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However, there is mounting empirical and experimental evidence suggesting that humans

do not always behave in the way traditional economic models predict, but often make seem-

ingly random and suboptimal decisions [10]. These behavioral anomalies and psychological

traits are especially pronounced when elements of risk and probability are involved. Examples

include loss aversion [11–14], overconfidence [15, 16], overreaction [17], herding [18] psycho-

logical accounting [19], miscalibration of probabilities [20], the uncertainty effect [21], and

confirmation bias [22]. The spectacular rise of US stock market prices during the tech bubble

in the early 2000s, and the even more spectacular crash following the 2007–2008 financial cri-

sis, has intensified the controversy surrounding the rationality of investors.

One particularly interesting behavioral anomaly is probability matching, also known as the

“matching law,” or Herrnstein’s Law [23–30]—the tendency of the relative frequency of pre-

dictions of outcomes of an independent randomized event to match its underlying probability

distribution. The best-known example of probability matching is the human tendency to

choose randomly between heads and tails when asked to guess the outcomes of a series of

biased coin tosses. When individuals are asked to guess the repeated outcomes of a biased

coin, say with a bias of 70% heads, and rewarded based on whether they guessed correctly,

most subjects seem to randomize their guesses at around 70% heads, instead of engaging in the

economically optimal behavior of always guessing heads.

Probability matching has long puzzled economists and psychologists because of its apparent

inconsistency with basic self-interest. The idea of randomizing behavioris especially difficult to

reconcile with the standard economic paradigm of expected utility theory, in which individual

behavior is non-stochastic and completely determined by the individual’s utility function, bud-

get constraints, and the probability laws governing the environment. For example, Kogler and

Kuhberger [31] report that, “Experimental research in simple repeated risky choices shows a

striking violation of rational choice theory: the tendency to match probabilities by allocating

the frequency of response in proportion to their relative probabilities”.

Nevertheless, probability matching has been observed in thousands of geographically

diverse human subjects over several decades, as well as in other animal species, including ants

[32–35], bees [36–38], fish [39, 40], pigeons [41, 42], and primates [43]. In virtually any setting

where an animal is able to make a choice between A versus B in a randomized experiment, we

observe probability matching.

The source of these irrational behaviors is often attributed to psychological factors, such as

fear, greed, and other emotional responses. However, the fact that some of these behaviors are

observed so consistently across species suggests that they may have a more fundamental and

common origin, one with an evolutionary role that belies their apparent shortcomings. For

example, the neurological basis of probability matching has been investigated extensively [44–

49]. In the context of a binary choice model, Brennan and Lo [50] show that probability

matching behavior is perfectly consistent with evolution, arising purely from the forces of nat-

ural selection and population growth. Moreover, under generalized environmental conditions,

i.e., broad assumptions about the conditions required for reproductive success, they derive

more general types of behavior that involve randomization, but not necessarily strict probabil-

ity matching.

In this paper, we present the first experimental test of the evolutionary model of Brennan

and Lo [50]. We design an experiment in real-world decision making with monetary payoffs

to measure the degree of probability matching among individuals, its determining factors, and

its level of variation. Here by probability matching we mean the “matching law,” or Herrn-

stein’s Law discussed above—the tendency to choose randomly between heads and tails when

asked to guess the outcomes of a series of biased-coin tosses, where the randomization fre-

quency matches the probability of the biased coin.
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We recruited a sample of 82 volunteers from the MIT Behavioral Research Laboratory to

participate in our experiment. Each participant played a computer game consisting of 200 tri-

als of a binary choice decision. In each trial, an image of either Angelina Jolie or Brad Pitt was

displayed with a certain probability, and subjects were paid according to the number of trials

in which they correctly guessed which image appeared.

