

Available online at www.sciencedirect.com

Journal of Multivariate Analysis

Jor mal of Mr 1 i aria e Anal i 98 (2007) 40, 56

www.el e ier.com/loca e/jm a

A mp o ic di *s*ib, ion of nonparame *s*ic *s*egse ion e ima os fos longi, dinal os f, nc ional da a

Fang Yao

Department of Statistics, Colorado State University, Fort Collins, CO 80523, USA

Recei ed 28 Jan az 2005 A ailable online 28 Sep ember 2006

Abstract

The e ima ion of a regre ion f inc ion b kernel me hod for longi, dinal or f inc ional da ai con idered. In he con e of longi, dinal da a anal i, a random f inc ion picall repre en a, bjec ha i of en ob er ed a a mall n mber of ime poin w hile in he, die of f inc ional da a he random reali a ion i, all mea, red on a den e grid. How e er, e en iall he ame me hod can be applied o boh ampling plan, a_w ell a in a n mber of e ing l ing be en hem. In hi paper general re, l are deri ed for he a mp o ic di rib ion of real- al ed f inc ion w i h arg men w hich are f inc ional formed bw eigh ed a erage of longi, dinal or f inc ional da a. A mp o ic di rib ion for he e ima or of he mean and co ariance f inc ion ob ained from noi ob er a ion w i h he pre ence of w i hin-, bjec correla ion are i died. The ea mp o ic normali re, l are comparable o ho e andard ra e ob ained from independen da a_w hich i ill ra ed in a im la ion i d. Be ide, hi paper di c e he condi ion a ocia ed w i h ampling plan w hich are required for he alidi of local proper ie of kernel-ba ed e ima or for longi, dinal or f inc ional da a.

2006 El e ier Inc. All righ re er ed.

AMS 1991 subject classification: 62G08

Keywords: A mp o ic di *t*ib¹ ion; Co atiance; F¹ nc ional da a; Longi ¹ dinal da a; Regte ion; Wi hin- ¹ bjec cottela ion

1. Introduction

Modern echnolog and ad anced comp ing en ironmen ha e facili a ed he collec ion and anal i of high-dimen ional da a, or da a ha are repea ed mea r red for a ample of r bjec. The repea ed mea r remen are of en recorded o er a period of ime, a on an clo ed and bornded in er al \mathcal{T} . I al o corld be a pacial ariable, r ch a in image or geo cience applica ion.

E-mail addresses: f ao@r a.oron o.edr, f ao@ a.colo a e.edr.

0047-259X/\$- ee fron ma et 2006 El e iet Inc. All righ re et ed. doi:10.1016/j.jm a.2006.08.007

When he da a are recorded den el o er ime, of en b machine, he are picall ermed f ncional or or r e da a_{v} i h one ob er ed cr r e or f nc ion per , bjec w_{v} hile in longi, dinal , die he repea ed mea , remen , all ake place on a f ca ered ob er a ional ime poin for each , bjec . A ignifican in rin ic difference be equive o e ing lie in he percepion ha f nc ional da a are ob er ed in he con in r_{v} m_{v} i hor noi e $[2,3]_{w_{v}}$ herea longi, dinal da a are ob er ed a par el di rib, ed ime poin and are of en , bjec o e perimen al error [4]. Ho e er, in pracice f nc ional da a are anal ed af er moo hing noi ob er a ion $[10]_{w_{v}}$ hich indica e ha he difference be equive o da a pe rela ed o he a ima in hich a problem i percei ed are arg, abl more concept al han act al. Therefore in hi paper, kernel-ba ed regre ion e ima or ob ained from ob er a ion a di cre e ime poin con amina ed are remen error, ra her han ob er a ion in he con in r, m, are con idered for he e reali ic rea on. In he con e of kernelba ed nonparame ric regre ion, he effec of ampling plan on he a i ical e ima or are al o in e iga ed.

A a li era, re ha been de eloped in he pa decade on he kernel-ba ed regre ion for independen and iden icall di *rib*, ed da a, for , mmar, ee Fan and Gijbel [5]. There ha been , b an ial recen in ere in e ending he e i ing a mp o ic re , l o fr nc ional or longi / dinal da a [8,11,14,13,9]. The i / e ca/ ed b her, i hin- / bjec correla ion are rigoror 1 addre ed in hi paper. Har and Wehrl [8] , died he Ga er Meller e ima or of he mean f, nc ion for repea ed mea, remen ob er ed on a reg, lar grid b a , ming a ionar correlaion s' c' re, and ho ed ha he infle ence of he i hin- bjec correlation on he a mp o ic ariance i of maller order compared o he andard ra e ob ained from independen da a and $_{W}$ ill di appea $_{W}$ hen he correla ion fr nc ion i differen iable a ero. Or r a mp o ic di rib ion $te \cdot 1$ i in fac con i en_{w} i h ha in Har and Wehr [8] and applicable for general co ariance $s_1 c_1 re_{W}$ i hot a ionar a trip ion. Thi problem a all o di c ed b S ani_W all and Lee [12] and Lin and Carroll [9] where he r ed he herri ic arg men of he local proper of local pol nomial e ima ion and in i i el ignored he_{x} i hin- bjec correla ion w_{ν} hile deri ing he a mp o ic ariance. Thi paper deri e appropria e condi ion ha are req ized for he alidi of he local proper of kernel pe e ima or ob ained from longi dinal or f nc ional da a. The e condi ion al o pro ide prac ical g ideline for ario ampling proced re.

The con *r*ib ion of hi paper i he deri a ion of general a mp o ic di *r*ib ion *r*e *r* 1 in bo h one-dimen ional and $_{w}$ o-dimen ional moo hing con e for real- al ed fr nc ion $_{w}$ i h arg' men $_{W}$ hich are f' nc ional formed b $_{W}$ eigh ed a erage of longi ' dinal or f' nc ional da a. The e a mp o ic normali *ze*, 1 are comparable o ho e ob ained for iden icall di *z*ib ed and independen da a. The e re, 1 are applied o he kernel-ba ed e ima or of he mean and co ariance f nc ion w hich ield a mp o ic normal di rib ion of he e ima or . In par icr lar, o he be of or r knowledge, no a mp o ic di rib ion re r l are a ailable r p o da e for nonparame rice imation of co-ariance from ion ob ained from longir dinal or from ional da a con amina ed_{y} i h mea , temen ettor. B compati on, Hall e al. [6,7] in e iga ed a mp o ic proper ie of nonparame ric kernel e ima or of a oco ariance_w here he mea remen w ere onl ob er ed from a ingle a ionar ocha ic proce or random field. Al ho, gh he a mpo ic di zib ion aze dezi ed foz zandom de ign in hi papez, he azg men can be e ended o fi ed de ign and o her ampling plan $_{w}$ i h appropria e modifica ion, and a mp o ic bia and ariance erm can al o be ob ained in imilar manner. Thiw ill pro ide heore ical ba i and practical g_r idance for the nonparametric anal i of f_r nc ional or long i dinal da a_r i h important po en ial applica ion_{w_i} hich are ba ed on he a mp o ic di zib ion . T pical e ample incl de</sub> he con the cion of a mp o ic confidence band for tegre ion function and confidence tegron

for constitution of the state of the state

The remainder of he paper i organi ed a follow. In Sec ion 2_{v_v} e deri e he general a mp o ic di rib ion of one- and v o-dimen ional moo her ob ained from longi, dinal or f, nc ional da a for random de ign. The e general a mp o ic re, 1 are applied o commonl, ed kernel- pe e ima or of he mean c, r e and co ariance, r face in Sec ion 3. E en ion o fi ed de ign i di c, ed in Sec ion 4. A im, la ion, d i pre en ed o e al, a e he deri ed a mp o ic re, l for correla ed da a in Sec ion 5_{v_v} hile di c, ion, incl. ding po en ial applica ion of he re, l ing a mp o ic normali, are offered in Sec ion 6.

