvert\, N\right]\right\} \\
= & \frac{E N(N-1)}{b E N} E\left[\psi_{\lambda}\left(T_{1}, Y_{1}\right) \psi_{\kappa}\left(T_{2}, Y_{2}\right) K_{1}\left(\frac{t-T_{1}}{b}\right)\right] K_{1}\left(\frac{t-T_{2}}{b}\right) \\
= & \frac{b E N(N-1)}{E N} \int_{\mathfrak{R}^{4}} \psi_{\lambda}\left(t-u b, y_{1}\right) \psi_{\kappa}\left(t-v b, y_{2}\right) K_{1}(u) K_{2}(v) \\
& \times g_{2}\left(t-u b, t-v b, y_{1}, y_{2}\right) d u d v d y_{1} d y_{2} \\
= & \frac{b E N(N-1)}{E N} \int_{\mathfrak{R}^{2}} \psi_{\lambda}\left(t, y_{1}\right) \psi_{\kappa}\left(t, y_{2}\right) g_{2}\left(t, t, y_{1}, y_{2}\right) d y_{1} d y_{2}+o(b)=o(1),
\end{aligned}
$$

i.e., he i hin- bjec comela ion can be ignom hile der ing he a mpoic aiance.

2.2. Asymptotic normality of two-dimensional smoother

The geneml a mpo ic can be e ended o o-dimen ional moohing. Le ($\boldsymbol{v}, \boldsymbol{k}$) deno e he m li-indice $\boldsymbol{v}=\left(v_{1}, v_{2}\right)$ and $\boldsymbol{k}=\left(k_{1}, k_{2}\right)$, he $|\boldsymbol{v}|=v_{1}+v_{2}$ and $|\boldsymbol{k}|=k_{1}+k_{2}$. In o-dimen ional moo hing, mor a mpion aneded fonjoin den iie. Le $f_{2}(s, t)$ be he join den i of $\left(T_{j}, T_{k}\right)$, and $g_{4}\left(s, t, s^{\prime}, t^{\prime}, y_{1}, y_{2}, y_{1}^{\prime}, y_{2}^{\prime}\right)$ he join den i of $\left(T_{j}, T_{k}, T_{j^{\prime}}, T_{k^{\prime}}, Y_{j}, Y_{k}, Y_{j^{\prime}}, Y_{k^{\prime}}\right)$ he $j \neq k,(j, k) \neq\left(j^{\prime}, k^{\prime}\right)$. Deno e he co a ance face $\mathrm{b} \quad C(s, t)=\operatorname{cov}\left(X\left(T_{j}\right), X\left(T_{k}\right) \mid T_{j}=s, T_{k}=t\right)$. The follo ing lat condi ion an a med, he $U(s, t) \mathrm{i}$ ome neighbowood of $\{(s, t)\}$,
(C1.1) $\frac{d^{|k|}}{d u^{k_{1}} d v^{k_{2}}} f_{2}(u, v)$ e i and i con in o on $(u, v) \in U(s, t)$, and $f_{2}(u, v)>0$ fo$(u, v) \in U(s, t)$;
(C1.2) $g_{2}\left(u, v, y_{1}, y_{2}\right)$ i con in o on $(u, v) \in U(s, t)$ nifoml in $\left(y_{1}, y_{2}\right) \in \mathfrak{R}^{2} ; \frac{d^{|k|}}{d u^{k_{1}} d v^{k}}$ $g_{2}\left(u, v, y_{1}, y_{2}\right) \mathrm{e} \mathrm{i}$ and i con in o on $(u, v) \in U(s, t)$ nifoml in $\left(y_{1}, y_{2}\right) \in \mathfrak{R}^{2}$;
(C1.3) $g_{4}\left(u, v, u^{\prime}, v^{\prime}, y_{1}, y_{2}, y_{1}^{\prime}, y_{2}^{\prime}\right) \mathrm{i}$ conin o on $\left(u, v, u^{\prime}, v^{\prime}\right) \in U(s, t)^{2}$ nifoml in $\left(y_{1}, y_{2}, y_{1}^{\prime}, y_{2}^{\prime}\right) \in \mathfrak{R}^{4} ;$
(C1.4) $\frac{d^{|k|}}{d u^{k_{1}} d v^{k_{2}}} C(u, v) \mathrm{e} \mathrm{i} \quad$ and i con in o on $(u, v) \in U(s, t)$.
Le K_{2} be nonnega i e bi a e kenel f nc ion ed in he o-dimen ional moo hing. The a mpion forenel K_{2} ae follo,
(C2.1) K_{2} i compac ed ppom i h $\left\|K_{2}\right\|^{2}=\int_{\mathfrak{R}^{2}} K_{2}^{2}(u, v) d u d v<\infty$, and i mmed ih pec o coodina e u and v.
(C2.2) K_{2} i a kemel f nc ion of oden $(|\boldsymbol{v}|,|\boldsymbol{k}|)$, i.e.,

$$
\sum_{\ell_{1}+\ell_{2}=|\boldsymbol{l}|} \int_{\mathfrak{R}^{2}} u^{\ell_{1}} v^{\ell_{2}} K_{2}(u, v) d u d v= \begin{cases}0, & 0 \leqslant|\boldsymbol{l}|<|\boldsymbol{k}|,|\boldsymbol{l}| \neq|\boldsymbol{v}| \tag{8}\\ (-1)^{|\boldsymbol{v}|}|\boldsymbol{v}|!, & |\boldsymbol{l}|=|\boldsymbol{v}| \\ \neq 0, & |\boldsymbol{l}|=|\boldsymbol{k}|\end{cases}
$$

Le $h=h(n)$ be a eq ence of band $i d \mathrm{~h}$ ed in o-dimen ional moo hing, hile i i po ible ha he band idh ed for o arg men ma be differn. Since e ill foc on he e ima of he co arance face ha i mere abo he diagonal, i i fficien o con ide-he iden ical band id h forme oag men. The a mpoic i de eloped a $n \rightarrow \infty$ a follo :
(C3) $h \rightarrow 0, n E N^{2} h^{|\boldsymbol{v}|+2} \rightarrow \infty, h E N^{3} \rightarrow 0$, and $n E[N(N-1)] h^{2|\boldsymbol{k}|+2} \rightarrow e^{2}$ fo- ome $0 \leqslant e<\infty$.