By varying the payoff structure of the game, we were able to test whether subjects showed

probability matching behavior, and whether deviations occurred as predicted by the model in

Brennan and Lo [50]. Specifically, we designed several payoffs where the evolutionarily domi-

nant behavior was either to maximize, i.e., always to choose one option, or to randomize, i.e.,

to choose randomly between two options. We found strong evidence for a behavioral differ-

ence between theoretical maximizers and theoretical randomizers, as predicted by Brennan

and Lo [50]. After controlling for a wide range of demographic and socioeconomic variables,

theoretical randomizers still engaged in randomizing behavior more often than theoretical

maximizers. When facing different environments (i.e., payoffs in the experiment), our

subjects responded differently by adapting to the new conditions and showing different stable

behaviors.

We were also able to study individual differences in the tendency to maximize or randomize

by collecting basic demographic and socioeconomic information from the anonymous partici-

pants. We found that subjects with a higher level of financial assets tended to randomize less

often, while subjects with children tend to randomize more often. Moreover, subjects who had

taken probability and statistics classes and those who self-reported finding a pattern in the

game (none existed) also tended to randomize more often, contrary to our prior expectation

that those participants with a better understanding of probability might be more likely to

adopt the economically maximizing behavior. In fact, we found that those subjects engage in

the exact opposite behavior. This may be due to an attempt to “beat the game,” based on the

qualitative answers to our post-trial survey by participants.

From the evolutionary perspective, the key to understanding these behavioral predictions

lies in the assumption of systematic reproductive risk [50, 51]. The experiment we describe in

this article involves a binary choice in which the risks to the population are idiosyncratic, that

is, the outcomes of one individual’s choice are independent of those of another. However,

when individuals with preferences formed in response to systematic risks are placed in the dif-

ferent environment, there is the potential for probability matching to occur, creating what

appears to be irrational behaviors for those environments.

Our results contribute to the growing literature on rationalizing the existence of probability

matching. As far back as the 1950s, researchers [52–54] developed statistical models that

attempted to explain and predict matching behavior. Since then, several behavioral reasons

have been offered, including its emergence as a consequence of pattern searching [55], through

the greater utility gained from guessing the rarer event correctly [56], and by the role of diver-

sification to avoid boredom [57]. More recently, explanations of probability matching have

been proposed from an evolutionary point of view. Wolford, Miller, and Gazzaniga [45]

argue that early human beings look for explanatory causal relationships as a survival strategy.

Wozny, Beierholm, and Shams [58] have shown that humans match probabilities not only in

cognitive tasks, but also in perceptual tasks. This implies that the human nervous system has a

built-in function that samples from a distribution of hypotheses, and updates its belief after

each observation.

Our results provide experimental validation for the predictions of Brennan and Lo [50], as

well as additional evidence that individuals engage in randomized behavior and probability

matching, even those with prior experience in probability and investing. More importantly,

our results may provide an explanation for several notable departures from exact probability
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matching [31, 59, 60]. Randomizing behavior that matches environmental probabilities

depends on the relative reproductive success of the outcomes, and the evolutionary framework

proposed in Brennan and Lo [50] offers a simple and specific set of conditions for understand-

ing and predicting such behavior.

2 Materials and methods

2.1 Evolutionary origins of probability matching

Brennan and Lo [50] proposed an evolutionary framework for the origin of several behaviors

that are considered “anomalous” in economic theories based on the assumption of rational

behavior. In particular, probability matching—the tendency of the relative frequency of

guesses of the outcomes of a sequence of independent random events to match the underlying

probability distribution of events—can be explained when the uncertainty in environment is

systematic across all individuals, an example demonstrating that natural selection is able to

yield behaviors that may be individually sub-optimal but are optimal for the population. For

expositional convenience, we present a brief review of this framework here, and then turn to

our experimental design.

We begin with a population of individuals that live for one period, produce a random num-

ber of offspring asexually, and then die. During their lives, individuals make only one decision:

they choose one of two possible courses of action, denoted a and b, and this choice results in

one of two corresponding random numbers of offspring, xa and xb, given by:

Probðxa ¼ ca1; xb ¼ cb1Þ ¼ p 2 ½0; 1�

Probðxa ¼ ca2; xb ¼ cb2Þ ¼ 1 � p � q
ð1Þ

where p is some probability between 0 and 1.