2. General results of asymptotic distributions for random design

In hi ec ion_W e_W ill define general f nc ional ha are kernel_W eigh ed a erage of he da a for one-dimen ional and_W o-dimen ional moo hing. The in rod-ced general f nc ional incl de he mo commonl , ed pe of kernel-ba ed e ima or a pecial ca e, , ch a Ga er Meller e ima or, Nadara a Wa on e ima or, local pol nomial e ima or, e c. Since Nadara a Wa on and local pol nomial e ima or are mo 1 , ed in pracice, heir a mp o ic beha ior in erm of bia and ariance for independen da a ha e been horo ghl , died in e i ing li era, re. H_Q e er, for longi, dinal or f nc ional da a, par ic larl in regard o co ariance , rface e ima or are ill largel , nkn_Q n. Therefore in Sec ion 3, he general a mp o ic re , 1 de eloped in hi ec ion are applied o Nadara a Wa on and local pol nomial and _W o-dimen ional moo hing e ing . In par ic lar, he lack of a mp o ic re , 1 for he co ariance , rface e ima or of longi dinal or f nc ional do a i an addi ional mo i a ion for he defini ion of he_W o-dimen ional local pol nomial e ima or in bo h one-dimen ional and _W o-dimen ional moo hing e ing . In par ic lar, he lack of a mp o ic re , 1 for he co ariance , rface e ima or of longi dinal or f nc ional da a i an addi ional mo i a ion for he defini ion of he_W o-dimen ional general f nc ional ha can be applied o de elop he a mp o ic di rib ion for he e ima or .

We fit con ider random de ign, hile e en ion o o her ampling plan i deferred o Sec ion 4. In cla ical longi, dinal, die, mea, remen are of en in ended o be on a regular imegrid. How e er, ince indi id al ma mi ched led i i, here i ling da a, all become pare, where onl few ob er a ion are ob ained for mo big $w_{\rm W}$ i h nequal n mber of repeated mea, remen per bjec and differen mea, remen ime T_{ij} per indi id al. Thi ampling ariance σ^2 ,

$$Y_{ij} = X_i(T_{ij}) + \varepsilon_{ij} = \mu(T_{ij}) + \sum_{k=1}^{\infty} \xi_{ik} \phi_k(T_{ij}) + \varepsilon_{ij}, \quad T_{ij} \in \mathcal{T},$$
(1)

We have $E\varepsilon_{ij} = 0$, $var(\varepsilon_{ij}) = \sigma^2$, and he n' mber of ob er a ion, $N_i(n)$ depending on he ample i e n, are con idered random. We make he following a ' mp ion ,

(A1.1) The n mber of ob er a ion $N_i(n)$ made for he *i* h , bjec or cl er, i = 1, ..., n, i ar.

$$_{W}$$
 1 h $N_i(n) \sim N(n)_{W}$ here $N(n) > 01$ a point eineger all editation anable in $\lim_{n \to \infty} EN(n)^2 / [EN(n)]^2 < \infty$ and $\lim_{n \to \infty} EN(n)^4 / EN(n)EN(n)^3 < \infty$.

In he eq el he dependence of $N_i(n)$ and N(n) on he ample i e n i , ppre ed for implici ; i.e., $N_i = N_i(n)$ and N(n) = N. The ob er a ion ime and mea, remen are a , med o be independen of he n mber of mea, remen , i.e., for an , b e $J_i \subseteq \{1, ..., N_i\}$ and for all i = 1, ..., n,

(A1.2) $({T_{ij} : j \in J_i}, {Y_{ij} : j \in J_i})$ i independen of N_i . Writing $T_i = (T_{i1}, \dots, T_{iN_i})^T$ and $Y_i = (Y_{i1}, \dots, Y_{iN_i})^T$, i i eat one has the riple $\{T_i, Y_i, N_i\}$ are i.i.d.

2.1. Asymptotic normality of one-dimensional smoother

To a 'me appropria e reg lari condition ha are ' ed o deri e a mp o ic proper ie w e define a new pe of con in i ha differ from ho e_{W} hich are commonl ' ed. We a ha a real f nc ion $f(x, y) : \Re^{p+q} \to \Re$ i con in o on $x \in A \subseteq \Re^{p}$, niforml in $y \in \Re^{q}$, provided ha for an $x \in A$ and $\varepsilon > 0$, here e i a neighborhood of x no depending on y, a ing $U(x) \subseteq \Re^{p}$, ' ch ha $|f(x', y) - f(x, y)| < \varepsilon$ for all $x' \in U(x)$ and $y \in \Re^{q}$.

For random de ign, (T_{ij}, Y_{ij}) are a , med o ha e he iden ical di *i*ib ion a (T, Y_W) i h join den i g(t, y). A , me ha he ob er a ion ime T_{ij} are i.i.d_W i h he marginal den i f(t), b dependence i all_W ed among Y_{ij} and Y_{ik} ha are ob er a ion made for he ame , bjec or cl er. Al o deno e he join den i of (T_j, T_k, Y_j, Y_k) b $g_2(t_1, t_2, y_1, y_2)_W$ here $j \neq k$. Le v, k be gi en in eger w i h $0 \le v < k$. We a , me regulari condition for he marginal and join den i ie, $f(t), g(t, y), g_2(t_1, t_2, y_1, y_2)$ and he mean function of he inderly ing proce X(t), i.e., $E[X(t)] = \mu(t)_W$ i hre pec o a neighborhood of a in erior poin $t \in T$, a , ming ha here e i a neighborhood U(t) of t, ch ha:

(B1.1) $\frac{d^k}{du^k}f(u)$ e i and i con in o on $u \in U(t)$, and f(u) > 0 for $u \in U(t)$;

- (B1.2) g(u, y) i con in or on $u \in U(t)$, niforml in $y \in \Re$; $\frac{d^k}{du^k}g(u, y)$ e i and i con in or on $u \in U(t)$, niforml in $y \in \Re$;
- (B1.3) $g_2(u, v, y_1, y_2)$ i con in o on $(u, v) \in U(t)^2$, niforml in $(y_1, y_2) \in \Re^2$;
- (B1.4) $\frac{d^k}{du^k}\mu(u)$ e i and i con in o on $u \in U(t)$.

Le $K_1(\cdot)$ be nonnega i e_i ni azia e keznel f nc ion in one-dimen ional moo hing. The a -, mp ion for keznel $K_1 : \mathfrak{R} \to \mathfrak{R}$ aze a follow. We a ha a_i ni azia e keznel f nc ion K_1 i of order (v, k), if

$$\int u^{\ell} K_{1}(u) \, du = \begin{cases} 0, & 0 \leq \ell < k, \ \ell \neq \nu, \\ (-1)^{\nu} \nu!, & \ell = \nu, \\ \neq 0, & \ell = k, \end{cases}$$
(2)

(B2.1) K_1 i compac 1 , ppos ed, $||K_1||^2 = \int K_1^2(u) du < \infty$; (B2.2) K_1 i a kesnel f nc ion of ordes (v, ℓ) .

Le b = b(n) be a equence of band, id h ha are dimensional moon hing. We de elop a mpoic a $n \to \infty$, and require

(B3) $b \to 0$, $n(EN)b^{\nu+1} \to \infty$, $b(EN) \to 0$, and $n(EN)b^{2k+1} \to d^2$ for ome d_W in $0 \le d < \infty$.

One corld ee in he proof of Theorem 1 ha he a rmp ion (B3) combined, i h (A1.1) pro ide he condition r ch ha he local proper of kernel- pe e ima or hold for longir dinal or fr nc ional da a_{y} i h he pre ence of r i hin-r bjec correlation.

Le $\{\psi_{\lambda}\}_{\lambda=1,\dots,l}$ be a collection of real function $\psi_{\lambda}: \Re^2 \to \Re_{\mathbf{v}_l}$ hich at f:

(B4.1) $\psi_{\lambda}(t, y)$ are con in or on $\{t\}$, niforml in $y \in \mathfrak{N}$; (B4.2) $\frac{d^{k}}{dt^{k}}\psi_{\lambda}(t, y)$ e i for all arg men (t, y) and are con in or on $\{t\}$, niforml in $y \in \mathfrak{N}$.

