\qquad
acknowledged. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing interests: The authors have declared that no competing interests exist.

However, there is mounting empirical and experimental evidencesuggesting that humans do not al ways behavein the way traditional economic models predict, but often make seemingly random and suboptimal decisions [10]. These behavioral anomalies and psychological traits areespecially pronounced when elements of risk and probability areinvolved. Examples includeloss aversion [11-14], overconfidence [15, 16], overreaction [17], herding [18] psychological accounting [19], miscalibration of probabilities [20], the uncertainty effect [21], and confirmation bias [22]. The spectacular rise of US stock market prices during thetech bubble in theearly 2000s, and theeven more spectacular crash following the 2007-2008 financial crisis, has intensified the controversy surrounding therationality of investors.

One particularly interesting behavioral anomaly is probability matching, also known as the "matching law," or Herrnstein's Law [23-30]-thetendency of therelativefrequency of pre di ctions of outcomes of an independent randomized event to match its underlying probability distribution. Thebest-known example of probability matching is the human tendency to chooserandomly between heads and tails when asked to guess the outcomes of aseries of biased coin tosses. When individuals areasked to guess the repeated outcomes of abiased coin, say with a bias of 70% heeds, and rewarded based on whether they guessed correctly, most subjects seem to randomize their guesses at around 70% heads, instead of engaging in the economically optimal behavior of always guessing heads.

Probability matching haslong puzzled economists and psychologists because of its apparent inconsistency with basic self-interest. Theidea of randomizing behavioris especially di fficult to reconcile with thestandard economic paradigm of expected utility theory, in which individual behavior is non-stochastic and completey determined by theindividual's utility function, budget constraints, and the probability laws governing theenvironment. For example, Kogler and Kuhberger [31] report that, "Experimental research in simplerepeated risky choices shows a striking violation of rational choicetheory: thetendency to match probabilities by allocating thefrequency of responsein proportion to their relative probabilities".

Nevertheless, probability matching has been observed in thousands of geographically diverse human subjects over several decades, as well as in other animal species, induding ants [32-35], bees [36-38], fish [39, 40], pigeons [41, 42], and primates [43]. In virtually any setting wherean animal is ableto make a choicebetween A versus B in a randomized experiment, we observeprobability matching.

The source of theseirrational behaviors is often attributed to psychological factors, such as fear, greed, and other emotional responses. However, the fact that some of these behaviors are observed so consistently across species suggests that they may have a more fundamental and common origin, onewith an evolutionary rolethat belies their apparent shortcomings. For example, theneurological basis of probability matching has been investigated extensively [4449]. In the context of abinary choicemode, Brennan and Lo [50] show that probability matching behavior is perfectly consistent with evolution, arising purely from the forces of natural selection and population growth. Moreover, under generalized environmental conditions, i.e, broad assumptions about the conditions required for reproductivesuccess, they derive moregeneral types of behavior that involverandomization, but not necessarily strict probability matching.

In this paper, wepresent thefirst experimental test of theevolutionary model of Brennan and Lo [50]. Wedesign an experiment in real-world decision making with monetary payoffs to measure the degree of probability matching among indi viduals, its determining factors, and itsleve of variation. Hereby probability matching wemean the "matchinglaw," or Herrnstein's Law discussed above - thetendency to chooserandomly between heeds and tai Is when asked to guess the outcomes of a series of biased-coin tosses, wheretherandomization fre quency matches theprobability of thebiased coin.

Werecruited a sample of 82 volunters from the MIT Behavioral Research Laboratory to participatein our experiment. Each participant played a computer game consisting of 200 trials of a binary choice decision. In each trial, an image of either Angelina Jolie or Brad Pitt was di splayed with a certain probability, and subjects were paid according to the number of trials in which they correctly guessed which image appered.

By varying the payoff structure of the game, we were ableto test whether subjects showed probability matching behavior, and whether deviations occurred as predi cted by the model in Brennan and Lo [50]. Specifically, wedesigned several payoffs wheretheevolutionarily dominant behavior wase ther to maximize, i.e, alwaysto chooseoneoption, or to randomize i.e, to choose randomly between two options. Wefound strong evidencefor a behavioral difference between theoretical maximizers and theoretical randomizers, as predicted by Brennan and Lo [50]. After controlling for a widerange of demographic and socioeconomic variables, theoretical randomizers still engaged in randomizing behavior more often than theoretical maximizers. When facing different environments (i.e, payoffs in theexperiment), our subjects responded differently by adapting to the new conditions and showing different stable behaviors.

Wewerealso ableto study individual differences in thetendency to maximizeor randomize by collecting basic demographic and socioeconomic information from the anonymous participants. We found that subjects with a higher levd of financial assets tended to randomize less often, whilesubjects with children tend to randomize more often. Moreover, subjects who had taken probability and statistics classes and thosewho sedf-reported finding a pattern in the game(none existed) also tended to randomizemoreoften, contrary to our prior expectation that those participants with a better understanding of probability might bemorelikely to adopt theeconomically maximizing behavior. In fact, we found that those subjects engagein theexact oppositebehavior. This may bedueto an attempt to "beat the game", based on the qualitative answersto our post-trial survey by participants.

From the evolutionary perspective, thekey to understanding thesebehavioral predictions lies in the assumption of systematic reproductiverisk [50,51]. Theexperiment we describe in this artideinvolves a binary choicein which therisks to the population areidiosyncratic, that is, theoutcomes of oneindividual's choiceare independent of those of another. However, when individuals with preferences formed in responseto systematic risks are placed in the different environment, thereisthe potential for probability matching to occur, creating what appears to beirrational behaviors for thoseenvironments.