We further assume that xa and xb are independently and identically distributed over time,

and identical for all individuals in a given generation. In other words, if two individuals choose

the same action a, both will produce the same number of random offspring xa. This implies

that the variation in offspring due to behavior is wholly systematic, i.e., the link between action

and reproductive success is the same throughout the population.

A “mindless” individual’s behavior in this world is fully specified by the probability of

choosing action a. Following the notation in Brennan and Lo [50], we denote this probability

as f. Each individual dies after one period, and we assume its behavior f is heritable: offspring

will behave in a manner identical to their parents, i.e., they choose between the two actions

according to the same probability f.
From the individual’s perspective, always choosing the action with a higher expected repro-

ductive success (f = 0 or 1) will lead to more offspring on average. However, Brennan and Lo

[50] showed that from the perspective of the population, this individually optimal behavior

cannot survive. In fact, the evolutionarily dominant behavior will depend on the relationship

between the probability p and the relative fecundity ratios rj ≔ caj/cbj for each of the two possi-

ble states of the world, j = 1, 2, where f can be anywhere between 0 and 1 in general, implying

randomized behavior. See Proposition 3 of Brennan and Lo [50] for more detail.

Fig 1 illustrates the evolutionarily dominant behavior f� as a function of r1 and r2. If r1 and

r2 are not too different in value—i.e., the ratio of fecundity between choices a and b is not very

different between the two states of the world—then random behavior yields no evolutionary

advantage over deterministic choice. In this case, the individually optimal behavior (f� = 0 or

1) will prevail in the population.
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However, if one of the r variables is large while the other is small, then random behavior

will be more advantageous for the population than a deterministic one. In such cases, there

are times in which each choice performs substantially better than the other. Under those con-

ditions, it is evolutionarily optimal for a population to diversify between the two choices,

rather than always choosing the outcome with the highest probability of progeny in a single

generation.

A simple numerical example from Brennan and Lo [50] will illustrate the basic mechanism

of this model. Consider a population of individuals, each facing a binary choice between one

of two possible actions, a and b. 70% of the time, environmental conditions are positive, and

action a leads to reproductive success, generating 3 offspring for the individual. 30% of the

time, environmental conditions are negative, and action a leads to 0 offspring. This corre-

sponds to p = 70%, ca1 = 3, cb1 = 0 in the notation of (1). Suppose action b has exactly the oppo-

site outcomes—whenever a yields 3 offspring, b yields 0, and whenever a yields 0, b yields 3.

This corresponds to ca2 = 0, cb2 = 3 in the notation of (1). From the individual’s perspective,

always choosing a, which has the higher probability of reproductive success, will lead to more

offspring on average. However, if all individuals in the population behaved in this “rational”

manner, the first time that a negative environmental condition occurs, the entire population

will become extinct. Assuming that offspring behave identically to their parents, the behavior

“always choose a” cannot survive over time. For the same reason, “always choose b” is also

unsustainable. In fact, one can show that in this special case, the behavior with the highest

reproductive success over time is for each individual to choose a 70% of the time and b 30% of

Fig 1. Regions of the (r1, r2)-plane that imply deterministic (f � = 0 or 1) or randomizing (0< f � < 1) behavior,

where rj = caj/cbj measures the relative fecundities of action a to action b in the two states j = 1, 2. The asymptotes

of the curved boundary line occur at r1 = p and r2 = q. Values of r1 and r2 for which exact probability matching is

optimal are given by the solid black curve. Source: Brennan and Lo [50, Fig 1].

https://doi.org/10.1371/journal.pone.0252540.g001
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the time, matching the probabilities of reproductive success and failure. Eventually, this partic-

ular randomizing behavior will dominate the entire population.