Then, e define he general, eigh ed a erage

$$\Psi_{\lambda n} = \frac{1}{nENb^{\nu+1}} \sum_{i=1}^{n} \sum_{j=1}^{N_i} \psi_{\lambda}(T_{ij}, Y_{ij}) K_1\left(\frac{t - T_{ij}}{b}\right), \quad \lambda = 1, \dots, l.$$

and

$$\mu_{\lambda} = \mu_{\lambda}(t) = \frac{d^{\nu}}{dt^{\nu}} \int \psi_{\lambda}(t, y)g(t, y) \, dy, \quad \lambda = 1, \dots, l.$$

Le

$$\sigma_{\kappa\lambda} = \sigma_{\kappa\lambda}(t) = \int \psi_{\kappa}(t, y) \psi_{\lambda}(t, y) g(t, y) \, dy \|K_1\|^2, \quad 1 \leq \lambda, \kappa \leq l,$$

and $H: \mathfrak{N}^l \to \mathfrak{N}$ be a f nc ion, ih con in o, fit order derives a i e. We denote the gradient ec of $((\partial H/\partial x_1)(v), \ldots, (\partial H/\partial x_l)(v))^T$ b DH(v) and $\bar{N} = \sum_{i=1}^n N_i/n$.

Theorem 1. If the assumptions (A1.1), (A1.2) and (B1.1) (B4.2) hold, then

$$\sqrt{n\bar{N}b^{2\nu+1}}[H(\Psi_{1n},\ldots,\Psi_{ln}) - H(\mu_1,\ldots,\mu_l)] \xrightarrow{\mathcal{D}} \mathcal{N}(\beta, [DH(\mu_1,\ldots,\mu_l)]^T \Sigma[DH(\mu_1,\ldots,\mu_l)]),$$
(3)

where

$$\beta = \frac{(-1)^k d}{k!} \int u^k K_1(u) \, du \sum_{\lambda=1}^l \frac{\partial H}{\partial \mu_\lambda} \{(\mu_1, \dots, \mu_l)^T\} \frac{d^{k-\nu}}{dt^{k-\nu}} \mu_\lambda(t), \quad \Sigma = (\sigma_{\kappa\lambda})_{1 \le \kappa, \lambda \le l}.$$

Proof. I i een ha \overline{N} can be replaced, i h EN b Sl k Theorem, nder (A1.1). We not have ha

$$\sqrt{n(EN)b^{2\nu+1}}[H(E\Psi_{1n},\ldots,E\Psi_{ln})-H(\mu_1,\ldots,\mu_l)] \longrightarrow \beta.$$
(4)

Since (A1.1) and (A1.2) hold, and K_1 i of order (v, k), v ing Ta lor e pan ion o order k, one ob ain

$$E\Psi_{\lambda n} = \frac{1}{nb^{\nu+1}} E\left\{\sum_{i=1}^{n} \frac{1}{EN} \sum_{j=1}^{N_{i}} \psi_{\lambda}(T_{ij}, Y_{ij}) K_{1}\left(\frac{t - T_{ij}}{b}\right)\right\}$$

$$= \frac{1}{b^{\nu+1}EN} E\left\{\sum_{j=1}^{N} E\left[\psi_{\lambda}(T_{j}, Y_{j}) K_{1}\left(\frac{t - T_{j}}{b}\right)\right] N\right]$$

$$= \frac{1}{b^{\nu+1}} E\left\{\psi_{\lambda}(T, Y) K_{1}\left(\frac{t - T}{b}\right)\right\}$$

$$= \mu_{\lambda} + \frac{(-1)^{k}}{k!} \int u^{k} K_{1}(u) du \frac{d^{k-\nu}}{dt^{k-\nu}} \mu_{\lambda}(t) b^{k-\nu} + o(b^{k-\nu}).$$
(5)

Then (4) follow from an *l*-dimen ional Ta los e pan ion of H of order 1 aro, nd $(\mu_1, \ldots, \mu_l)^T$, co, pled, i h (5). If we can how

$$\sqrt{n(EN)b^{2\nu+1}}[(\Psi_{1n},\ldots,\Psi_{ln})^T - (E\Psi,\ldots,E\Psi_{ln})^T] \xrightarrow{\mathcal{D}} \mathcal{N}(0,\Sigma), \tag{6}$$

in analog o Bha achar a and Meller [1], and con in i of DH a $(\mu_1, \ldots, \mu_l)^T$ and appling imilar arg men e d in (5)_w e find $DH(E\Psi_{1n}, \ldots, E\Psi_{ln}) \rightarrow DH(\mu_1, \ldots, \mu_l)$. Then Carmèr Wold de ice ield

$$\sqrt{n(EN)b^{2\nu+1}}[H(\Psi_{1n},\ldots,\Psi_{ln}) - H(E\Psi,\ldots,E\Psi_{ln})] \xrightarrow{\mathcal{D}} \mathcal{N}(0,DH(\mu_1,\ldots,\mu_l)^T$$
$$\Sigma DH(\mu_1,\ldots,\mu_l)), \tag{7}$$

combined, i h (4), leading o (3).

I remain o h ρ (6). Ob er ing (A1.1) and (A1.2), one ha

$$\begin{split} n(EN)b^{2\nu+1}cov(\Psi_{\lambda n},\Psi_{\kappa n}) \\ &= \frac{1}{b}E\left\{\frac{1}{EN}\left[\sum_{j=1}^{N}\psi_{\lambda}(T_{j},Y_{j})K_{1}\left(\frac{t-T_{j}}{b}\right)\right]\left[\sum_{k=1}^{N}\psi_{\kappa}(T_{k},Y_{k})K_{1}\left(\frac{t-T_{k}}{b}\right)\right]\right\} \\ &\quad -\frac{EN}{b}E\left[\frac{1}{EN}\sum_{j=1}^{N}\psi_{\lambda}(T_{j},Y_{j})K_{1}\left(\frac{t-T_{j}}{b}\right)\right] \\ &\quad \times E\left[\frac{1}{EN}\sum_{k=1}^{N}\psi_{\kappa}(T_{k},Y_{k})K_{1}\left(\frac{t-T_{k}}{b}\right)\right] \\ &\equiv I_{1}-I_{2}. \end{split}$$

I i ob io ha $I_2 = O(b) = o(1)$ from he deri a ion of (5). For I_1 , i can be r_{tr} ri en a

$$I_{1} = \frac{1}{b}E\left[\frac{1}{EN}\sum_{j=1}^{N}\psi_{\lambda}(T_{j}, Y_{j})\psi_{\kappa}(T_{j}, Y_{j})K_{1}^{2}\left(\frac{t-T_{j}}{b}\right)\right]$$
$$+\frac{1}{b}E\left[\frac{1}{EN}\sum_{1\leqslant j\neq k\leqslant N}\psi_{\lambda}(T_{j}, Y_{j})\psi_{\kappa}(T_{k}, Y_{k})K_{1}\left(\frac{t-T_{j}}{b}\right)K_{1}\left(\frac{t-Y_{k}}{b}\right)\right]$$
$$\equiv Q_{1} + Q_{2}.$$

Appl ing (A1.1) and (A1.2), one ha

$$Q_1 = \frac{1}{b} E \left\{ \frac{1}{EN} \sum_{j=1}^N E\left[\psi_{\lambda}(T_j, Y_j) \psi_{\kappa}(T_j, Y_j) K_1^2\left(\frac{t - T_j}{b}\right) \middle| N \right] \right\}$$
$$= \frac{1}{b} E\left[\psi_{\lambda}(T, Y) \psi_{\kappa}(T, Y) K_1^2\left(\frac{t - Y}{b}\right) \right] = \sigma_{\lambda\kappa} + o(1).$$