Our results contributeto the growing literatureon rationalizing theexistence of probability matching. Asfar back as the 1950s, researchers [52-54] developed statistical models that attempted to explain and predict matching behavior. Sincethen, several behavioral reesons havebeen offered, induding its emergenceas a consequence of pattern searching[55], through the greater utility gained from guessing therarer event correctly [56], and by the role of diversification to avoid boredom [57]. Morerecently, explanations of probability matching have ben proposed from an evolutionary point of view. Wolford, Miller, and Gazzaniga [45] argue that early human beingslook for explanatory causal relationships as a survival strategy. Wozny, Beierholm, and Shams [58] haveshown that humans match probabilities not only in cognitivetasks, but also in perceptual tasks. This implies that the human nervous system has a built-in function that samples from a distribution of hypotheses, and updates its belief after each observation.

Our results provideexperimental validation for the predictions of Brennan and Lo [50], as well as additional evidence that individuals engage in randomized behavior and probability matching, even those with prior experiencein probability and investing. Moreimportantly, our results may providean explanation for several notabledepartures from exact probability
matching [31, 59, 60]. Randomizing behavior that matches environmental probabilities depends on theredative reproductive success of the outcomes, and theevolutionary framework proposed in Brennan and Lo [50] offers asimpleand specific set of conditionsfor understanding and predictingsuch behavior.

2 Materials and methods

21 Evolutionary origins of probability matching

Brennan and Lo [50] proposed an evolutionary framework for the origin of several behaviors that are considered "anomal ous" in economic theories based on the assumption of rational behavior. In particular, probability matching-thetendency of therelativefrequency of guesses of theoutcomes of a sequenceof independent random eventsto match the underlying probability distribution of events-can beexplained when the uncertainty in environment is systematic across all individuals, an example demonstrating that natural selection is able to yied behaviors that may beindividually sub-optimal but areoptimal for the population. For expositional convenience, we present a brief review of this framework here, and then turn to our experimental design.

Webegin with a population of individuals that livefor one period, producea random number of offspring asexually, and then die. During their lives, individuals makeonly one decision: they choose one of two possible courses of action, denoted a and b, and this choiceresults in one of two corresponding random numbers of offspring, x_{a} and x_{b}, given by:

$$
\begin{align*}
& \operatorname{Prob}\left(\mathrm{x}_{\mathrm{a}}=\mathrm{c}_{\mathrm{a} 1} ; \mathrm{x}_{\mathrm{b}}=\mathrm{c}_{\mathrm{b} 1}\right)=\mathrm{p} \in[0 ; 1] \\
& \operatorname{Prob}\left(\mathrm{x}_{\mathrm{a}}=\mathrm{c}_{\mathrm{a} 2} ; \mathrm{x}_{\mathrm{b}}=\mathrm{c}_{\mathrm{b} 2}\right)=1-\mathrm{p} \equiv \mathrm{q} \tag{1}
\end{align*}
$$

wherep is some probability between 0 and 1 .
Wefurther assume that x_{a} and x_{b} areindependently and identically distributed over time, and identical for all individuals in a given generation. In other words, if two individuals choose thesameaction a, both will producethesamenumber of random offspring x_{a}. This implies that the variation in offspring due to behavior is wholly systematic, i.e, the link between action and reproductive success is the samethroughout the population.

A "mindless" individual's behavior in this world isfully specified by the probability of choosing action a. Following thenotation in Brennan and Lo [50], wedenotethis probability asf. Each individual dies after oneperiod, and we assumeits behavior f is heritable offspring will behave in a manner identical to their parents, i.e, they choose between thetwo actions according to the sameprobability f.

From the individual's perspective, always choosing the action with a higher expected reproductive success ($f=0$ or 1) will lead to moreoffspring on average. However, Brennan and Lo [50] showed that from the perspective of the population, this individually optimal behavior cannot survive In fact, theeevolutionarily dominant behavior will depend on therelationship between the probability p and therelativefecundity ratios $r_{j}:=c_{a j} / c_{b j}$ for eech of thetwo possiblestates of the world, $j=1,2$, wheref can beanywherebetween 0 and 1 in general, implying randomized behavior. SeeProposition 3 of Brennan and Lo [50] for more detail.

Fig 1 illustrates theevolutionarily dominant behavior f^{*} as a function of r_{1} and r_{2}. If r_{1} and r_{2} are not too different in value-i.e, theratio of fecundity between choices a and b is not very different between thetwo states of the world-then random behavior yields no evolutionary advantage over deterministic choice In this case, theindividually optimal behavior (f* $=0$ or 1) will prevail in thepopulation.

Fig1. Regions of the $\left(r_{1}, r_{2}\right)$-planethat imply deterministic ($f^{*}=0$ or 1) or randomizing $\left(0<f^{*}<1\right.$) behavior, wherer $r_{j}=\mathrm{c}_{\mathrm{e} j} / \mathrm{G}_{\mathrm{j}}$ mesares therelativefeandities of action a to action bin the of the curved boundary lineoccur at $r_{1}=p$ and $r_{2}=q$. Values of r_{1} and r_{2} for which exact probability matching is optimal aregiven by thesolid black curve Source: Brennan and Lo [50, Fig 1].
https://doi.org/10.1371/journal.pone.0252540.g001
However, if oneof ther variables is large whiletheother issmall, then random behavior will be more advantageous for the population than adeterministic one In such cases, there aretimes in which each choice performs substantially better than the other. Under thoseconditions, it is evolutionarily optimal for a population to diversify between the two choices, rather than al ways choosing the outcome with the highest probability of progeny in a single generation.