The key to understanding these behavioral predictions lies in the assumption of systematic
reproductive risk. This dependence on risk has implications that go far beyond the current set-

ting. For example, Zhang, Brennan, and Lo [51] show that environments with a mix of system-

atic and idiosyncratic reproductive risks cause different risk preferences to emerge. While our

risk preferences may be determined by the nature of the risks to which we and our evolution-

ary ancestors have been exposed, we do not necessarily have the ability to distinguish between

systematic and idiosyncratic risks in our day-to-day decision making.

2.2 The binary choice game

Turning to our experimental design, we presented live human subjects with a binary choice

game in which the risks to the population are idiosyncratic, that is, the outcomes of one indi-

vidual’s game are independent of those of another. However, when individuals apply prefer-

ences formed in response to systematic risks to the wrong environment, there is the potential

for probability matching to occur, creating what appears to be irrational behaviors for those

environments.

In our experiment consisted of four particular payoff structures by varying the parameters

in (1) (equivalently, four particular points in Fig 1), and observe whether participants show

behaviors predicted by Brennan and Lo [50] (equivalently, behaviors indicated by different

colors in Fig 1).

We recruited a sample of 82 volunteers and conducted our binary choice experiment at the

MIT Behavioral Research Laboratory. Our subjects were varied in their personal and socioeco-

nomic characteristics. We provide a summary of their statistics in Section 3.1.

The full experimental session typically lasted 45 to 60 minutes for a given participant. Each

participant used a computer program that completed 200 iterations of a binary choice trial, in

essence playing a lottery. On each iteration of the trial, subjects were shown an image of one of

two popular film stars—Angelina Jolie or Brad Pitt—with specific fixed probabilities that were

unknown to the subjects. Each participant was randomly assigned to one of four experimental

designs, as shown in Table 1. In designs 1 and 2, Angelina Jolie appeared 70% of the time and

Brad Pitt 30% of the time. Designs 3 and 4 used the opposite probabilities. The participant

guessed which image would appear before it was revealed, and the participant would receive a

certain amount of virtual dollars if their guess was correct. Fig 2 shows a screenshot of the

computer interface used in the experiment.

In designs 1 and 4, subjects received two virtual dollars when they guessed correctly, and

zero virtual dollars when they guessed incorrectly. In designs 2 and 3, subjects received two

virtual dollars when they guessed correctly and one virtual dollar when they guessed

Table 1. Experimental design.

Design Image Probability Payoff Utility Maximizing Behavior Evolutionarily Dominant Behavior [50]

1 PðAngelinaÞ ¼ 0:7

PðBradÞ ¼ 0:3

Correct: v$2

Incorrect: v$0

Always Guess Angelina f � ¼ PðGuess AngelinaÞ ¼ 0:7

2 PðAngelinaÞ ¼ 0:7

PðBradÞ ¼ 0:3

Correct: v$2

Incorrect: v$1

Always Guess Angelina f � ¼ PðGuess AngelinaÞ ¼ 1:0

3 PðBradÞ ¼ 0:7

PðAngelinaÞ ¼ 0:3

Correct: v$2

Incorrect: v$1

Always Guess Brad f � ¼ PðGuess BradÞ ¼ 1:0

4 PðBradÞ ¼ 0:7

PðAngelinaÞ ¼ 0:3

Correct: v$2

Incorrect: v$0

Always Guess Brad f � ¼ PðGuess BradÞ ¼ 0:7

https://doi.org/10.1371/journal.pone.0252540.t001
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incorrectly. These designs correspond to four different evolutionarily dominant behaviors in

Fig 1 (see also Brennan and Lo [50]), as shown in the last column of Table 1. Designs 1 and 4

are meant to yield randomized behavior according to theory, while designs 2 and 3 are meant

to yield deterministic behavior. In terms of parameters in Fig 1 using p = 0.7, Design 1 corre-

sponds to r1 =1 and r2 = 0, which yields the dominant behavior f� = 0.7; Design 2 corre-

sponds to r1 = 2 and r2 ¼
1

2
, which yields the dominant behavior f� = 1; Design 3 corresponds

to r1 ¼
1

2
and r2 = 2, which yields the dominant behavior f� = 0; Design 4 corresponds to r1 = 0

and r2 =1, which yields the dominant behavior f� = 0.3.