Then (4_W^{i}) ill hold, ob er ing (A1.1) and he follow ing arg, men ha g aran ee he local proper of he kernel-ba ed e ima or i h he pre ence of i hin- , bjec correla ion in longi , dinal or f nc ional da a,

$$\begin{aligned} Q_2 &= \frac{1}{bEN} E\left\{ \sum_{1 \leq j \neq k \leq N}^{N} E\left[\psi_{\lambda}(T_j, Y_j)\psi_{\kappa}(T_k, Y_k)K_1\left(\frac{t - T_j}{b}\right)K_1\left(\frac{t - T_k}{b}\right) \middle| N \right] \right\} \\ &= \frac{EN(N-1)}{bEN} E\left[\psi_{\lambda}(T_1, Y_1)\psi_{\kappa}(T_2, Y_2)K_1\left(\frac{t - T_1}{b}\right) \right]K_1\left(\frac{t - T_2}{b}\right) \\ &= \frac{bEN(N-1)}{EN} \int_{\mathfrak{M}^4} \psi_{\lambda}(t - ub, y_1)\psi_{\kappa}(t - vb, y_2)K_1(u)K_2(v) \\ &\times g_2(t - ub, t - vb, y_1, y_2) \, du \, dv \, dy_1 \, dy_2 \\ &= \frac{bEN(N-1)}{EN} \int_{\mathfrak{M}^2} \psi_{\lambda}(t, y_1)\psi_{\kappa}(t, y_2)g_2(t, t, y_1, y_2) \, dy_1 \, dy_2 + o(b) = o(1), \end{aligned}$$

i.e., h_{w} i hin-, bjec correla ion can be ignored, hile deri ing he a mp o ic ariance. \Box

2.2. Asymptotic normality of two-dimensional smoother

The general a mp o ic $te \cdot 1$ can be e ended o_{W} o-dimen ional moo hing. Le (v, k) denoe he m li-indice $v = (v_1, v_2)$ and $k = (k_1, k_2)_W$ here $|v| = v_1 + v_2$ and $|k| = k_1 + k_2$. In_w o-dimen ional moo hing, more regularia a mp ion are needed for join denie. Le $f_2(s, t)$ be he join denie of (T_j, T_k) , and $g_4(s, t, s', t', y_1, y_2, y'_1, y'_2)$ he join denie of $(T_j, T_k, T_{j'}, T_{k'}, Y_j, Y_k, Y_{j'}, Y_{k'})_W$ here $j \neq k$, $(j, k) \neq (j', k')$. Denoe he coariance methods be $C(s, t) = cov(X(T_j), X(T_k)|T_j = s, T_k = t)$. The following regularies condition are a med_w here U(s, t) is ome neighborhood of $\{(s, t)\}$,

(C1.1)
$$\frac{d^{|K|}}{du^{k_1}dv^{k_2}}f_2(u,v)$$
 e i and i con in o on $(u,v) \in U(s,t)$, and $f_2(u,v) > 0$ for $(u,v) \in U(s,t)$;

- (C1.2) $g_2(u, v, y_1, y_2)$ i con in o on $(u, v) \in U(s, t)$, niforml in $(y_1, y_2) \in \Re^2$; $\frac{d^{|k|}}{du^{k_1} dv^{k_2}}$ $g_2(u, v, y_1, y_2)$ e i and i con in o on $(u, v) \in U(s, t)$, niforml in $(y_1, y_2) \in \Re^2$;
- (C1.3) $g_4(u, v, u', v', y_1, y_2, y'_1, y'_2)$ i con in o on $(u, v, u', v') \in U(s, t)^2$, niforml in $(y_1, y_2, y'_1, y'_2) \in \mathfrak{N}^4$;
- (C1.4) $\frac{d^{|k|}}{du^{k_1}dv^{k_2}}C(u,v)$ e i and i con in o on $(u,v) \in U(s,t)$.

Le K_2 be nonnega i e bi azia e keznel f nc ion , ed in he_w o-dimen ional moo hing. The a , mp ion for keznel K_2 are a follow,

(C2.1) K_2 i compaced , ppor ed_w i h $||K_2||^2 = \int_{\Re^2} K_2^2(u, v) du dv < \infty$, and i mme ric w i h repect o coordina e u and v.

(C2.2) K_2 i a kernel f nc ion of order (|v|, |k|), i.e.,

, niforml in $(y_1, y_2) \in \Re^2$.

$$\sum_{\ell_1+\ell_2=|\boldsymbol{l}|} \int_{\mathfrak{M}^2} u^{\ell_1} v^{\ell_2} K_2(u,v) \, du \, dv = \begin{cases} 0, & 0 \leq |\boldsymbol{l}| < |\boldsymbol{k}|, \, |\boldsymbol{l}| \neq |\boldsymbol{v}|, \\ (-1)^{|\boldsymbol{v}|} |\boldsymbol{v}|!, & |\boldsymbol{l}| = |\boldsymbol{v}|, \\ \neq 0, & |\boldsymbol{l}| = |\boldsymbol{k}|. \end{cases}$$
(8)

Le h = h(n) be a equence of band id h \cdot ed in_W o-dimentional moohing_W hile i i po ible ha he band id h \cdot ed for_W o argument ma be differen. Since_W e_W ill foculation on he e imator of he constraince \cdot rface ha i mmeric about he diagonal, i i \cdot fficient o consider he identical band id h for he_W o argument. The a mposite i de eloped a $n \to \infty$ a follog:

(C3)
$$h \to 0$$
, $nEN^2h^{|v|+2} \to \infty$, $hEN^3 \to 0$, and $nE[N(N-1)]h^{2|k|+2} \to e^2$ for one $0 \le e < \infty$.

Similar o he one-dimen ional moo hing ca e, a , mp ion (C3) and (A1.1) g aran ee he local proper of he bi aria e kernel-ba ed e ima or_w i h he pre ence of i hin-, bjec correla ion. Le $\{\phi_{\lambda}\}_{\lambda=1,...,l}$ be a collec ion of real f nc ion $\phi_{\lambda}: \Re^4 \to \Re, \lambda = 1, ..., l$, a i f ing

(C4.1) $\phi_{\lambda}(s, t, y_1, y_2)$ are con in \circ on $\{(s, t)\}$, niforml in $(y_1, y_2) \in \mathbb{R}^2$; (C4.2) $\frac{d^{|k|}}{ds^{k_1}dt^{k_2}}\phi_{\lambda}(s, t, y_1, y_2)$ e i for all arg men (s, t, y_1, y_2) and are con in \circ on $\{(s, t)\}$

Then he general, eighted a erage of ordimen ional moonly him are defined by for $1 \leq \lambda \leq l$,

$$\Phi_{\lambda n} = \Phi_{\lambda n}(t,s) = \frac{1}{nE[N(N-1)]h^{|\mathbf{v}|+2}} \sum_{i=1}^{n} \sum_{1 \leq j \neq k \leq N_i} \phi_{\lambda}(T_{ij}, T_{ik}, Y_{ij}, Y_{ik})$$
$$\times K_2\left(\frac{s - T_{ij}}{h}, \frac{t - T_{ik}}{h}\right).$$

Le

$$m_{\lambda} = m_{\lambda}(s, t) = \sum_{\nu_1 + \nu_2 = |\mathbf{v}|} \frac{d^{|\mathbf{v}|}}{ds^{\nu_1} dt^{\nu_2}} \int_{\mathfrak{R}^2} \phi_{\lambda}(s, t, y_1, y_2) g_2(s, t, y_1, y_2) dy_1 dy_2, \quad 1 \leq \lambda \leq l,$$

and

$$\omega_{\kappa\lambda} = \omega_{\kappa\lambda}(s,t) = \int_{\Re^2} \phi_{\kappa}(s,t,y_1,y_2) \phi_{\lambda}(s,t,y_1,y_2) g_2(s,t,y_1,y_2) dy_1 dy_2 \|K_2\|^2,$$

$$1 \leq \kappa, \lambda \leq l,$$

and $H: \mathfrak{R}^l \to \mathfrak{R}$ i a f inc ion, i h con in or fir order derivation is a pre-ior l defined.