A simplenumerical examplefrom Brennan and Lo [50] will illustratethebasic mechanism of this mode. Consider a population of individuals, each facing a binary choicebetween one of two possibleactions, a and b. 70\% of thetime, environmental conditions arepositive, and action a leeds to reproductive success, generating 3 offspring for the individual. 30\% of the time, environmental conditions arenegative, and action a leads to 0 offspring. This corre spondsto $=70 \%, c_{a 1}=3, c_{b 1}=0$ in thenotation of (1). Suppose action b has exactly theopposite outcomes-whenever a yields 3 offspring, b yields 0 , and whenever a yields 0 , b yields 3 . This corresponds to $\mathrm{c}_{\mathrm{a} 2}=0, \mathrm{c}_{\mathrm{b} 2}=3$ in thenotation of (1). From the individual's perspective, al ways choosing a, which has the higher probability of reproductive success, will lead to more offspring on average. However, if all individuals in the population behaved in this "rational" manner, the first time that a negativeenvironmental condition occurs, theentire population will becomeextinct. Assuming that offspring behave identically to their parents, the behavior "al ways choosea" cannot survive over time. For the samereason, "dlways chooseb" is also unsustainable In fact, one can show that in this special case, the behavior with the highest reproductive success over time is for each individual to choosea 70% of thetime and b 30\% of
thetime, matching the probabilities of reproductive success and failure Eventually, this particular randomizing behavior will dominate theentirepopulation.

The key to understanding thesebehavioral predictionslies in theassumption of systematic reproductiverisk. This dependenceon risk has implications that go far beyond the current setting. For example, Zhang, Brennan, and Lo [51] show that environments with a mix of systematic and idiosyncratic reproductive risks cause different risk preferences to emerge Whileour risk preferences may be determined by thenature of therisksto which weand our evolutionary ancestors have been exposed, we do not necessarily havethe ability to distinguish between systematic and idiosyncratic risks in our day-to-day decision making.

2.2Thebinary dhoicegame

Turning to our experimental design, we presented livehuman subjects with a binary choice gamein which therisks to the population areidiosyncratic, that is, the outcomes of oneindividual's gameareindependent of those of another. However, when individuals apply preferences formed in responseto systematic risks to the wrong environment, thereis the potential for probability matching to occur, creating what appears to beirrational behaviors for those environments.

In our experiment consisted of four particular payoff structures by varying the parameters in (1) (equivalently, four particular points in Fig 1), and observewhether participants show behaviors predicted by Brennan and Lo [50] (equivalently, behaviors indi cated by different colors in Fig 1).

Werecruited a sample of 82 volunteers and conducted our binary choice experiment at the MIT Behavioral Research Laboratory. Our subjectswere varied in their personal and sodioeconomic characteristics. Weprovide a summary of their statistics in Section 3.1.

Thefull experimental session typically lasted 45 to 60 minutes for a given participant. Each participant used a computer program that completed 200 iterations of a binary choicetrial, in essenceplaying a lottery. On each iteration of thetrial, subjects were shown an image of one of two popular filmstars-Angelinajolieor Brad Pitt-with specific fixed probabilities that were unknown to the subjects. Each participant was randomly assigned to one of four experimental designs, as shown in Table 1. In designs 1 and 2, Angdina Jolieappeared 70\% of thetimeand Brad Pitt 30\% of thetime. Designs 3 and 4 used the opposite probabilities. Theparticipant guessed which image would appear before it was revealed, and the participant would receivea certain amount of virtual dollars if their guess was correct. Fig 2 shows a screenshot of the computer interface used in the experiment.

In designs 1 and 4, subjects received two virtual dollars when they guessed correctly, and zero virtual dollars when they guessed incorrectly. In designs 2 and 3 , subjects recei ved two virtual dollars when they guessed correctly and one virtual dollar when they guessed

Table1 Experimental design.

Design	Image Probability	Payoff	Utility Maximizing Behavior	Evolutionarily Dominant Behavior [50]
1	$\begin{aligned} & \mathbb{P}(\text { Angelina })=0: 7 \\ & \mathbb{P}(\text { Brad })=0: 3 \end{aligned}$	Correct: v\$2 Incorrect: v\$0	Always Guess Angelina	$\mathrm{f}^{*}=\mathbb{P}($ Guess Angelina $)=0: 7$
2	$\begin{aligned} & \mathbb{P}(\text { Angelina })=0: 7 \\ & \mathbb{P}(\text { Brad })=0: 3 \end{aligned}$	Correct: v\$2 Incorrect: v\$1	Always Guess Angelina	$\mathrm{f}^{*}=\mathbb{P}($ Guess Angelina $)=1: 0$
3	$\begin{aligned} & \mathbb{P}(\text { Brad })=0: 7 \\ & \mathbb{P}(\text { Angelina })=0: 3 \end{aligned}$	Correct: v\$2 Incorrect: v\$1	Always Guess Brad	$\mathrm{f}^{*}=\mathbb{P}($ Guess Brad $)=1: 0$
4	$\begin{aligned} & \mathbb{P}(\text { Brad })=0: 7 \\ & \mathbb{P}(\text { Angelina })=0: 3 \end{aligned}$	$\begin{aligned} & \text { Correct: v\$2 } \\ & \text { Incorrect: v\$0 } \end{aligned}$	Always Guess Brad	$\mathrm{f}^{*}=\mathbb{P}($ Guess Brad $)=0: 7$

[^0]incorrectly. Thesedesigns correspond to four different evolutionarily dominant behaviors in Fig 1 (seealso Brennan and Lo [50]), asshown in the last column of Table1. Designs 1 and 4 arement to yield randomized behavior according to theory, whiledesigns 2 and 3 aremeent to yidd deterministic behavior. In terms of parameters in Fig 1 usingp $=0.7$, Design 1 corre spondsto $r_{1}=\infty$ and $r_{2}=0$, which yields the dominant behavior $f^{*}=0.7$; Design 2 corre sponds to $r_{1}=2$ and $r_{2}=\frac{1}{2}$, which yidds the dominant behavior $\mathrm{f}^{*}=1$; Design 3 corresponds to $r_{1}=\frac{1}{2}$ and $r_{2}=2$, which yields the dominant behavior $f^{*}=0$; Design 4 corresponds to $r_{1}=0$ and $r_{2}=\infty$, which yidds the dominant behavior f^{*} aroỉno