Simila -0 he one-dimen ional moo hing ca e, a mpion (C3) and (A1.1) g ame ee he local pøpe- of he bi as e kemel-ba ed e ima o- i h he pe ence of i hin- bjec comela ion.

Le $\left\{\phi_{\lambda}\right\}_{\lambda=1, \ldots, l}$ be a collec ion of eal f nc ion $\phi_{\lambda}: \mathfrak{R}^{4} \rightarrow \mathfrak{R}, \lambda=1, \ldots, l$, a i f ing
(C4.1) $\phi_{\lambda}\left(s, t, y_{1}, y_{2}\right)$ an in o on $\{(s, t)\}$ nifoml in $\left(y_{1}, y_{2}\right) \in \mathfrak{R}^{2}$;
(C4.2) $\frac{d^{|k|}}{d s^{k_{1}} d t^{k_{2}}} \phi_{\lambda}\left(s, t, y_{1}, y_{2}\right) \mathrm{e}$ i forall arg men $\left(s, t, y_{1}, y_{2}\right)$ and aren in o on $\{(s, t)\}$ nifo $m l$ in $\left(y_{1}, y_{2}\right) \in \mathfrak{R}^{2}$.

Then he geneal eigh ed a enge of o-dimen ional moo hing a defined b, fo $-1 \leqslant \lambda \leqslant l$,

$$
\begin{aligned}
\Phi_{\lambda n}= & \Phi_{\lambda n}(t, s)=\frac{1}{n E[N(N-1)] h^{|v|+2}} \sum_{i=1}^{n} \sum_{1 \leqslant j \neq k \leqslant N_{i}} \phi_{\lambda}\left(T_{i j}, T_{i k}, Y_{i j}, Y_{i k}\right) \\
& \times K_{2}\left(\frac{s-T_{i j}}{h}, \frac{t-T_{i k}}{h}\right) .
\end{aligned}
$$

Le

$$
m_{\lambda}=m_{\lambda}(s, t)=\sum_{v_{1}+v_{2}=|\boldsymbol{v}|} \frac{d^{|v|}}{d s^{v_{1}} d t^{v_{2}}} \int_{\mathfrak{R}^{2}} \phi_{\lambda}\left(s, t, y_{1}, y_{2}\right) g_{2}\left(s, t, y_{1}, y_{2}\right) d y_{1} d y_{2}, \quad 1 \leqslant \lambda \leqslant l
$$

and

$$
\begin{aligned}
\omega_{\kappa \lambda} & =\omega_{\kappa \lambda}(s, t)=\int_{\Re^{2}} \phi_{\kappa}\left(s, t, y_{1}, y_{2}\right) \phi_{\lambda}\left(s, t, y_{1}, y_{2}\right) g_{2}\left(s, t, y_{1}, y_{2}\right) d y_{1} d y_{2}\left\|K_{2}\right\|^{2} \\
1 & \leqslant \kappa, \lambda \leqslant l
\end{aligned}
$$

Theorem 2. If assumptions (A1.1), (A1.2) and (C1.1) (C4.2) hold, then

$$
\begin{align*}
& \sqrt{n \bar{N}(\bar{N}-1) h^{2|v|+2}}\left[H\left(\Phi_{1 n}, \ldots, \Phi_{l n}\right)-H\left(m_{1}, \ldots, m_{l}\right)\right] \\
& \stackrel{\mathcal{D}}{\longrightarrow} \mathcal{N}\left(\gamma,\left[D H\left(m_{1}, \ldots, m_{l}\right)\right]^{T} \Omega\left[D H\left(m_{1}, \ldots, m_{l}\right)\right]\right), \tag{9}
\end{align*}
$$

where

$$
\begin{aligned}
\gamma= & \frac{(-1)^{|\boldsymbol{k}|} e}{|\boldsymbol{k}|!} \sum_{\lambda=1}^{l}\left\{\sum_{k_{1}+k_{2}=|\boldsymbol{k}|} \int_{\mathfrak{R}^{2}} u^{k_{1}} v^{k_{2}} K_{2}(u, v) d u d v \frac{d^{|\boldsymbol{k}|}}{d s^{k_{1}} d t^{k_{2}}}\right. \\
& \left.\times \int_{\mathfrak{R}^{2}} \phi_{\lambda}\left(s, t, y_{1}, y_{2}\right) g_{2}\left(s, t, y_{1}, y_{2}\right) d y_{1} d y_{2}\right\} \\
& \times\left\{\frac{\partial H}{\partial m_{\lambda}}\left(m_{1}, \ldots, m_{l}\right)^{T}\right\}, \\
\Omega= & \left(\omega_{\kappa \lambda}\right)_{1 \leqslant \kappa \leqslant l .}
\end{aligned}
$$

The peof of Theom 2 e en iall follo ha of Theom 1 ih appepe e modifica ion hich areq ied fo- o-dimen ional moo hing.

3. Applications to nonparametric regression estimators for functional or longitudinal data

Al ho gh a emion of kemel-ba ed e ima o ha e been in med in li en \boldsymbol{e}, Nada a Wa on and local pol nomial, e peciall local lineam ima one he mo commonl ed non-pame moo hing echniq e in longi dinal ofnc ional da a anal i. D e o i hin- bjec comela ion, he a mpoic beha io-in em of bia and a ance of he e e ima $0-$ fo noi il ob e-ed longi dinal of nc ional da a ha e been a ell nde ood a fo-i.i.d. da a E peciall, a mpoic 1 fo a in hi ec ion, e appl he a mpo ic le eloped forgeneml fnc ional o Nada a Wa on and local lineare ima of of f nc ion and co a ance obain heia mpoic di $\dot{4}$ ion.