Fig 3 shows the trial-by-trial outcome of two representative subjects. The subject in Fig 3a
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addition, 64% of our subjects have reported taking some probability and statistics classes, an

unsurprising finding, given that the experiment took place at MIT.

Subjects each received $5 in base pay for showing up, and $0.05 for each virtual dollar they

earned. Total dollar earnings ranged from $14.80 to $22.20. Table 2 also reports the total

Fig 3. Experimental outcomes for a representative randomizer (3a) and a representative maximizer (3b). The

highest row of triangles displays the randomly generated appearances of Angelina Jolie for each trial. The second row

of triangles displays the instances when the subject’s response was Angelina Jolie. The bottom two rows of triangles

represent the same information for Brad Pitt appearances and Brad Pitt responses. The middle row of red ticks

represents trials that the subject guessed correctly. The diagonal line shows the cumulative payout to the subject over

time.

https://doi.org/10.1371/journal.pone.0252540.g003
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number of correct guesses for all subjects. The best performer guessed 154 (77%) trials cor-

rectly, while the worst performer only guessed 98 (49%) trials correctly. The median subject

guessed 129 (64.5%) out of the 200 trials correctly, slightly less than the expected number of

correct guesses for a perfect maximizer, who would always guess the dominant image.

The post-game survey also asked participants about their perceptions of the binary choice

game. 44% of our subjects reported that they found a pattern in the game. It is clear that many

participants were looking for patterns throughout the game, despite its completely random

nature. This is consistent with the “representativeness heuristic” first documented by Tversky

and Kahneman [61, 62]. We include quotes from two representative subjects.

“I kept losing count, but clearly the ratio of appearance of Jolie’s picture to Pitts’s kept

going up until it was something 7:1, then it went down (not always in increments of one, I

think) until it was 1:1, and then it went back up again.”

“70% Angelina. If we picked her too many times, Brad was introduced as a counter-pick.”

Table 2. Participant demographics and summary statistics.

Variable Distribution (n = 75 subjects)

Personal Characteristics

Gender Male

53.3%

Female

45.3%

Has Children Yes

12.0%

No

86.7%

Age �23

33.3%

[24, 46]

34.7%

>46

30.7%

Marital Status Single

77.3%

Partnered

9.3%

Married

8.0%

Other

4.0%

Socioeconomic Characteristics

Taken Probability & Statistics Class Yes

64.0%

No

34.7%

Gambling Experience Yes

33.3%

No

65.3%

Housing Status Rent

88.0%

Own

10.7%

Working Status Student

40.0%

Currently Working

38.7%
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4
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In addition, 74.7% of the subjects reported that they had a specific strategy in the game. By

reading the post-study surveys, we realized that our subjects exhibited a wide range of hetero-

geneous strategies for the game. Here we show a few representative quotes from the two

extremes of these strategies, where some subjects indicated clearly that they were always choos-

ing one image:

“Always pick Angie.”

“Choosing Brad Pitt all the time. His image appeared more frequently and even if the prob-

ability was 50% it would not have mattered who I choose, so why not choose him all the

time. Also minimizes thinking effort and time to click.”

Other subjects seemed to engage in more complicated strategies:

“Chose Brad Pitt the majority of the time—if Brad Pitt appeared at least 6 times in a row,

chose Angelina Jolie.”

“‘. . .I was switching between one and another until I noticed some sort of pattern and then

I favored Angelina Jolie’s picture for the higher number and Brad Pitt for the lower number

in the pattern of 5-1-3-1-2.”

These self-reported strategies are also reflected in the wide heterogeneity in behavior when

we analyze participant choices.

3.2 A model for individual behavior

Brennan and Lo [50] predict that subjects assigned to designs 1 and 4 of our binary choice

game will randomize their behavior. We refer to them as “theoretical randomizers.” On the

other hand, subjects assigned to designs 2 and 3 are predicted to choose the dominant image

deterministically, and we refer to them as “theoretical maximizers” (see Table 1). In this sec-

tion, we study whether theoretical randomizers indeed randomize more often than theoretical

maximizers.