Fig 3 shows the trial-by-trial outcome of two representative subjects. Thesubject in Fig 3a

Fig3. Experimental outcomesfor a representativerandomizer (3a) and a representativemaximizer (3b). The highest row of triangles displaystherandomly generated appearances of Angdinaj oliefor each trial. Thesecond row of triangles di splays the instances when the subject's responsewas Angelinajolie Thebottom two rows of triangles represent the sameinformation for Brad Pitt appeerances and Brad Pitt responses. Themiddle row of red ticks representstrials that thesubject guessed correctly. Thediagonal lineshows the cumulative payout to the subject over time
https://doi.org/10.1371/journal.pone.0252540.g003
addition, 64\% of our subjects have reported taking some probability and statistics classes, an unsurprising finding, given that the experiment took place at MIT.

Subjects each received $\$ 5$ in basepay for showing up, and $\$ 0.05$ for each virtual dollar they earned. Total dollar earnings ranged from $\$ 14.80$ to $\$ 22.20$. Table 2 also reports the total

Table2 Partidipant demographics and summarystatistics

Variable	Distribution ($\mathrm{n}=75$ subjects)				
Personal Characteristics					
Gender	$\begin{gathered} \text { Male } \\ 53.3 \% \\ \hline \end{gathered}$	$\begin{aligned} & \text { Female } \\ & 45.3 \% \end{aligned}$			
Has Children	$\begin{gathered} \text { Yes } \\ 12.0 \% \end{gathered}$	$\begin{gathered} \text { No } \\ 86.7 \% \end{gathered}$			
Age	$\begin{gathered} \leq 23 \\ 33.3 \% \end{gathered}$	$\begin{gathered} {[24,46]} \\ 34.7 \% \end{gathered}$	$\begin{gathered} >46 \\ 30.7 \% \end{gathered}$		
Marital Status	Single 77.3\%	$\begin{aligned} & \text { Partnered } \\ & 9.3 \% \end{aligned}$	Married 8.0\%	$\begin{aligned} & \text { Other } \\ & 4.0 \% \end{aligned}$	
Socioeconomic Characteristics					
Taken Probability \& Statistics Class	$\begin{gathered} \text { Yes } \\ 64.0 \% \end{gathered}$	$\begin{gathered} \text { No } \\ 34.7 \% \end{gathered}$			
Gambling Experience	$\begin{gathered} \text { Yes } \\ 33.3 \% \end{gathered}$	$\begin{gathered} \text { No } \\ 65.3 \% \end{gathered}$			
HousingStaus	$\begin{aligned} & \text { Rent } \\ & 88.0 \% \end{aligned}$	$\begin{aligned} & \text { Own } \\ & \text { 10.7\% } \end{aligned}$			
WorkingStatus	$\begin{gathered} \text { Student } \\ 40.0 \% \end{gathered}$	$\begin{gathered} \text { Currently Working } \\ 38.7 \% \\ \hline \end{gathered}$	Unemp		

number of correct guesses for all subjects. Thebest performer guessed 154 (77\%) trials correctly, while the worst performer only guessed 98 (49\%) trials correctly. Themedi an subject guessed 129 (64.5\%) out of the 200 trials correctly, slightly less than theexpected number of correct guesses for a perfect maximizer, who would al ways guess the dominant image

The post-gamesurvey also asked participants about their perceptions of thebinary choice game 44% of our subjects reported that they found a pattern in the game It is clear that many participants were looking for patterns throughout the game, despiteits completly random nature This is consistent with the "representativeness heuristic" first documented by Tversky and Kahneman [61, 62]. Weincludequotes from two representative subjects.
"I kept losing count, but clearly the ratio of apperance of Jolie's pictureto Pitts's kept going up until it was something 7:1, then it went down (not al ways in increments of one, I think) until it was $1: 1$, and then it went back up again."
" 70% Angelina. If we picked her too many times, Brad was introduced as a counter-pick."

In addition, 74.7% of the subjects reported that they had a speific strategy in the game By reading the post-study surveys, we rellized that our subjects exhibited a wide range of heterogeneous strategies for thegame. Herewe show a few representative quotes from the two extremes of thesestrategies, where somesubjects indi cated clearly that they wereal ways choosing oneimage
"Always pick Angie"
"Choosing Brad Pitt all thetime. His image appeared morefrequently and even if the probability was 50% it would not have mattered who I choose, so why not choosehim all the time Also minimizes thinking effort and timeto dick."

Other subjects seemed to engage in more complicated strategies:
"Chose Brad Pitt themajority of thetime-if Brad Pitt appeared at least 6times in a row, choseAngelinaJolie"
"". . . I was switching between one and another until I noticed some sort of pattern and then I favored Angelina olie's picturefor thehigher number and Brad Pitt for thelower number in thepattern of 5-1-3-1-2."

These seff-reported strategies arealso reflected in the wideheterogeneity in behavior when weanal yzeparticipant choices.

3.2A model for individual behavior

Brennan and Lo [50] predict that subjects assigned to designs 1 and 4 of our binary choice gamewill randomizetheir behavior. Werefer to them as "theoretical randomizers." On the other hand, subjects assigned to designs 2 and 3 are predi ded to choosethedominant image deterministically, and werefer to themas "theoretical maximizers" (seeTable 1). In this section, westudy whether theoretical randomizers indeed randomize moreoften than theoretical maximizers.

Wefirst describeasimplemode of individual behavior. DefineD to bethedominant option in the game In our experiment, D represents Angdinaj oliein designs 1 and 2 , and Brad Pitt in designs3 and 4.