3.1. Asymptotic distributions of mean estimators

We appl Theom 1 o he local a mpoic di \dot{b} ion of he commonl ed Nada a Wa on kemel e ima $0-\hat{\mu}_{\mathrm{N}}(t)$ and local lineame ima $0-\hat{\mu}_{\mathrm{L}}(t)$ fo -f nc ional/longi dinal
da $a:$

$$
\begin{align*}
& \hat{\mu}_{\mathrm{N}}(t)=\left[\sum_{i=1}^{n} \sum_{j=1}^{N_{i}} K_{1}\left(\frac{t-T_{i j}}{b}\right) Y_{i j}\right] /\left[\sum_{i=1}^{n} \sum_{j=1}^{N_{i}} K_{1}\left(\frac{t-T_{i j}}{b}\right)\right] \tag{10}\\
& \hat{\mu}_{\mathrm{L}}(t)=\hat{\alpha}_{0}(t)=\underset{\left(\alpha_{0}, \alpha_{1}\right)}{\operatorname{agg} \min }\left\{\sum_{i=1}^{n} \sum_{j=1}^{N_{i}} K_{1}\left(\frac{t-T_{i j}}{b}\right)\left[Y_{i j}-\left(\alpha_{0}+\alpha_{1}\left(T_{i j}-t\right)\right)\right]^{2}\right\} . \tag{11}
\end{align*}
$$

Corollary 1. If assumptions (A1.1), (A1.2), and (B1.1) (B3) hold with $v=0$ and $k=2$, then

$$
\begin{equation*}
\sqrt{n \bar{N} b}\left[\hat{\mu}_{\mathrm{N}}(t)-\mu(t)\right] \xrightarrow{\mathcal{D}} \mathcal{N}\left(\frac{d}{2} \frac{\mu^{(2)}(t) f(t)+2 \mu^{(1)}(t) f^{(1)}(t)}{f(t)} \sigma_{K_{1}}^{2}, \frac{\operatorname{var}(Y \mid T=t)\left\|K_{1}\right\|^{2}}{f(t)}\right), \tag{12}
\end{equation*}
$$

where d is as in (B3), $\sigma_{K_{1}}^{2}=\int u^{2} K_{1}(u) d u$ 370TD(2/F5295Tj/-0.9121TD/F11Tf5.9776005.9776 TJ.1T3F

He $w_{i j}=K_{1}\left(\left(t-T_{i j}\right) / b\right) /(n b)$, he K_{1} i a kemelf nc ion of ode 2), a i f ing (B2.1) and (B2.2), and $\hat{\alpha}_{1}(t) \mathrm{i}$ an e ima - he fir de a e $\mu^{\prime}(t)$ of μ a t.

Ob e-ing ha Comlla- 1 implie $\hat{\mu}_{\mathrm{N}}(t) \xrightarrow{p} \mu(t)$, le $\hat{f}(t)=\sum_{i} \sum_{j} w_{i j} / N_{i}$, i i ea o ho $\hat{f}(t) \xrightarrow{p} f(t)$ in analog o Corlla- 1 . We preceed o ho $\hat{a}_{1}(t) \xrightarrow{p} \mu^{\prime}(t)$. Deno e $\sigma_{K_{1}}^{2}=\int u^{2} K_{1}(u) d u$, he kemel f nc ion $\widetilde{K}_{1}(t)=-t K_{1}(t) / \sigma_{K_{1}}^{2}$, and define $\Psi_{\lambda n}, 1 \leqslant \lambda \leqslant 3 \mathrm{~b}$ $\psi_{1}(u, y)=y, \psi_{2}(u, y) \equiv 1, \psi_{3}(u, y)=u-t . \mathrm{Ob}$ eme ha $\widetilde{K}_{1} \mathrm{i}$ of oder $(1,3), \hat{f}(t) \xrightarrow{p} f(t)$, and define

$$
\widetilde{H}\left(x_{1}, x_{2}, x_{3}\right)=\frac{x_{1}-x_{2} \hat{\mu}_{\mathrm{N}}(t)}{x_{3}-b x_{2}^{2} / \hat{f}(t) \cdot \sigma_{K_{1}}^{2}} \quad \text { and } \quad H\left(x_{1}, x_{2}, x_{3}\right)=\frac{x_{1}-x_{2} \mu(t)}{x_{3}}
$$

Then

$$
\begin{aligned}
\hat{\alpha}_{1}(t)= & \tilde{H}\left(\Psi_{1 n}, \Psi_{2 n}, \Psi_{3 n}\right) \\
& =\left[H\left(\Psi_{1 n}, \Psi_{2 n}, \Psi_{3 n}\right)+\frac{\Psi_{2 n}\left(\mu(t)-\hat{\mu}_{\mathrm{N}}(t)\right)}{\Psi_{3 n}}\right] \frac{\Psi_{3 n}}{\Psi_{3 n}+b^{2} \Psi_{2 n}^{2} / \hat{f}(t) \cdot \sigma_{K_{1}}^{2}}
\end{aligned}
$$

No e ha $\mu_{1}=\left(\mu^{\prime} f+m f^{\prime}\right)(t), \mu_{2}=f^{\prime}(t)$, and $\mu_{3}=f(t)$, impl $\operatorname{ing} \Psi_{\lambda_{n}}-\mu_{\lambda}=O_{p}\left(1 / \sqrt{n \bar{N} b^{3}}\right)$, fo $-\lambda=1,2,3$, b Theoem 1. U ing Slutsky's Theonem, $\left|\tilde{H}\left(\Psi_{1 n}, \Psi_{2 n}, \Psi_{3 n}\right)-\mu^{\prime}(t)\right|=$ $O_{p}\left(1 / \sqrt{n \bar{N} b^{3}}\right)$ follo