Theorem 2. If assumptions (A1.1), (A1.2) and (C1.1) (C4.2) hold, then

$$\sqrt{n\bar{N}(\bar{N}-1)h^{2|\boldsymbol{\nu}|+2}}[H(\Phi_{1n},\ldots,\Phi_{ln})-H(m_1,\ldots,m_l)]$$

$$\stackrel{\mathcal{D}}{\longrightarrow}\mathcal{N}(\boldsymbol{\gamma},[DH(m_1,\ldots,m_l)]^T\Omega[DH(m_1,\ldots,m_l)]),$$
(9)

where

$$\begin{split} \gamma &= \frac{(-1)^{|\boldsymbol{k}|} e}{|\boldsymbol{k}|!} \sum_{\lambda=1}^{l} \left\{ \sum_{k_1+k_2=|\boldsymbol{k}|} \int_{\mathfrak{R}^2} u^{k_1} v^{k_2} K_2(u,v) \, du \, dv \frac{d^{|\boldsymbol{k}|}}{ds^{k_1} dt^{k_2}} \right. \\ & \left. \times \int_{\mathfrak{R}^2} \phi_{\lambda}(s,t,y_1,y_2) g_2(s,t,y_1,y_2) \, dy_1 \, dy_2 \right\} \\ & \left. \times \left\{ \frac{\partial H}{\partial m_{\lambda}} (m_1,\ldots,m_l)^T \right\}, \end{split}$$

3. Applications to nonparametric regression estimators for functional or longitudinal data

Al ho, gh ario, er ion of kernel-ba ed e ima or ha e been in rod, ced in li era, re, Nadara a Wa on and local pol nomial, e peciall local linear e ima or, are he mo commonl, ed non-parameric moo hing echniq e in longi, dinal or f, nc ional da a anal i. Dr e q_{v} i hin-, bjec correla ion, he a mp o ic beha ior in erm of bia and ariance of he e e ima or for noi il ob er ed longi, dinal or f, nc ional da a ha e been a_{v} ell, nder ood a for i.i.d. da a. E peciall, a mp o ic re, l for co ariance e ima or do no e i. Therefore in hi ec ion_w e appl he a mp o ic re, l de eloped for general f nc ional o Nadara a Wa on and local linear e ima or of regre ion f, nc ion and co ariance, rface o ob ain heir a mp o ic di rib ion.

3.1. Asymptotic distributions of mean estimators

We appl Theorem 1 o he local a mp o ic di *t*ib^{*t*} ion of he commonl , ed Nadara a Wa on kernel e ima or $\hat{\mu}_{N}(t)$ and local linear e ima or $\hat{\mu}_{L}(t)$ for f nc ional/longi, dinal

48

da a:

$$\hat{\mu}_{N}(t) = \left[\sum_{i=1}^{n} \sum_{j=1}^{N_{i}} K_{1}\left(\frac{t-T_{ij}}{b}\right) Y_{ij}\right] / \left[\sum_{i=1}^{n} \sum_{j=1}^{N_{i}} K_{1}\left(\frac{t-T_{ij}}{b}\right)\right],\tag{10}$$

$$\hat{\mu}_{\rm L}(t) = \hat{\alpha}_0(t) = \underset{(\alpha_0, \alpha_1)}{\arg\min} \left\{ \sum_{i=1}^n \sum_{j=1}^{N_i} K_1\left(\frac{t - T_{ij}}{b}\right) [Y_{ij} - (\alpha_0 + \alpha_1(T_{ij} - t))]^2 \right\}.$$
 (11)

Corollary 1. If assumptions (A1.1), (A1.2), and (B1.1) (B3) hold with v = 0 and k = 2, then

$$\sqrt{n\bar{N}b}[\hat{\mu}_{N}(t)-\mu(t)] \xrightarrow{\mathcal{D}} \mathcal{N}\left(\frac{d}{2} \frac{\mu^{(2)}(t)f(t)+2\mu^{(1)}(t)f^{(1)}(t)}{f(t)}\sigma_{K_{1}}^{2}, \frac{var(Y|T=t)\|K_{1}\|^{2}}{f(t)}\right),$$
(12)

where d is as in (B3), $\sigma_{K_1}^2 = \int u^2 K_1(u) du$

Here $w_{ij} = K_1((t - T_{ij})/b)/(nb)_{W}$ here K_1 i a kernel f nc ion of order (0, 2), a i f ing (B2.1) and (B2.2), and $\hat{\alpha}_1(t)$ i and ima or for he fir derived in $\mu'(t)$ of μ a t.

Ob er ing ha Corollar 1 implie $\hat{\mu}_{N}(t) \xrightarrow{p} \mu(t)$, le $\hat{f}(t) = \sum_{i} \sum_{j} w_{ij}/N_{i}$, i i ea o how $\hat{f}(t) \xrightarrow{p} f(t)$ in analog o Corollar 1. We proceed o how $\hat{a}_{1}(t) \xrightarrow{p} \mu'(t)$. Deno e $\sigma_{K_{1}}^{2} = \int u^{2}K_{1}(u) du$, he kernel f nc ion $\widetilde{K}_{1}(t) = -tK_{1}(t)/\sigma_{K_{1}}^{2}$, and define $\Psi_{\lambda n}$, $1 \leq \lambda \leq 3$ b $\psi_{1}(u, y) = y, \psi_{2}(u, y) \equiv 1, \psi_{3}(u, y) = u - t$. Ob er e ha \widetilde{K}_{1} i of order (1, 3), $\hat{f}(t) \xrightarrow{p} f(t)$, and define

$$\widetilde{H}(x_1, x_2, x_3) = \frac{x_1 - x_2 \widehat{\mu}_N(t)}{x_3 - bx_2^2 / \widehat{f}(t) \cdot \sigma_{K_1}^2} \quad \text{and} \quad H(x_1, x_2, x_3) = \frac{x_1 - x_2 \mu(t)}{x_3}$$

Then

$$\hat{\alpha}_{1}(t) = \widetilde{H}(\Psi_{1n}, \Psi_{2n}, \Psi_{3n}) \\= \left[H(\Psi_{1n}, \Psi_{2n}, \Psi_{3n}) + \frac{\Psi_{2n}(\mu(t) - \hat{\mu}_{N}(t))}{\Psi_{3n}} \right] \frac{\Psi_{3n}}{\Psi_{3n} + b^{2} \Psi_{2n}^{2} / \hat{f}(t) \cdot \sigma_{K_{1}}^{2}}.$$

No e ha $\mu_1 = (\mu' f + mf')(t), \mu_2 = f'(t), \text{ and } \mu_3 = f(t), \text{ impl} \text{ ing } \Psi_{\lambda n} - \mu_{\lambda} = O_p(1/\sqrt{nNb^3}),$ for $\lambda = 1, 2, 3, b$ Theorem 1. U ing *Slutsky's* Theorem, $|\widetilde{H}(\Psi_{1n}, \Psi_{2n}, \Psi_{3n}) - \mu'(t)| = O_p(1/\sqrt{nNb^3})$ follow.

For heat mp o ic di *t*ib ion of $\hat{\mu}_{L}$, no e hat

$$\hat{\mu}_{\rm L}(t) = \frac{\sum_{i} \frac{1}{EN} \sum_{j} w_{ij} Y_{ij} - \sum_{i} \frac{1}{EN} \sum_{j} w_{ij} (T_{ij} - t) \hat{a}_{1}(t)}{\sum_{i} \frac{1}{EN} \sum_{j} w_{ij}}.$$

Con idering $\sqrt{n\bar{N}b} \sum_{i} \frac{1}{EN} \sum_{j} w_{ij}(T_{ij} - t) = \sqrt{n\bar{N}b}\sigma_{K_{1}}^{2}b^{2}\Psi_{2n}$. Since \tilde{K}_{1} i of order (1, 3), Theorem 1 implie $\Psi_{2n} = f'(t) + O_{p}(1/\sqrt{n\bar{N}b^{3}})_{W}$ hich ield $\sqrt{n\bar{N}b}\sigma_{K_{1}}^{2}b^{2}\Psi_{2n} = \sqrt{n\bar{N}b^{5}}\sigma_{K_{1}}^{2}$ $f'(t) + \sigma_{K_{1}}^{2}O_{p}(b) = o_{p}(1)$ b ob er ing $n\bar{N}b^{5} \rightarrow d^{2}$ for $0 \leq d < \infty$. Since $\hat{f}(t) \xrightarrow{p} f(t)$ and $|\hat{\alpha}_{1}(t) - \mu'(t)| = O_{p}(1/\sqrt{n\bar{N}b^{3}}) = o_{p}(1)_{W}$ e find

$$\lim_{n \to \infty} \sqrt{n\bar{N}b} [\hat{\mu}_{\mathrm{L}}(t) - \mu(t)] \stackrel{\mathcal{D}}{=} \lim_{n \to \infty} \sqrt{n\bar{N}b} \\ \times \left\{ \frac{\sum_{i} \frac{1}{EN} \sum_{j} w_{ij} Y_{ij} - \mu'(t) \sum_{i} \frac{1}{EN} \sum_{j} w_{ij} T_{ij} + t\mu'(t) \sum_{i} \frac{1}{EN} \sum_{j} w_{ij}}{\sum_{i} \frac{1}{EN} \sum_{j} w_{ij}} - \mu(t) \right\}.$$