Each individual i chooses the dominant option D with probability f, wheref represents the individual's (unobserved) behavior. In other words, theindividual's decision in each trial is generated by a Bernoulli random variable:

$$
y_{t}=\left\{\begin{array}{l}
1 ; \text { with probability } f ; \tag{2}\\
0 ; \text { with probability } 1-f ;
\end{array}\right.
$$

wherey $_{\mathrm{t}}=1$ represents choosing the dominant option D , and $\mathrm{t}=1, \ldots, 200$. Supposein T trials, an individual chooses the dominant option

$$
\begin{equation*}
N:=\sum_{t=1}^{T} y_{t} \tag{3}
\end{equation*}
$$

times. From observed dataT and N , our goal isto estimate and understand thefactors which
determineindividual behavior f in different payoff structures. The sample average proportion

$$
\begin{equation*}
\hat{f}:=N= \tag{4}
\end{equation*}
$$

is theobvious choiceas the point estimate of behavior f.
If an individual's decisions are independent over time, it follows from (2) and (3) that $N \sim$ $\operatorname{Binomial}(T, f)$, and f is approximately normally distributed with mean f and variancef($1-\mathrm{f}$)/ T. Moregenerally, if an individuals' decisions arenot independent over time, ftill has mean f , but its variancemay bedifferent. In Section 3.4 , weestimatewhether individual decisions areindependent, and in Section 3.5 we discuss its implications for the variance of f and the hypothesistests we carry out.

3.3 Initial lemrning

During the experiment, subjects required a number of trial sto estimate the frequency of each image This means that their first few guesses tended to show unstablebehavior. To account for this, we divided each individual's stotal number of trials into eight consecutive segments of 25 trials each, and estimated the aggregate behavior f for eech segment across individuals within the sametrial design. Individual behavior was too noisy for successful functional estimates over theinitial trials, so we used theaggregate pattern across individuals to better understand the speed of participant learning.

Fig 4 shows the estimated aggregatebehavior for theoretical maximizers (designs 2 and 3, $f^{*}=0.7$) and theoretical randomizers (designs 1 and $4, f^{*}=1.0$), segmented into eight consecutive batches. Weused thesampleaverage proportions f in (4) as the point estimate of behavior f , and the normal approximation for binomial distributionsto estimateits confidenceinterval: $\mathrm{f} \sim \mathrm{N}(\mathrm{f} ; \mathrm{f}(1-\mathrm{f})=\mathrm{F})$. Morespecifically, for agiven confidencelevel $1-\alpha$ (eg., $\alpha=0.05$, or 95% confidence), the $(1-\alpha)$-confidenceinterval is given by:

$$
\left(\hat{f}-z \sqrt{\frac{\hat{f}(1-\hat{f})}{T}} ; \hat{f}+z \sqrt{\frac{\hat{f}(1-\hat{f})}{T}}\right)
$$

wherez is the $1-\frac{a}{2}$ quantile of a standard normal distribution corresponding to thetarget error rate α. For a 95% confidenceleve, theerror $\alpha=1-0.95=0.05$, so $1-\frac{a}{2}=0: 975$ and $z=1.96$. Thereareother approximations for confidenceintervals of binomial random

Fig4. Estimated aggregatebehavior for batches of 25 -trial segments
reproductivesuccess is the payoff from the game. This is obviously an extremesimplification of reality. Nonetheless, themode still provides theimportant insight that the presenceof probability matching, and the degree at which individuals engage in probability matching, are determined by theenvironment, which we can specifically test through our experiment.

In particular, weareable to test thehypothesis that:

$$
\begin{equation*}
\mathrm{H}_{0}: \mathrm{f}_{\text {maximizer }} \leq \mathrm{f}_{\text {randomizer }} ; \quad \mathrm{H}_{\mathrm{a}}: \mathrm{f}_{\text {maximizer }}>\mathrm{f}_{\text {randomizer }} \tag{6}
\end{equation*}
$$

as predicted by Brennan and Lo [50], wheref maximizer is the behavior of individuals in designs 2 and 3 , and $f_{\text {randomizer }}$ is thebehavior of individuals in designs 1 and 4. As specified in (2), we observerepeated indi vidual decisions that are, in our mode, determined by the unobserved behavior $f_{\text {maximizer }}$ and $f_{\text {randomizer }}$. Wecan pool together data from all theoretical maximizers and compare with data from all theoretical randomizers. This is a standard two sampleproportion test, except that decisions for the sameindividual might be corredated, as shown in Section 3.4.

Given a particular individual, we use vector $\mathbf{y}:=\left(y_{1}, \cdots, y_{T}\right)^{\prime}$ to denoteher sequence of T random Bernoulli trials. For simplicity and analytical tractability, weassumethesequencehas equicorredation of ρ (estimated as 10.8% in our dataset). In other words, the covariance matrix of \mathbf{y} isgiven by

$$
\operatorname{Cov}(\mathbf{y})=\operatorname{Var}\left(\mathrm{y}_{1}\right) \cdot \operatorname{Corr}(\mathbf{y})=\mathrm{f}(1-\mathrm{f}) \cdot\left(\begin{array}{cccc}
1 & r & \cdots & r \tag{7}\\
r & 1 & \cdots & r \\
\cdots & & & \\
r & r & \cdots & 1
\end{array}\right)
$$

wherethefirst equation follows from thefact that y_{1}, \cdots, y_{T} are identically distributed as specified in (2).