Fo-he a mpo ic di ib of $\hat{\mu}_{\mathrm{L}}$, no e ha

$$
\hat{\mu}_{\mathrm{L}}(t)=\frac{\sum_{i} \frac{1}{E N} \sum_{j} w_{i j} Y_{i j}-\sum_{i} \frac{1}{E N} \sum_{j} w_{i j}\left(T_{i j}-t\right) \hat{a}_{1}(t)}{\sum_{i} \frac{1}{E N} \sum_{j} w_{i j}} .
$$

Con idemg $\sqrt{n \bar{N} b} \sum_{i} \frac{1}{E N} \sum_{j} w_{i j}\left(T_{i j}-t\right)=\sqrt{n \bar{N} b} \sigma_{K_{1}}^{2} b^{2} \Psi_{2 n}$. Since \tilde{K}_{1} i of oder $(1,3)$, Theom 1 implie $\Psi_{2 n}=f^{\prime}(t)+O_{p}\left(1 / \sqrt{n \bar{N} b^{3}}\right)$, hich ield $\sqrt{n \bar{N} b} \sigma_{K_{1}}^{2} b^{2} \Psi_{2 n}=\sqrt{n \bar{N} b^{5}} \sigma_{K_{1}}^{2}$ $f^{\prime}(t)+\sigma_{K_{1}}^{2} O_{p}(b)=o_{p}(1) \mathrm{b}$ ob e-ing $n \bar{N} b^{5} \rightarrow d^{2}$ fo $-0 \leqslant d<\infty$. Since $\hat{f}(t) \xrightarrow{p} f(t)$ and $\left|\hat{\alpha}_{1}(t)-\mu^{\prime}(t)\right|=O_{p}\left(1 / \sqrt{n \bar{N} b^{3}}\right)=o_{p}(1), \quad$ e find

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \sqrt{n \bar{N} b}\left[\hat{\mu}_{\mathrm{L}}(t)-\mu(t)\right] \stackrel{\mathcal{D}}{=} \lim _{n \rightarrow \infty} \sqrt{n \bar{N} b} \\
& \quad \times\left\{\frac{\sum_{i} \frac{1}{E N} \sum_{j} w_{i j} Y_{i j}-\mu^{\prime}(t) \sum_{i} \frac{1}{E N} \sum_{j} w_{i j} T_{i j}+t \mu^{\prime}(t) \sum_{i} \frac{1}{E N} \sum_{j} w_{i j}}{\sum_{i} \frac{1}{E N} \sum_{j} w_{i j}}-\mu(t)\right\}
\end{aligned}
$$

U ing he kemel K_{1} of $\mathrm{ode}-(0,2)$, e define $\Psi_{\lambda n}, 1 \leqslant \lambda \leqslant 3$, h $\boldsymbol{g h} \psi_{1}(u, y)=y$, $\psi_{2}(u, y)=u$ and $\psi_{3}(u, y) \equiv 1$, e ing $v=0, k=2, l=3$ and $H\left(x_{1}, x_{2}, x_{3}\right)=\left[x_{1}-\right.$ $\left.\mu^{\prime}(t) x_{2}+t \mu^{\prime}(t) x_{3}\right] / x_{3}$. Then (13) follo b appl ing Theom 1 .

3.2. Asymptotic distributions of covariance estimators

No e ha in model (1), $\operatorname{cov}\left(Y_{i j}, Y_{i k} \mid T_{i j}, T_{i k}\right)=\operatorname{cov}\left(X\left(T_{i j}\right), X\left(T_{i k}\right)\right)+\sigma^{2} \delta_{j k}$, he $\delta_{j l}$ i 1 if $j=k$ and 0 o he -i e. Le $\mathrm{C}_{i j k}=\left(Y_{i j}-\hat{\mu}\left(T_{i j}\right)\right)\left(Y_{i k}-\hat{\mu}\left(T_{i k}\right)\right)$ be he co a ance, he $\hat{\mu}(t) \mathrm{i}$ he e ima ed mean f nc ion ob ained f he porm io ep, form ance, $\hat{\mu}(t)=\hat{\mu}_{\mathrm{N}}(t) \mathrm{o}-$ $\hat{\mu}(t)=\hat{\mu}_{\mathrm{L}}(t)$. I i ea \quad o ee ha $E\left[C_{i j k} \mid T_{i j}, T_{i k}\right] \approx \operatorname{cov}\left(X\left(T_{i j}\right), X\left(T_{i k}\right)\right)+\sigma^{2} \delta_{j k}$. The fo \quad,
he diagonal of he co a ance ho ld be ed, i.e., onl $C_{i j k}, j \neq k$, ho ld be incl ded a inp da a forme co a face moohing ep, a pe io 1 obedin S ani ali and Lee [12] and Yao e al. [15].