We first describe a simple model of individual behavior. Define D to be the dominant

option in the game. In our experiment, D represents Angelina Jolie in designs 1 and 2, and

Brad Pitt in designs 3 and 4.

Each individual i chooses the dominant option D with probability f, where f represents the

individual’s (unobserved) behavior. In other words, the individual’s decision in each trial is

generated by a Bernoulli random variable:

yt ¼

(
1; with probability f ;

0; with probability 1 � f ;
ð2Þ

where yt = 1 represents choosing the dominant option D, and t = 1, . . ., 200. Suppose in T tri-

als, an individual chooses the dominant option

N ≔
XT

t¼1

yt ð3Þ

times. From observed data T and N, our goal is to estimate and understand the factors which
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determine individual behavior f in different payoff structures. The sample average proportion

f̂ ≔ N=T ð4Þ

is the obvious choice as the point estimate of behavior f.
If an individual’s decisions are independent over time, it follows from (2) and (3) that N�

Binomial(T, f), and f̂ is approximately normally distributed with mean f and variance f(1 − f)/
T. More generally, if an individuals’ decisions are not independent over time, f̂ still has mean

f, but its variance may be different. In Section 3.4, we estimate whether individual decisions

are independent, and in Section 3.5 we discuss its implications for the variance of f̂ and the

hypothesis tests we carry out.

3.3 Initial learning

During the experiment, subjects required a number of trials to estimate the frequency of each

image. This means that their first few guesses tended to show unstable behavior. To account

for this, we divided each individual’s total number of trials into eight consecutive segments

of 25 trials each, and estimated the aggregate behavior f for each segment across individuals

within the same trial design. Individual behavior was too noisy for successful functional esti-

mates over the initial trials, so we used the aggregate pattern across individuals to better under-

stand the speed of participant learning.

Fig 4 shows the estimated aggregate behavior for theoretical maximizers (designs 2 and 3,

f � = 0.7) and theoretical randomizers (designs 1 and 4, f � = 1.0), segmented into eight consecu-

tive batches. We used the sample average proportions f̂ in (4) as the point estimate of behavior

f, and the normal approximation for binomial distributions to estimate its confidence interval:

f̂ � Nðf ; f ð1 � f Þ=TÞ. More specifically, for a given confidence level 1 − α (e.g., α = 0.05, or

95% confidence), the (1 − α)-confidence interval is given by:

f̂ � z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f̂ ð1 � f̂ Þ
T

s

; f̂ þ z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f̂ ð1 � f̂ Þ
T

s0

@

1

A

where z is the 1 � a

2
quantile of a standard normal distribution corresponding to the target

error rate α. For a 95% confidence level, the error α = 1 − 0.95 = 0.05, so 1 � a

2
¼ 0:975

and z = 1.96. There are other approximations for confidence intervals of binomial random

Fig 4. Estimated aggregate behavior for batches of 25-trial segments.

https://doi.org/10.1371/journal.pone.0252540.g004
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reproductive success is the payoff from the game. This is obviously an extreme simplification

of reality. Nonetheless, the model still provides the important insight that the presence of prob-

ability matching, and the degree at which individuals engage in probability matching, are

determined by the environment, which we can specifically test through our experiment.

In particular, we are able to test the hypothesis that:

H0 : fmaximizer � frandomizer; Ha : fmaximizer > frandomizer ð6Þ

as predicted by Brennan and Lo [50], where fmaximizer is the behavior of individuals in designs

2 and 3, and frandomizer is the behavior of individuals in designs 1 and 4. As specified in (2), we

observe repeated individual decisions that are, in our model, determined by the unobserved

behavior fmaximizer and frandomizer. We can pool together data from all theoretical maximizers

and compare with data from all theoretical randomizers. This is a standard two sample propor-

tion test, except that decisions for the same individual might be correlated, as shown in Section

3.4.