Therfore, the variance of the estimated behavior f for individual i, as defined in (4), is given by

$$
\begin{align*}
\operatorname{Var}\left(\mathrm{f}^{(i)}\right) & =\operatorname{Var}\left(\frac{\sum_{t=1}^{\top} y_{t}}{T}\right)=\frac{\operatorname{Var}(\mathbf{l} \mathbf{y})}{T^{2}}=\frac{\mathbf{l}^{\prime} \operatorname{Cov}(\mathbf{y}) \mathbf{1}}{T^{2}} \\
& =\frac{f(1-f) T(1+(T-1) r)}{T^{2}} \tag{8}\\
& =\frac{f(1-f)}{T} \cdot(1+(T-1) r)
\end{align*}
$$

where $\mathbf{1}$ is the unit vector of all 1 's, and we haveomitted thesuperscript (i) in our derivation for notational simplicity.

Notethat thefirst termin (8), $\frac{f(1-f)}{T}$, issimply the variance of $f^{(i)}$ if individual decisions are independent Bernoulli random variables. Therefore, thesecond term in (8), $(1+(T-1) p)$, can betreated as an adjustment factor of $f^{(i)}$'s variance when individual decisions are corredated.

For a set of n independent individuals with T trials seach, theoverall estimated behavior for them issimply theaverageestimated behavior of eech individual. Thereforethe variancefor their overall behavior is:

$$
\operatorname{Var}(f)=\operatorname{Var}\left(\frac{\sum_{i=1}^{n} f^{(i)}}{n}\right)=\frac{\operatorname{Var}\left(\hat{f}^{1}\right)}{n}=\frac{f(1-f)}{n T} \cdot(1+(T-1) r):
$$

As a result, for an (unpaired) two sampleproportion test between two groups of subjects with n_{1} and n_{2} individual respectivel y , we havethetest statistic:

$$
\begin{equation*}
z=\frac{\left(\hat{f}_{1}-\hat{f}_{2}\right)-0}{\sqrt{f^{*}\left(1-f^{*}\right)\left(\frac{1}{n_{1} T}+\frac{1}{n_{2} T}\right)}} \cdot \frac{1}{\sqrt{1+(T-1) r}} \tag{9}
\end{equation*}
$$

wheref f_{1}, f_{2}, and f^{*} are theaveragebehavior for individuals from group 1 , group 2 , and all pooled together, and they do not depend on \mathbf{y} 's covariancestructure Thefirst term in (9) is simply thestandard z-scorefor thetwo sample proportion test, and the second term in (9) can betreated as the adjustment factor for correlation, which in our caseis:

$$
\frac{1}{\sqrt{1+(T-1) r}}=\frac{1}{\sqrt{1+(150-1) \cdot 10: 8 \%}} \approx 0: 24
$$

for stabletrials.
With this correlation adjustment, the null hypothesis in (6) is rejected with az-statistic of 2.014 (or ap-value of 0.022), providing evidencefor a differencein behavior between theoretical maximizers and theoretical randomizers. As predicted, when facing different environments (i.e, different payoffs in theexperiment), theoretical randomizers indeed randomizemore often than theoretical maximizers. Subjects responded differently by adapting to theeenvironment and showing different stablebehaviors.

After thegame, weasked subjects in a survey whether they employed a specific strategy, and 74.7% of the subjects reported "Yes". We perform the samehypothesistest (6) for subjects who reported "Yes" and thosewho reported "No" separatdy. Wefind that the effect holds strongly for indi viduals who reported that they used a specific strategy (adjusted z-statistic of 2.489, adjusted p-value of 0.006), but not for those who did not (adjusted z-statistic of -0.058, adjusted p-value of 0.523). This serves as another robustness check that the effect is driven by intentional behavior on thepart of thesubjects, and is not purely noise. This also provides empirical evidencefor theories that attempt to explain probability matching through pattern seeking [55] and searching for causal relationships [45].

In principle, one can also perform thesametest for different slices of thesubjects across demographic, socioeconomic, and game spedific dimensions shown in Table 2. This helpsto build intuition on whether the same effect holds true universally, and what types of indi viduals havestronger effects. However we adknowledge that the power of our study is limited dueto the sample of 75 subjects, particularly after multipletesting adjustment, and weleavethisto a futurestudy.

3.6 Individual differences

To jointly study individual differences in decision-making with the variables considered in Table2, we consider a logistic regression model at the level of each guess by theindi vidual subject. Specifically, for individual i, at 10000 Td (te)Tj 4.9092.01260T7(mode)Tj 2.74390 Td (at)Tj 0.9
probability of choosing the dominant option-is modeled by:

$$
\begin{align*}
f^{(i)}= & \mathbb{P}\left(y_{t}^{(i)}=1\right) \\
= & {\text { Logistic }\left(\text { IsTheoryM aximizer }_{i}+\text { IsM ale }_{i}+\text { H asChild }_{i}+\text { A geBucket }_{i}\right.} \\
& + \text { HasProbClasSExp }_{i}+\text { HasGamblingExp }_{i}+\text { H }_{\text {ass }} \text { nvestExperience } \tag{10}\\
& \\
& + \text { IsStudent }_{i}+\text { IsOwn }_{i}+\text { IncomeBucket }_{i}+\text { Totala AssetBucket }_{i} \\
& \left.+ \text { HasPattern }_{\mathrm{i}}\right)
\end{align*}
$$

whereLogistic $(x)=(1+\exp (-x))^{-1}$.
Wehaveseen in Section 3.4 that individual decisions are corre ated over time Therefore, theerrors for regression (10) may beautocorrelated. Wegroup trials from the same individual together, and order their decisions chronologically. In particular, the response variable is orga nized as:
and weapply the Newey-West heteroskedasticity and autocorrelation consistent (HAC) estimator for the variance of the coefficients in thefollowing results. Weadopt Newey and West's [65] suggestion to choosethetruncation parameter to betheinteger part of $4(\mathrm{nT} / 100)^{2 / 9}$, which is 11 in our case This indeed increases the varianceestimate of our coefficients compared with the case of independent errors, and our results are not materially different with respect to thechoice of thetruncation parameter. In fact, wehavetried an estimation with truncation parameter to be 150 , the number of total valid decisions for oneindividual. The main variablel sT heoryM aximizer remains statistically significant at 5%.