Commonl ed nonpame ion e ima of of to areance $C(s, t)=$ $E\left\{\left[X\left(T_{1}\right)-\mu\left(T_{1}\right)\right]\left[X\left(T_{2}\right)-\mu\left(T_{2}\right) \mid T_{1}=s, T_{2}=t\right]\right\}$, he o-dimen ional Nada a Wa on e ima ond local linea ima odefined a follo :

$$
\begin{align*}
\widehat{C}_{\mathrm{N}}(s, t)= & {\left[\sum_{i=1}^{n} \sum_{j \neq k} K_{2}\left(\frac{s-T_{i j}}{h}, \frac{t-T_{i k}}{h}\right) C_{i j k}\right] / } \\
& {\left[\sum_{i=1}^{n} \sum_{j \neq k} K_{2}\left(\frac{s-T_{i j}}{h}, \frac{t-T_{i k}}{h}\right)\right], } \tag{16}\\
\widehat{C}_{\mathrm{L}}(s, t)= & \hat{\beta}_{0}(s, t)=\underset{\beta}{\operatorname{as} \min }\left\{\sum_{i=1}^{n} \sum_{j \neq k} K_{2}\left(\frac{s-T_{i j}}{h}, \frac{t-T_{i k}}{h}\right)\right. \\
& \times\left[C_{i j k}-f\left(\boldsymbol{\beta},(s, t),\left(T_{i j}, T_{i k}\right)\right)\right]
\end{align*}
$$

$\phi_{1}\left(t_{1}, t_{2}, y_{1}, y_{2}\right)=\left(y_{1}-\mu\left(t_{1}\right)\right)\left(y_{2}-\mu\left(t_{2}\right)\right), \phi_{2}\left(t_{1}, t_{2}, y_{1}, y_{2}\right)=y_{1}-\mu\left(t_{1}\right)$, and $\phi_{3}\left(t_{1}, t_{2}, y_{1}, y_{2}\right)$ $\equiv 1$, hen $\mathrm{p}_{t, s \in \mathcal{T}}\left|\Phi_{p n}\right|=O_{p}(1)$, fo $-p=1,2,3$, b Lemma 1 of Yao e al. [16]. Thi implie ha $\mathrm{p}_{t, s \in \mathcal{T}}\left|\Phi_{2 n}\right| O_{p}(1 /(\sqrt{n} b))=O_{p}(1 /(\sqrt{n} b))$ and $\mathrm{p}_{t, s \in \mathcal{T}}\left|\Phi_{3 n}\right| O_{p}(1 /(\sqrt{n} b))=$
 Nada a Wa on e ima o $-\widehat{C}_{\mathrm{N}}(s, t)$, of $C(s, t)$ ob ained fem $C_{i j k}$ i a mpoicall eq i alen o ha ob ained fem $\tilde{C}_{i j k}$, deno ed b $\tilde{C}_{\mathrm{N}}(t, s)$.
Therfon, i i fficien o ho ha he a mpoic di $\dot{\operatorname{sb}}$ ion of $\tilde{C}_{\mathrm{N}}(s, t)$ follo (18). Choo e $\boldsymbol{v}=(0,0),|\boldsymbol{k}|=2$, $\phi_{1}\left(s, t, y_{1}, y_{2}\right)=\left(y_{1}-\mu(s)\right)\left(y_{2}-\mu(t)\right), \phi_{2}\left(s, t, y_{1}, y_{2}\right) \equiv 1$ and $H\left(x_{1}, x_{2}\right)=x_{1} / x_{2}$ in Theoथm 2, hen $\tilde{C}_{\mathrm{N}}(s, t)=H\left(\Psi_{1 n}, \Psi_{2 n}\right)$. To comp e $\gamma_{\mathrm{N}}(s, t)$, e $D H\left(m_{1}, m_{2}\right)=\left(1 / m_{2},-m_{1} / m_{2}^{2}\right)$, and no e $m_{1}(s, t)=\int_{\mathfrak{R}^{2}}\left(y_{1}-\mu(s)\right)\left(y_{2}-\mu(t)\right) g_{2}\left(s, t, y_{1}, y_{2}\right)$ $d y_{1} d y_{2}=f_{2}(s, t) C(s, t)$ and $m_{2}(s, t)=f_{2}(s, t)$. One ha $\left(d^{2} / d t^{2}\right) m_{1}(s, t)=\left[\left(d^{2} f_{2} / d t^{2}\right) C+\right.$ $\left.2\left(d f_{2} / d t\right)(d C / d t)+f_{2}\left(d^{2} C / d t^{2}\right)\right](s, t),\left(d^{2} / d^{2} t\right) m_{2}(s, t)=d^{2} f_{2}(s, t) / d t^{2}$ and imila-des ai e ih pec o he men s leading o he bia em in (12). Fo-he a mpoic ait ance, no e ha $\omega_{11}=\left\|K_{2}\right\|^{2} \int_{\Re^{2}}\left(y_{1}-\mu(s)\right)^{2}\left(y_{2}-\mu(t)\right)^{2} g_{2}\left(s, t, y_{1}, y_{2}\right) d y_{1} d y_{2}=E\left[\left(Y_{1}-\right.\right.$ $\left.\left.\mu\left(T_{1}\right)\right)^{2}\left(Y_{2}-\mu\left(T_{2}\right)\right)^{2} \mid T_{1}=s, T_{2}=t\right) f_{2}(s, t)\left\|K_{2}\right\|^{2}, \omega_{12}=\omega_{21}=\left\|K_{2}\right\|^{2} f_{2}(s, t) C(s, t)$, $\omega_{22}=\left\|K_{2}\right\|^{2} f_{2}(s, t)$, and $D H\left(m_{1}, m_{2}\right)=\left(1 / m_{2},-m_{1} / m_{2}^{2}\right)$, ielding he airance em in (12).

Corollary 4. If the assumptions (A1.1), (A1.2), and (C1.1) (C3) hold with $|\boldsymbol{v}|=0$ and $|\boldsymbol{k}|=2$, then

$$
\begin{align*}
& \sqrt{n \bar{N}(\bar{N}-1) h^{2}}\left[\widehat{C}_{\mathrm{L}}(s, t)-C(s, t)\right] \\
& \xrightarrow{\mathcal{D}} \mathcal{N}\left(\frac{e}{4} \sigma_{K_{2}}^{2}\left[d^{2} C(s, t) / d s^{2}+d^{2} C(s, t) / d t^{2}\right], \frac{v(s, t)\left\|K_{2}\right\|^{2}}{f_{2}(s, t)}\right), \tag{19}
\end{align*}
$$

where e is as in $(\mathrm{C} 3), v(s, t)=\operatorname{var}\left\{\left(Y_{1}-\mu\left(T_{1}\right)\right)\left(Y_{2}-\mu\left(T_{2}\right)\right) \mid T_{1}=s, T_{2}=t\right), \sigma_{K_{2}}^{2}=\int_{\mathfrak{R}^{2}}\left(u^{2}+\right.$ $\left.v^{2}\right) K_{2}(u, v) d u d v,\left\|K_{2}\right\|^{2}=\int_{\mathcal{R}^{2}} K_{2}^{2}(u, v) d u d v$.