U ing he kernel K_1 of order $(0, 2)_W$ e re-define $\Psi_{\lambda n}$, $1 \le \lambda \le 3$, hrow gh $\psi_1(u, y) = y$, $\psi_2(u, y) = u$ and $\psi_3(u, y) \equiv 1$, e ing v = 0, k = 2, l = 3 and $H(x_1, x_2, x_3) = [x_1 - \mu'(t)x_2 + t\mu'(t)x_3]/x_3$. Then (13) follow b appling Theorem 1. \Box

3.2. Asymptotic distributions of covariance estimators

No e ha in model (1), $cov(Y_{ij}, Y_{ik}|T_{ij}, T_{ik}) = cov(X(T_{ij}), X(T_{ik})) + \sigma^2 \delta_{jk_{\overline{W}}}$ here δ_{jl} i 1 if j = k and 0 o here i e. Le $C_{ijk} = (Y_{ij} - \hat{\mu}(T_{ij}))(Y_{ik} - \hat{\mu}(T_{ik}))$ be he real containing the error $\hat{\mu}(t)$ i here imaged mean form in control bained from here i one p, for in ance, $\hat{\mu}(t) = \hat{\mu}_N(t)$ or $\hat{\mu}(t) = \hat{\mu}_L(t)$. I i eas o ee ha $E[C_{ijk}|T_{ij}, T_{ik}] \approx cov(X(T_{ij}), X(T_{ik})) + \sigma^2 \delta_{jk}$. Therefore,

he diagonal of he x_{W} co aziance ho ld be zemo ed, i.e., onl C_{ijk} , $j \neq k$, ho ld be incl ded a inp da a for he co aziance z face moo hing ep, a pre io l ob er ed in S ani_W ali and Lee [12] and Yao e al. [15].

Commonl , ed nonparame ric regre ion e ima or of he co ariance , rface, $C(s,t) = E\{[X(T_1) - \mu(T_1)][X(T_2) - \mu(T_2)|T_1 = s, T_2 = t]\}$, are he_W o-dimen ional Nadara a Wa on e ima or and local linear e ima or defined a follow:

$$\widehat{C}_{N}(s,t) = \left[\sum_{i=1}^{n} \sum_{j \neq k} K_{2}\left(\frac{s - T_{ij}}{h}, \frac{t - T_{ik}}{h}\right) C_{ijk}\right] / \left[\sum_{i=1}^{n} \sum_{j \neq k} K_{2}\left(\frac{s - T_{ij}}{h}, \frac{t - T_{ik}}{h}\right)\right],$$

$$\widehat{C}_{L}(s,t) = \widehat{\beta}_{0}(s,t) = \arg\min_{\beta} \left\{\sum_{i=1}^{n} \sum_{j \neq k} K_{2}\left(\frac{s - T_{ij}}{h}, \frac{t - T_{ik}}{h}\right)\right\}$$
(16)

$$\times [C_{ijk} - f(\boldsymbol{\beta}, (s, t), (T_{ij}, T_{ik}))]^2 \left[\sqrt{\boldsymbol{\gamma}} \right] = \left[\sqrt{\boldsymbol{\gamma}} \right] \left[\sqrt{\boldsymbol{\gamma}} \right] \left[\sqrt{\boldsymbol{\gamma}} \right] = \left[\sqrt{\boldsymbol{\gamma}} \right] \left[\sqrt{\boldsymbol{\gamma}} \right] \left[\sqrt{\boldsymbol{\gamma}} \right] = \left[\sqrt{\boldsymbol{\gamma}} \right] \left[\sqrt{\boldsymbol{\gamma}} \right] \left[\sqrt{\boldsymbol{\gamma}} \right] \left[\sqrt{\boldsymbol{\gamma}} \right] = \left[\sqrt{\boldsymbol{\gamma}} \right] \left[$$

 $\phi_1(t_1, t_2, y_1, y_2) = (y_1 - \mu(t_1))(y_2 - \mu(t_2)), \phi_2(t_1, t_2, y_1, y_2) = y_1 - \mu(t_1), \text{ and } \phi_3(t_1, t_2, y_1, y_2)$ =1, hen ' $p_{t,s\in\mathcal{T}} |\Phi_{pn}| = O_p(1)$, for p = 1, 2, 3, b Lemma 1 of Yao e al. [16]. Thi implie ha ' $p_{t,s\in\mathcal{T}} |\Phi_{2n}|O_p(1/(\sqrt{nb})) = O_p(1/(\sqrt{nb})) \text{ and ' } p_{t,s\in\mathcal{T}} |\Phi_{3n}|O_p(1/(\sqrt{nb})) = O_p(1/(\sqrt{nb})).$ Since ' $p_{t\in\mathcal{T}} |\hat{\mu}(t) - \mu(t)|^2 = O_p(1/(nb)) \text{ are negligible compared o } \Phi_{1n}$, he Nadara a Wa on e ima of $\widehat{C}_N(s, t)$, of C(s, t) ob ained from C_{ijk} i a mp o icall eq i alen o ha ob ained from \widetilde{C}_{ijk} , deno ed b $\widetilde{C}_N(t, s)$.

Therefore, i i , fficien o how ha he a mp oic di *i*b ion of $\tilde{C}_N(s, t)$ follow (18). Choo e $\mathbf{v} = (0,0), |\mathbf{k}| = 2, \phi_1(s, t, y_1, y_2) = (y_1 - \mu(s))(y_2 - \mu(t)), \phi_2(s, t, y_1, y_2) \equiv 1$ and $H(x_1, x_2) = x_1/x_2$ in Theorem 2, hen $\tilde{C}_N(s, t) = H(\Psi_{1n}, \Psi_{2n})$. To complete $\gamma_N(s, t), i$ e $DH(m_1, m_2) = (1/m_2, -m_1/m_2^2)$, and no e $m_1(s, t) = \int_{\Re^2} (y_1 - \mu(s))(y_2 - \mu(t))g_2(s, t, y_1, y_2)$ $dy_1 dy_2 = f_2(s, t)C(s, t)$ and $m_2(s, t) = f_2(s, t)$. One hat $(d^2/dt^2)m_1(s, t) = [(d^2f_2/dt^2)C + 2(df_2/dt)(dC/dt) + f_2(d^2C/dt^2)](s, t), (d^2/d^2t)m_2(s, t) = d^2f_2(s, t)/dt^2$ and imilar derivation in the pector of the arguments leading on he bia error in (12). For he a mp oic ariance, no e hat $\omega_{11} = ||K_2||^2 \int_{\Re^2} (y_1 - \mu(s))^2 (y_2 - \mu(t))^2 g_2(s, t, y_1, y_2) dy_1 dy_2 = E[(Y_1 - \mu(T_1))^2(Y_2 - \mu(T_2))^2|T_1 = s, T_2 = t)f_2(s, t)||K_2||^2, \omega_{12} = \omega_{21} = ||K_2||^2 f_2(s, t)C(s, t),$ $\omega_{22} = ||K_2||^2 f_2(s, t)$, and $DH(m_1, m_2) = (1/m_2, -m_1/m_2^2)$, ielding he ariance error in (12). \Box