Table 3 summarizes the independent variables in Eq (10). These variables correspond to the collected personal information of thesubjects (seeTable 2), categorized to makethem proper binary or ordinal variables. We havedropped several variables that arehighly collinear with the covariates in (10). Thep-value of the log-likelihood ratio test of thefull model is 4×10^{-54}, implying a high degree of significance

Thefirst variable, IsTheoryM aximizer, encodes whether
demographic groups, to other financial and non-financial contexts, and at different magnitudes of payoffs.

In addition to testing the evolutionary mode of Brennan and Lo [50], our experimental results suggest that it is val uable to derive behavioral predictions and implications through an evolutionary lens. Traditional utility-based theories would yield the samemaximizing behavior for all four designs in our experiment. Ye wefind evidencefor differences in reality, and the evolutionary framework offers a potential explanation and prediction for such behaviors: the environment matters.

Moregenerally, finandial markes-a collection of individual decision makers-can also be studied using the same principles, leading to the Adaptive Markets Hypothesis [66, 67] and its many empirical implications [68-70]. In the same way that micro-level individual decision making can bebetter understood through an evolutionary lens, markess and societies at the system-wide and macroscopic level can also benefit an adaptiveperspective.

Acknowledgments

The authors thank theMIT Behavioral Research Laboratory for hosting theexperiment, and Jennifer L. Walker, Jayna Cummings, and Allison McDonough for their assistancein the experiments. Insightful comments and discussions from Jason Anthony Aimone(editor), Kim Fairley (reviewer), Taibo Li and Alex Huang arealso greatly appreciated.

Author Contributions

Conceptualization: Andrew W. Lo, KatherineP. Marlowe, Ruixun Zhang.
Datacaration: Andrew W. Lo, KatherineP. Marlowe, Ruixun Zhang.
Formal analysis Andrew W. Lo, KatherineP. Marlowe, Ruixun Zhang.
Investigation: Andrew W. Lo, KatherineP. Marlowe, Ruixun Zhang.
Methodology: Andrew W. Lo, KatherineP. Marlowe, Ruixun Zhang.
Supervision: Andrew W. Lo.
Validation: Andrew W. Lo, KatherineP. Marlowe, Ruixun Zhang.
Writing- original draft: Andrew W. Lo, KatherineP. Marlowe, Ruixun Zhang.
Writing- review\& editing. Andrew W. Lo, KatherineP. Marlowe, Ruixun Zhang.

References

1. von Neumann J, Morgenstern O. Theory of Games and Economic Behavior. Princeton, NJ: Princeton University Press; 1944.
2. Nash JF. Equilibrium points in n-person games. Proceedings of the national academy of sciences. 1950; 36(1):48-49. https://doi.org/10.1073/pnas.36.1.48 PMID: 16588946
3. Lucas RE Jr. Expectations and the neutrality of money. Journal of Economic Theory. 1972; 4(2):103124. https://doi.org/10.1016/0022-0531(72)90142-1
4. Samuelson PA. Proof that properly anticipated prices fluctuate randomly. Industrial Management Review. 1965; 6(2):41-49.
5. Fama EF. Efficient Capital Markets: A Review Of Theory And Empirical Work. The Journal of Finance. 1970; 25(2):383-417. https://doi.org/10.1111/j.1540-6261.1970.tb00518.x
6. Black F, Scholes M. The Pricing of Options and Corporate Liabilities. Journal of Political Economy. 1973; 81(3):637-654. https://doi.org/10.1086/260062
7. Merton RC. Theory of rational option pricing. The Bell Journal of economics and management science. 1973; 4(1):141-183. https://doi.org/10.2307/3003143
8. Kocherlakota NR. Modern macroeconomic models as tools for economic policy. The Region (Federal Reserve Bank of Minneapolis). 2010; p. 5-21.
9. Hu HT. Efficient markets and the law: A predictable past and an uncertain future. Annual Review of Financial Economics. 2012; 4(1):179-214. https://doi.org/10.1146/annurev-financial-110311-101733
10. Kahneman D, Slovic P, Tversky A. Judgment under Uncertainty: Heuristics and Biases. Cambridge, UK: Cambridge University Press; 1982.
11. Tversky A, Kahneman D. Judgment under uncertainty: Heuristics and biases. Science. 1974; 185 (4157):1124-1131. https://doi.org/10.1126/science.185.4157.1124 PMID: 17835457
12. Kahneman D, Tversky A. Prospect theory: An analysis of decision under risk. Econometrica. 1979; 47 (2):263-291. https://doi.org/10.2307/1914185
13. Shefrin H, Statman M. The disposition to sell winners too early and ride losers too long: Theory and evidence. The Journal of finance. 1985; 40(3):777-790. https://doi.org/10.1111/j.1540-6261.1985. tb05002.x
14. Odean T. Are investors reluctant to realize their losses? The Journal of finance. 1998; 53(5):17751798.
15. Barber BM, Odean T. Boys will be boys: Gender, overconfidence, and common stock investment. The quarterly journal of economics. 2001; 116(1):261-292. https://doi.org/10.1162/003355301556400
16. Gervais S, Odean T. Learning to be overconfident. The Review of Financial Studies. 2001; 14(1):1-27. https://doi.org/10.1093/rfs/14.1.1
17. De Bondt WF, Thaler R. Does the stock market overreact? The Journal of finance. 1985; 40(3):793805.
18. Huberman G, Regev T. Contagious speculation and a cure for cancer: A nonevent that made stock prices soar. The Journal of Finance. 2001; 56(1):387-396. https://doi.org/10.1111/0022-1082. 00330
19. Tversky A, Kahneman D. The Framing of Decisions and the Psychology of Choice. Science. 1981; 211:453-458. https://doi.org/10.1126/science. 7455683 PMID: 7455683
20. Lichtenstein S, Fischhoff B, Phillips LD. Calibration of probabilities: The state of the art to 1980. In: Kahneman D, Slovic P, Tversky A, editors. Judgment under uncertainty: Heuristics and biases. Cambridge, UK: Cambridge University Press; 1982. p. 306-334.
21. Gneezy U, List JA, Wu G. The uncertainty effect: When a risky prospect is valued less than its worst possible outcome. The Quarterly Journal of Economics. 2006; p. 1283-1309. https://doi.org/10.1093/ qje/121.4.1283
22. Mahoney MJ. Publication prejudices: An experimental study of confirmatory bias in the peer review system. Cognitive therapy and research. 1977; 1(2):161-175. https://doi.org/10.1007/BF01173636
23. Grant DA, Hake HW, Hornseth JP. Acquisition and extinction of verbal conditioned responses with differing percentages of reinforcement. Journal of experimental psychology. 1951; 42(1):1-5. https://doi. org/10.1037/h0054051 PMID: 14880648
24. Hake HW, Hyman R. Perceptions of the Statistical Structure of a Random Series of Binary Symbols. J Exp Psychol. 1953; 45:64-74. https://doi.org/10.1037/h0060873 PMID: 13035003
25. Herrnstein RJ. Relative and absolute strength of responses as a function of frequency of reinforcement. Journal of the Experimental Analysis of Behaviour. 1961; 4(3):267-272. https://doi.org/10.1901/jeab. 1961.4-267
26. Herrnstein RJ. On the law of effect. Journal of the Experimental Analysis of Behavior. 1970; 13:243266. https://doi.org/10.1901/jeab.1970.13-243 PMID: 16811440
27. Herrnstein RJ. The Matching Law. Cambridge, Massachusetts: Harvard University Press; 1997.
28. Bradshaw CM, Szabadi E, Bevan P. Behavior of humans in variable-interval schedules of reinforcement. Journal of the Experimental Analysis of Behavior. 1976; 26:135-141. https://doi.org/10.1901/ jeab.1976.26-135 PMID: 16811935
29. Davison M, McCarthy D. The matching law: A research review. Hillsdale, NJ: Lawrence Erlbaum; 1988.
30. Vulcan N. An Economist's Perspective on Probability Matching. Journal of Economic Surveys. 2000; 14:101-118. https://doi.org/10.1111/1467-6419.00106
31. Kogler C, Kühberger A. Dual Process Theories: A Key for Understanding the Diversification Bias? J Risk Uncertainty. 2007; 34:145-154.
32. Deneubourg JL, Aron S, Goss S, Pasteels JM. Error, communication and learning in ant societies. European Journal of Operational Research. 1987; 30(2):168-172. https://doi.org/10.1016/0377-2217(87) 90093-2