Proof. In analog o he peof of Comlla-3, he local linea- ima o- $-\widehat{C}_{\mathrm{L}}(s, t)$ ob ained f $\oplus \mathrm{m}$ $C_{i j k} \mathrm{i}$ a mpoicall eq i alen o ha ob ained f $\mapsto \tilde{C}_{i j k}$, deno ed b $\tilde{C}_{\mathrm{L}}(t, s)$. Al o deno e he ol ion o (17), af e-bi ing $\tilde{C}_{i j k}$ fo $C_{i j k}, \mathrm{~b} \quad \tilde{\boldsymbol{\beta}}(s, t)=\left(\tilde{\beta}_{0}(s, t), \tilde{\beta}_{1}(s, t), \tilde{\beta}_{2}(s, t)\right)$, and in fac $\tilde{\beta}_{0}(s, t)=\tilde{C}_{\mathrm{L}}(s, t)$. Fo- implici , le $W_{i j k}=K_{2}\left(\left(s-T_{i j}\right) / h,\left(t-T_{i k}\right) / h\right) /\left(n h^{2}\right)$ and $\sum_{i, j \neq k}{ }^{\prime \prime} \mathrm{i}$ abb ia ion of $\sum_{i=1}^{n} \sum_{j \neq k}{ }^{\prime}$. Algeb calc la ion ield ha

$$
\begin{aligned}
& \tilde{C}_{\mathrm{L}}=\frac{\sum_{i, j \neq k} \tilde{C}_{i j k} W_{i j k}-\tilde{\beta}_{1} \sum_{i, j \neq k} W_{i j k} T_{i j}+\tilde{\beta}_{1} \sum_{i, j \neq k} W_{i j k} s-\tilde{\beta}_{2} \sum_{i, j \neq k} W_{i j k} T_{i k}+\tilde{\beta}_{2} \sum_{i, j \neq k} W_{i j k} t}{\sum_{i, j \neq k} W_{i j k}}, \\
& \tilde{\beta}_{1}=\frac{R_{00}\left(S_{10} S_{02}-S_{01} S_{11}\right)+R_{10}\left(S_{00} S_{02}-S_{01} S_{20}\right)-R_{01}\left(S_{00} S_{11}-S_{10} S_{02}\right)}{S_{00} S_{20} S_{02}-S_{00} S_{11}^{2}-S_{10}^{2} S_{02}+S_{10} S_{01} S_{11}+S_{20} S_{10} S_{11}-S_{01} S_{20}^{2}}, \\
& \tilde{\beta}_{2}=\frac{R_{00}\left(S_{10} S_{11}-S_{01} S_{02}\right)-R_{10}\left(S_{00} S_{11}-S_{01} S_{20}\right)+R_{01}\left(S_{00} S_{20}-S_{10}^{2}\right)}{S_{00} S_{20} S_{02}-S_{00} S_{11}^{2}-S_{10}^{2} S_{02}+S_{10} S_{01} S_{11}+S_{20} S_{10} S_{11}-S_{01} S_{20}^{2}},
\end{aligned}
$$

he e

$$
R_{p q}=\sum_{i, j \neq k} W_{i j k}\left(T_{i j}-s\right)^{p}\left(T_{i k}-t\right)^{q} \tilde{C}_{i j k}, \quad S_{p q}=\sum_{i, j \neq k} W_{i j k}\left(T_{i j}-s\right)^{p}\left(T_{i k}-t\right)^{q} .
$$

No e ha $\tilde{\beta}_{1}$ and $\tilde{\beta}_{2}$ a local lineare ima or of he pa-ial de a i e of $C(s, t), d C(s, t) / d s$ and $d C(s, t) / d t$, pec i el. In analog o he poof of Colla-2, i can be ho n ha $\mid \tilde{\beta}_{1}(s, t)-$ $d C(s, t) / d s \mid=O_{p}\left(1 / \sqrt{n E N(N-1) h^{4}}\right)$ and $\left|\tilde{\beta}_{2}(s, t)-d C(s, t) / d t\right|=O_{p}\left(1 / \sqrt{n \bar{N}(\bar{N}-1) h^{4}}\right)$ ${\underset{\sim}{\sim}}^{b}$ appl ing Theorm 2. Then one can bie $d c(s, t) / d s, d C(s, t) / d t$ fo $\tilde{\beta}_{1}(s, t), \tilde{\beta}_{2}(s, t)$ in $\tilde{C}_{\mathrm{L}}(s, t)$, and deno e he 1 ing e ima o-b $C_{\mathrm{L}}^{*}(s, t)$. I i ea o ee ha

$$
\lim _{n \rightarrow \infty} \sqrt{n \bar{N}(\bar{N}-1) h^{2}}\left[C_{\mathrm{L}}(s, t)-C(s, t)\right] \stackrel{\mathcal{D}}{=} \lim _{n \rightarrow \infty} \sqrt{n \bar{N}(\bar{N}-1) h^{2}}\left[C_{\mathrm{L}}^{*}(s, t)-C(s, t)\right] .
$$

We define $\Phi_{\lambda n}, 1 \leqslant \lambda \leqslant 4, \mathrm{~h} \leftrightarrow \operatorname{gh} \phi_{1}\left(s, t, y_{1}, y_{2}\right)=\left(y_{1}-\mu(s)\right)\left(y_{2}-\mu(t)\right), \phi_{2}\left(s, t, y_{1}, y_{2}\right) h$ and.1(h gh)]TJ 2
ho e in Comllare 3 and 4, i h $f(t)$ eplaced $\mathrm{b} \quad 1 /|\mathcal{T}|$ and $f(s, t)$ eplaced $\mathrm{b} 1 /|\mathcal{T}|^{2}$, her $|\mathcal{T}| \mathrm{i}$ he leng h of he in $\mathrm{e}-\mathrm{al}$.