Corollary 4. If the assumptions (A1.1), (A1.2), and (C1.1) (C3) hold with $|\mathbf{v}| = 0$ and $|\mathbf{k}| = 2$, then

$$\sqrt{n\bar{N}(\bar{N}-1)h^2}[\widehat{C}_{\mathrm{L}}(s,t) - C(s,t)]$$

$$\xrightarrow{\mathcal{D}} \mathcal{N}\left(\frac{e}{4}\sigma_{K_2}^2[d^2C(s,t)/ds^2 + d^2C(s,t)/dt^2], \frac{v(s,t)\|K_2\|^2}{f_2(s,t)}\right), \tag{19}$$

where e is as in (C3), $v(s, t) = var\{(Y_1 - \mu(T_1))(Y_2 - \mu(T_2))|T_1 = s, T_2 = t\}, \sigma_{K_2}^2 = \int_{\Re^2} (u^2 + v^2)K_2(u, v) du dv, ||K_2||^2 = \int_{\mathcal{R}^2} K_2^2(u, v) du dv.$

Proof. In analog o he proof of Corollar 3, he local linear e ima of $\widehat{C}_{L}(s, t)$ ob ained from C_{ijk} i a mp o icall eq i alen o ha ob ained from \widetilde{C}_{ijk} , deno ed b $\widetilde{C}_{L}(t, s)$. Al o deno e he ob ion o (17), af er b i ing \widetilde{C}_{ijk} for C_{ijk} , b $\widetilde{\beta}(s, t) = (\widetilde{\beta}_{0}(s, t), \widetilde{\beta}_{1}(s, t), \widetilde{\beta}_{2}(s, t))$, and in fac $\widetilde{\beta}_{0}(s, t) = \widetilde{C}_{L}(s, t)$. For implicit, le $W_{ijk} = K_{2}((s - T_{ij})/h, (t - T_{ik})/h)/(nh^{2})$ and $\sum_{i,j\neq k}$ i abbre ia ion of $\sum_{i=1}^{n} \sum_{j\neq k}$. Algebra calc la ion ield ha

$$\begin{split} \tilde{c}_{\mathrm{L}} &= \frac{\sum_{i,j \neq k} \tilde{c}_{ijk} W_{ijk} - \tilde{\beta}_1 \sum_{i,j \neq k} W_{ijk} T_{ij} + \tilde{\beta}_1 \sum_{i,j \neq k} W_{ijk} s - \tilde{\beta}_2 \sum_{i,j \neq k} W_{ijk} T_{ik} + \tilde{\beta}_2 \sum_{i,j \neq k$$

w here

$$R_{pq} = \sum_{i,j \neq k} W_{ijk} (T_{ij} - s)^p (T_{ik} - t)^q \tilde{C}_{ijk}, \quad S_{pq} = \sum_{i,j \neq k} W_{ijk} (T_{ij} - s)^p (T_{ik} - t)^q.$$

No e ha $\tilde{\beta}_1$ and $\tilde{\beta}_2$ are local linear e ima or of he partial derivative in e of C(s, t), dC(s, t)/ds and dC(s, t)/dt, repectively. In analog of he proof of Corollar 2, i can be hown has $|\tilde{\beta}_1(s, t) - dC(s, t)/ds| = O_p(1/\sqrt{nEN(N-1)h^4})$ and $|\tilde{\beta}_2(s, t) - dC(s, t)/dt| = O_p(1/\sqrt{nN(N-1)h^4})$ b appling Theorem 2. Then one can be independent of $C_{\rm L}(s, t)/dt$ for $\tilde{\beta}_1(s, t), \tilde{\beta}_2(s, t)$ in $\tilde{C}_{\rm L}(s, t)$, and denote here being in a or be $C_{\rm L}^*(s, t)$. It is eas one has

$$\lim_{n \to \infty} \sqrt{n\bar{N}(\bar{N}-1)h^2[C_{\rm L}(s,t) - C(s,t)]} \stackrel{\mathcal{D}}{=} \lim_{n \to \infty} \sqrt{n\bar{N}(\bar{N}-1)h^2[C_{\rm L}^*(s,t) - C(s,t)]}.$$

We define $\Phi_{\lambda n}, 1 \leq \lambda \leq 4$, here gh $\phi_1(s, t, y_1, y_2) = (y_1 - \mu(s))(y_2 - \mu(t)), \phi_2(s, t, y_1, y_2))$

ho e in Corollarie 3 and $4_{\overline{W}}$ i h f(t) replaced b $1/|\mathcal{T}|$ and f(s, t) replaced b $1/|\mathcal{T}|^2_{\overline{W}}$ here $|\mathcal{T}|$ i he leng h of he in er al.

5. Simulation study

A n' merical , d i cond' c ed o e al' a e he deri ed a mp o ic proper ie. The ke finding in hi paper i ha he a mp o ic re , l for f' nc ional or longi, dinal are comparable o ho e ob ained from independen da a, i.e., he infl' ence of $_{W}$ i hin-, bjec co ariance doe no pla ignifican role in de ermining he a mp o ic bia and ariance. For implici $_{W}$ e foc on he

local pol nomial mean e ima or_w hich are of en , perior o he Nadara a Wa on e ima or. We fir genera ed M = 200 ample con i ing of n = 50 i.i.d. random rajec orie each. Follow ing model (1), he im la ed proce ha a mean f nc ion $\mu(t) = (t - 1/2)^2$, $0 \le t \le 1$ which ha a con an econd deri a i e $\mu^{(2)}(t) = 2$, and a con an_w i hin-, bjec co ariance f nc ion deri ed from a random in ercep $\xi_1 \stackrel{\text{i.i.d.}}{\sim} N(0, \lambda_1)_{\text{W}}$ here $\lambda_1 = 0.01$ and $\phi_1(t) = 1$, $0 \le t \le 1$. The mea, remen error in $(1)_{\text{W}}$ a e $\varepsilon_{ij} \stackrel{\text{i.i.d.}}{\sim} N(0, \sigma^2)_{\text{W}}$ here $\sigma^2 = 0.01$. A random de ign_W a , ed_W here he n mber of ob er a ion for each , bjec N_{i_W} ere cho en from $\{2, 3, 4, 5\}_{\text{W}}$ i h eq al likelihood and he loca ion of he ob er a ion_W ere, niforml di rib ed on [0, 1], i.e., $T_{ij} \stackrel{\text{i.i.d.}}{\sim} U[0, 1]$. For compari on_W e genera ed M = 200 ample of n = 50i.i.d. random rajec orie_W hich ha e he ame f c r re a in model (1) b n_W i hin-, bjec correla ion. Le ing $\xi_{i1} = 0$ and $\varepsilon_{ij} \stackrel{\text{i.i.d.}}{\sim} N(0, \sqrt{\lambda_1 + \sigma^2})$ lead o independen da a_W i h he ame mean and ariance f nc ion. Therefore, he_W o e of da a ha e he ame a mp o ic di rib ion for he local pol nomial mean e ima or. We al o genera ed M = 200 correla ed and independen ample , re pec i el , con i ing of n = 200 rajec orie each for demon raing he a mp o ic beha iot_W i h he increa ing ample i e n.