33. Wozny DR, Beierholm UR, Shams L. Probability Matching as a Computational Strategy Used in Perception. PLoS Comput Biol. 2010; 6(8):e1000871. https://doi.org/10.1371/journal.pcbi.1000871 PMID: 20700493
34. Baum WM. On two types of deviation from the matching law: Bias and undermatching. Journal of the Experimental Analysis of Behavior. 1974; 22:231-242. https://doi.org/10.1901/jeab.1974.22-231 PMID: 16811782
35. Horne PJ, Lowe CF. Determinants of human performance on concurrent schedules. Journal of the Experimental Analysis of Behavior. 1993; 59:29-60. https://doi.org/10.1901/jeab.1993.59-29 PMID: 8433066
36. Tversky A, Kahneman D. Belief in the law of small numbers. Psychological bulletin. 1971; 76(2):105. https://doi.org/10.1037/h0031322
37. Kahneman D, Tversky A. Subjective probability: A judgment of representativeness. Cognitive psychology. 1972; 3(3):430-454. https://doi.org/10.1016/0010-0285(72)90016-3
38. Newcombe RG. Two-sided confidence intervals for the single proportion: comparison of seven methods. Statistics in medicine. 1998; 17(8):857-872. https://doi.org/10.1002/(SICI)1097-0258(19980430) 17:8\%3C857::AID-SIM777\%3E3.0.CO;2-E PMID: 9595616
39. Brown LD, Cai TT, DasGupta A. Interval estimation for a binomial proportion. Statistical science. 2001; p. 101-117.
40. Newey WK, West KD. A simple, positive semi-definite, heteroskedasticity and autocorrelationconsistent covariance matrix. Econometrica. 1987; 55(3):703-708. https://doi.org/10.2307/1913610
41. Lo AW. The adaptive markets hypothesis. Journal of Portfolio Management. 2004;30(5):15-29. https:// doi.org/10.3905/jpm.2004.442611
42. Lo AW. Adaptive Markets: Financial Evolution at the Speed of Thought. Princeton, NJ: Princeton University Press; 2017.
43. Neely CJ, Weller PA, Ulrich JM. The adaptive markets hypothesis: evidence from the foreign exchange market. Journal of Financial and Quantitative Analysis. 2009; 44(2):467-488. https://doi.org/10.1017/ S0022109009090103
44. Kim JH, Shamsuddin A, Lim KP. Stock return predictability and the adaptive markets hypothesis: Evidence from century-long US data. Journal of Empirical Finance. 2011; 18(5):868-879. https://doi.org/ 10.1016/j.jempfin.2011.08.002
45. Khuntia S, Pattanayak J. Adaptive market hypothesis and evolving predictability of bitcoin. Economics Letters. 2018; 167:26-28. https://doi.org/10.1016/j.econlet.2018.03.005

[^0]: https://doi.org/10.1371/journal.pone.0252540.t001