5. Simulation study

An mescal d i cond ced oe al ae he de ed a mpoic prperie. The ke finding in hi paper ha he a mp o ic 1 fof nc ional olongi dinal a compamble o ho e ob ained fem independen da a, i.e., he infl ence of i hin- bjec co arance doe no pla ignifican in de emining he a mp o ic bia and a ance. Fo-implici, e foc on he

We fi- gene ed $M=200$ ample con i ing of $n=50$ i.i.d ndom jec o each. Follo ing model (1), he im la ed pece ha a mean f nc ion $\mu(t)=(t-1 / 2)^{2}, 0 \leqslant t \leqslant 1$ hich ha a con an econd der a i e $\mu^{(2)}(t)=2$, and a con an i hin- bjec co ariance f nc ion der ed fom a $0 \leqslant t \leqslant 1$. The mea emen em-in (1) a e $\varepsilon_{i j} \stackrel{\text { i.i.d. }}{\sim} N\left(0, \sigma^{2}\right)$, he $\sigma^{2}=0.01$. A mndom de ign a ed, he he n mbe - of ob eman foreach bjec N_{i} e cho en fom $\{2,3,4,5\} \quad i$ heq al likelihood and he loca ion of he obem ion en nifoml di $\dot{\text { b }}$ ed on [0, 1], i.e., $T_{i j} \stackrel{\text { i.i.d. }}{\sim} U[0,1]$. Fo-compa on, e gene $M=200$ ample of $n=50$ i.i.d. ndom hich ha e he ame $\boldsymbol{\sim}$ a in model (1) b no i hin- bjec comela ion. Le ing $\xi_{i 1}=0$ and $\varepsilon_{i j} \stackrel{\text { i.i.d. }}{\sim} N\left(0, \sqrt{\lambda_{1}+\sigma^{2}}\right)$ lead o independen da a i he ame
 fo - he local pol nomial meane ima o- We al o gene ed $M=200$ comla ed and independen ample, pec i el, con i ing of $n=200$ jec oach fomon he a mp o ic beha io - ih he incea ing ample i e n.

Hee e e he Epanechniko kemel f nc ion, i.e., $K_{1}(u)=3 / 4\left(1-u^{2}\right) \mathbf{1}_{[-1,1]}(u)$, hee $\mathbf{1}_{A}(u)=1$ if $u \in A$ and 0 o he -i e fo $-\mathrm{an} \quad$ e A. No e ha $n(E N) b^{2 k+1} \rightarrow d^{2}$ in (B3), $\mu^{(2)}(t)=2, \operatorname{var}(Y \mid T=t)=\lambda_{1}+\sigma^{2}=0.02$, and he de ign den i $f(t)=1$, he $k=2$ fo-local pol nomial e ima $\mathrm{o}-$ and $b \mathrm{i}$ he band id h ed fo- he mean e ima ion. Frm he abo e con \boldsymbol{m} ion, one can calc la e he a mpoic arance and bia of he local pol nomial mean e ima $0-\mu_{\mathrm{L}}(t)$ ing Comlla-2 hichi in fac applicable fo-bo h comed ed and independen da a. Since he bia and arance em ar bo con an in o - im la ion feme ok, fo-con enience e compar he a mpoic in eged q aed bia and ariance i h he empieal in eg ed q andia and awance ob ained ing Mon e Cawo a emge fom $M=200$ im la ed ample ba ed on $\int_{0}^{1} E\left[\left\{\hat{\mu}_{\mathrm{L}}(t)-\mu(t)\right\}^{2}\right] d t=\int_{0}^{1}\left\{\hat{\mu}_{\mathrm{L}}(t)-E\left[\hat{\mu}_{\mathrm{L}}(t)\right]\right\}^{2} d t+$ $\int_{0}^{1}\left\{E\left[\hat{\mu}_{\mathrm{L}}(t)\right]-\mu(t)\right\}^{2} d t$. The a mpoic in eg ed quedia and arance ai en b

$$
\begin{equation*}
\operatorname{AIBIAS}=\frac{1}{2} \sigma_{K_{1}}^{2} b^{4}, \quad \operatorname{AIVAR}=\frac{0.02 \times\left\|K_{1}\right\|^{2}}{n \bar{N} b} \tag{20}
\end{equation*}
$$

and he a mpoic in eg ed mean qued emse =AIBIAS + AIVAR, he $\sigma_{K_{1}}^{2}=$ $\int u^{2} K_{1}(u) d u,\left\|K_{1}\right\|^{2}=\int K_{1}^{2}(u) d u$ and $\bar{N}=(1 / n) \sum_{i=1}^{n} N_{i}$, hile he empical in eg ed q a bia, anded and mean qued ed edBIAS, EIVAR and EIMSE,
The a mpoic and empiscalq an ie, cha he in eg ed q ared bia, a rance and mean q aeder ho nin Fig. 1 fo-he comeda ed/independen da a ih ample i e $n=50 / n=$ 200, pec i el. Fem Fig. 1, i i ob io ha he a mpoic app ima ion i imp ed b incea ing he ample i e. The $a \operatorname{mpo}$ ic q an ie AIBIAS, AIVAR andAIMSE agree i he