Here \mathbf{w} e, e he Epanechniko kernel f nc ion, i.e., $K_1(u) = 3/4(1-u^2)\mathbf{1}_{[-1,1]}(u)_{\mathbf{w}}$ here $\mathbf{1}_A(u) = 1$ if $u \in A$ and 0 o here i e for an e A. No e ha $n(EN)b^{2k+1} \rightarrow d^2$ in (B3), $\mu^{(2)}(t) = 2$, $var(Y|T = t) = \lambda_1 + \sigma^2 = 0.02$, and he de ign den i $f(t) = \mathbf{1}_{\mathbf{w}}$ here k = 2 for local pol nomial e ima or and b i he band id h, ed for he mean e ima ion. From he abo e con f c ion, one can calc late he a mp o ic ariance and bia of he local pol nomial mean e ima or $\mu_L(t)$, ing Corollar $2_{\mathbf{w}}$ hich i in fac applicable for boh correlated and independen data. Since he bia and ariance erm are boh con an in σr im lation frame ork, for continue entering, e compare he a mp o ic integrated q ared bia and ariance M = 200 im lated ample bated on $\int_0^1 E[\{\hat{\mu}_L(t) - \mu(t)\}^2] dt = \int_0^1 \{\hat{\mu}_L(t) - E[\hat{\mu}_L(t)]\}^2 dt + \int_0^1 \{E[\hat{\mu}_L(t)] - \mu(t)\}^2 dt$. The a mp o ic integrated q ared bia and ariance are git en b

AIBIAS =
$$\frac{1}{2}\sigma_{K_1}^2 b^4$$
, AIVAR = $\frac{0.02 \times ||K_1||^2}{n\bar{N}b}$, (20)

and he a mp o ic in egra ed mean q_i ared error AIMSE = AIBIAS + AIVAR_w here $\sigma_{K_1}^2 = \int u^2 K_1(u) du$, $||K_1||^2 = \int K_1^2(u) du$ and $\bar{N} = (1/n) \sum_{i=1}^n N_{iw}$ hile he empirical in egra ed q_i ared bia , ariance and mean q_i ared error are deno ed b EIBIAS, EIVAR and EIMSE,

The a mp o ic and empirical q an i ie, , ch a he in egra ed q ared bia, ariance and mean q ared error, are hown in Fig. 1 for he correla ed/independen da a_{v} i h ample i e n = 50/n = 200, re pec i el. From Fig. 1, i i ob io ha he a mp o ic appro ima ion i impro ed b increa ing he ample i e. The a mp o ic q an i ie AIBIAS, AIVAR and AIMSE agree, i h he

Fig. 1. Show n are he empirical q_1 an i ie (olid, incl. ding EIBIAS, EIVAR, EIMSE) and a mp o ic q_1 an i ie (da hed, incl. ding AIBIAS, AIVAR, AIMSE) et $r = \log(b)$ for correla ed (lef panel) and independen (righ panel) da q_{y_1} i h differen ample i e n = 50 (op panel) and n = 200 (bo om panel) q_{y_1} here b i he band, id h_1 ed in he moo hing. In each panel, he in egra ed q_1 ared bia i he on q_{y_1} i h increa ing pa ern, he in egra ed ariance i he on q_{y_1} i h decrea ing pa ern, and he cro each o here, hile he in egra ed mean q_1 ared error, hich i larger han bo h in egra ed q_1 ared bia and ariance for an band, id h_2 , r all decrea e fir and hen increa e af er reaching a minim.

empirical q_i an i ie EIBIAS, EIVAR and EIMSE for bo h correla ed and independen da a. For he im la ed da a_{v} i h he ame ample i en, i ch a mp o ic appro ima ion for correla ed and independen da a a_{v} ell comparable in pa ern and magni de. Thi pro ide he e idence ha heve i hin-i bjec correla ion indeed doe no ha e ob ior influence on he a mp o ic beha ior of he local pol nomial e ima or compared o he andard ra e ob ained from independen da a, w hich i con i env i h or r heore ical deri a ion.

6. Discussion

In hi paper, he a mp o ic di rib ion of kernel-ba ed nonparame ric regre ion e ima or

de ign de cribed in (A1.1) and (A1.2), fi ed eq all paced de ign de cribed in (A1^{*}), and ome ca el ing be_w een hem. The propo ed re i l co ld al o be e ended o more complica ed ca e, i ch a panel da a_w here ob er a ion for differen i bjec are ob ained a a erie of common ime poin di ring a longi i dinal follog -i p. If con idering random de ign, he den i of he j h ob er a ion ime T_j co ld be a i med o be $f_j(t)$, hen he re i l are readil applied o hi ca e w i h appropria e modifica ion w i h re pec o he differen marginal den i ie.

The general a mp o ic di *rib* ion *re* · 1 in · ni aria e and bi aria e moo hing e ing are applied o he kernel-ba ed e ima or of he mean and co ariance f nc ion w_v hich ield a mpo ic normal di *rib* ion of he ee ima or . To he be of or *r* knowledge, here are no a mp o ic di *rib* ion *re* · 1 a ailable in li era · *re* for nonparame *r*ic e ima or of co ariance f nc ion obained from ob er ed noi longi · dinal or f nc ional da a. Thi pro ide heore ical ba i and prac ical g idance for he nonparame *r*ic anal i of f nc ional or longi · dinal da a_w i h imporan po en ial applica ion ha are ba ed on he a mp o ic di *rib* ion . For e ample, a mp o ic confidence band or region for he regre ion c r e or he co ariance · *r*face can be con *r* c ed ba ed on heir a mp o ic di *rib* ion . Since, d e o heir hea comp a ional load, commonl · ed proced *re* (· ch a cro - alida ion) for band id h elec ion in w o-dimen ional e ing are no fea ible, one impor an *re* earch problem i o eek efficien approache for choo ing · ch moo hing parame er . Al of *r* nc ional principal componen anal i , an increa ingl pop lar ool for f nc ional da a anal i , i ba ed on eigen-decompo i ion of he e ima ed co ariance f nc eigenf nc ion i ano her po en ial *re* earch of in ere .

References

- [1] P.K. Bha achar a, H.G. Meller, A mp o ic for nonparame ric regre ion, Sankh a 55 (1993) 420 441.
- [2] G. Boen e, R. Fraiman, Kernel-ba ed f nc ional principal componen , S a i . Probab. Le . 48 (1999) 335 345.
- [3] H. Cardo, F. Ferra, P. Sarda, F. nc ional linear model, S a i . Probab. Le . 45 (1999) 11 22.
- [4] P. Diggle, P. Herger, K.Y. Liang, S. Zeger, Anal i of Longi dinal Da a, O ford Un er i Pre, O ford, 2002.
- [5] J. Fan, I. Gijbel, Local Pol nomial Modelling and I Applica ion, Chapman & Hall, London, 1996.
- [6] P. Hall, N.I. Fi her, B. Hoffmann, On he nonparame ric e ima ion of co ariance fr nc ion, Ann. S a i . 22 (1994) 2115 2134.
- [7] P. Hall, P. Pa il, Proper ie of nonparame ic e ima or of a oco ariance for a ionar random field, Probab. Theor Rela ed Field 99 (1994) 399–424.
- [8] J.D. Har, T.E. Wehrl, Kernel regre ion e imaion, ing repeated mean rement data, J. Amer. S at A oc. 81 (1986) 1080–1088.
- [9] X. Lin, R.J. Carroll, Nonparame ric froncione imation for che ered da au hen he predic or i mea reduit i ho duit herror, J. Amer. S at i. A oc. 95 (2000) 520 534.
- [10] J.O. Ram a, J.B. Ram e, F nc ional da a anal i of he d namic of he mon hl inde of nond rable good prod c ion, J. Econom. 107 (2002) 327. 344.
- [11] T.A. Sezezini, J.G. S ani_w ali, Q a i-likelihood e ima ion in emiparame ric model, J. Amer. S a i . A oc. 89 (1994) 501–511.
- [12] J.G. S ani_v ali , J.J. Lee, Nonparame ric regre ion anal i of longi dinal da a, J. Amer. S a i . A oc. 93 (1998) 1403 1418.
- [13] A.P. Vezb la, B.R. C lli, M.G. Ken, azd, S.J. Welham, The anal i of de igned e pezimen and longi dinal da a , ing moo hing pline (i h di c ion), Appl. S a i . 48 (1999) 269 311.
- [14] C.J. Wild, T.W. Yee, Addi i e e en ion o generali ed e ima ing eq a ion me hod , J. Ro . S a i . Soc., Ser B 58 (1996) 711 725.
- [15] F. Yao, H.G. Meller, A.J. Clifford, S.R. Dreker, J. Lin Folle, B.A.Y. Br chhol, J.S. Vogel, Shrinkage e ima ion for fr nc ional principal componen core w i h application o he pop-lation kine ic of pla ma fola e, Biomeric 59 (2003) 676–685.
- [16] F. Yao, H.G. Meller, J.L. Wang, F. nc ional da a anal i for par e longi dinal da a, J. Amer. S a i . A oc. 100 (2005) 577. 590.