Fig. 1. Sho n a he empiwal q an i ie (olid, incl ding EIBIAS, EIVAR, EIMSE) and a mpoic q an ie (da hed, incl ding AIBIAS, AIVAR, AIMSE) e- $\log (b)$ focola ed (lef panel) and independen (ergh panel) da a ih differn ample i e $n=50$ (op panel) and $n=200$ (bo om panel), he b i he band id h ed in he moo hing. In each panel, he in eg ed qued bia i he one ih incea ing pa em, he in eg ed arance i he one ih decea ing pa em, and he cm eacho her, hile he in eg ed mean q arder hichi lameman bo in eg ed q ard bia and areance fom band id $\mathrm{h} b$, all decea e fi- and hen incea e af ereang a minim m .
empisal q an i ie EIBIAS, EIVAR and EIMSE fo-bo h comeda ed and independen da a. Fohe im la ed da a ih he ame ample i e n, ch a mpoicapp ima ion forma ed and independen da a all comparble in pa em magni de. Thi pe ide he e idence ha he i hin- bjec comela ion indeed doe no ha e ob io infl ence on he a mpo ic beha io of he local pol nomial e ima o-compard o he anda eb ained fom independen da a, hich i con i en iho -heo ical de a ion.

6. Discussion

In hi paper, he a mpo ic di $\dot{\boldsymbol{s} b}$ ion of kemel-ba ed nonpame $\boldsymbol{\sim}$ fof nc ionalofongi dinalda aae died. In pa-ic lami d en
de ign de cerbed in (A1.1) and (A1.2), fi ed eq all paced de ign de cerbed in (A1*), and ome ca el ing be een hem. The pepo ed co ldal obe ended omocomplica ed ca e, ch a panel da a he ob e-a ion forliffen bjec ab ained a a e common
 ob e-a ion ime T_{j} co ld be a med o be $f_{j}(t)$, hen he 1 a eadil applied o hi ca e ih appepe e modifica ion ihep o he diffen mangal den ie.
 applied o he kemel-ba ed e ima of he mean and co a o once fc ion, hich ield a mp-

 ained $f \oplus m$ ob em noi longi dinal of nc ional da a. Thi po ide heo ical ba i and pec ical g idance fo-he nonpame anal i of fac ional ongi dinal da a ih impo-
 confidence band omion fo the ioncer me co arance face can be con med ba ed on heim mpoic di ion. Since, d e o heimea comp a ional load, commonl ed peced (chace - alida ion) fo-band id h elec ion in o-dimen ional e ing a no fea ible, one impo ean poblemi o eek efficien appache fochoo ing ch moo hing pame e - Al of nc ional péncipal componen anal i, an incea ingl pop lamool fo f nc ional da a anal i, i ba ed on eigen-decompo i ion of he e ima ed co a reance f ncion. Th , he infl ence of he a mpoic popere of co a mance e ima on he ima ed eigenf nc ion i ano hemo en ial eareh of in e.

References

[1] P.K. Bha acha-a, H.G. M lle-A mp o ic fonnpame ione Sankh a 55 (1993) 420441.
[2] G. Boen e, R. Fmiman, Kemel-ba ed f nc ional pencipal componen , S a i . P \oplus bab. Le . 48 (1999) 335345.
[3] H. Cado, F. Fe , P. Sada, F nc ional linea-model, S a i . Pøbab. Le . 45 (1999) 1122.
[4] P. Diggle, P. Here , K.Y. Liang, S. ZegenAnal i of Longi dinal Da a, O for Un emi Pe , O foed, 2002.
[5] J. Fan, I. Gijbel , Local Pol nomial Modelling and I Applica ion, Chapman \& Hall, London, 1996.
[6] P. Hall, N.I. Fi he - B. Hoffmann, On he nonpamme e ima ion of co arance f nc ion, Ann. S a i . 22 (1994) 21152134.
 Rela ed Field 99 (1994) 399424.
 (1986) 10801088.
[9] X.Lin, R.J. Camell, Nonpame $\boldsymbol{m} \mathrm{f}$ nc ione ima ionforl erdaa hen hepedic of mea red iho / ih emor, Ame-S a i . A oc. 95 (2000) 520534.
[10] J.O. Ram a, J.B. Ram e, F nc ional da a anal i of he d namic of he mon hl inde of nond mble good pred c ion, J. Econom. 107 (2002) 327344.
[11] T.A. Seremi, J.G. S ani ali, Q a i-likelihoode ima ion in emipame éc model, J. Ame-r a i . A oc. 89 (1994) 501511.
[12] J.G. S ani ali, J.J. Lee, Nonpame $\boldsymbol{*}$ ege ion anal i of longi dinal da a, J. Ame-S a i . A oc. 93 (1998) 14031418.
[13] A.P. Ve la, B.R. C lli , M.G. Ken ad, S.J. Welham, The anal i of de igned e permen and longi dinal da a ing moo hing pline (ihdic ion), Appl. S a i . 48 (1999) 269311.
[14] C.J. Wild, T.W. Yee, Addi i e e en ion o genemli ed e ima ing eq a ion me hod, J. Ro . S a i . Soc., Se $\boldsymbol{-}$ B 58 (1996) 711725.
 f nc ional péncipal componen \quad coe $\quad i \mathrm{~h}$ applica ion o he pop la ion kine ic of pla ma fola e, Biome 59 (2003) 676685.
[16] F. Yao, H.G. M lle $\boldsymbol{-}$ J.L. Wang, F nc ional da a anal i fo pa-e longi dinal da a, J. Ame-s a i . A oc. 100 (2005) 577590.

[^0]: E-mail addresses: f ao@ a.onn o.ed, f ao@ a.colo a e.ed.

 0047-259X/\$ - ee fen ma e- 2006 El e ie-Inc. All $\dot{\boldsymbol{*}} \mathrm{gh}$ e-ed.
 doi:10.1016/j.jm a.2006.08.007