Given a particular individual, we use vector y ≔ (y1, � � �, yT)0 to denote her sequence of T
random Bernoulli trials. For simplicity and analytical tractability, we assume the sequence has

equicorrelation of ρ (estimated as 10.8% in our dataset). In other words, the covariance matrix

of y is given by

CovðyÞ ¼ Varðy1Þ � CorrðyÞ ¼ f ð1 � f Þ �

1 r � � � r

r 1 � � � r

� � �

r r � � � 1

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

; ð7Þ

where the first equation follows from the fact that y1, � � �, yT are identically distributed as speci-

fied in (2).

Therefore, the variance of the estimated behavior f̂ for individual i, as defined in (4), is

given by

Varðf̂ ðiÞÞ ¼ Var
PT

t¼1
yt

T

 !

¼
Varð10yÞ

T2
¼

10CovðyÞ1
T2

¼
f ð1 � f ÞTð1þ ðT � 1ÞrÞ

T2

¼
f ð1 � f Þ

T
� 1þ T � 1ð Þrð Þ

ð8Þ

where 1 is the unit vector of all 1’s, and we have omitted the superscript (i) in our derivation

for notational simplicity.

Note that the first term in (8),
f ð1� f Þ

T , is simply the variance of f̂ ðiÞ if individual decisions are

independent Bernoulli random variables. Therefore, the second term in (8), (1 + (T − 1)ρ), can

be treated as an adjustment factor of f̂ ðiÞ’s variance when individual decisions are correlated.

For a set of n independent individuals with T trials each, the overall estimated behavior for

them is simply the average estimated behavior of each individual. Therefore the variance for

their overall behavior is:

Var f̂
� �
¼ Var

Pn
i¼1

f̂ ðiÞ

n

 !

¼
Varðf̂ ð1ÞÞ

n
¼

f ð1 � f Þ
nT

� 1þ T � 1ð Þrð Þ:
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As a result, for an (unpaired) two sample proportion test between two groups of subjects with

n1 and n2 individuals respectively, we have the test statistic:

z ¼
ðf̂ 1 � f̂ 2Þ � 0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f �ð1 � f �Þ 1

n1T
þ 1

n2T

� �r �
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðT � 1Þr

p
ð9Þ

where f̂ 1, f̂ 2, and f� are the average behavior for individuals from group 1, group 2, and all

pooled together, and they do not depend on y’s covariance structure. The first term in (9) is

simply the standard z-score for the two sample proportion test, and the second term in (9) can

be treated as the adjustment factor for correlation, which in our case is:

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðT � 1Þr

p ¼
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð150 � 1Þ � 10:8%

p � 0:24

for stable trials.

With this correlation adjustment, the null hypothesis in (6) is rejected with a z-statistic of

2.014 (or a p-value of 0.022), providing evidence for a difference in behavior between theoreti-

cal maximizers and theoretical randomizers. As predicted, when facing different environments

(i.e., different payoffs in the experiment), theoretical randomizers indeed randomize more

often than theoretical maximizers. Subjects responded differently by adapting to the environ-

ment and showing different stable behaviors.

After the game, we asked subjects in a survey whether they employed a specific strategy,

and 74.7% of the subjects reported “Yes”. We perform the same hypothesis test (6) for subjects

who reported “Yes” and those who reported “No” separately. We find that the effect holds

strongly for individuals who reported that they used a specific strategy (adjusted z-statistic of

2.489, adjusted p-value of 0.006), but not for those who did not (adjusted z-statistic of −0.058,

adjusted p-value of 0.523). This serves as another robustness check that the effect is driven by

intentional behavior on the part of the subjects, and is not purely noise. This also provides

empirical evidence for theories that attempt to explain probability matching through pattern

seeking [55] and searching for causal relationships [45].

In principle, one can also perform the same test for different slices of the subjects across

demographic, socioeconomic, and game-specific dimensions shown in Table 2. This helps to

build intuition on whether the same effect holds true universally, and what types of individuals

have stronger effects. However we acknowledge that the power of our study is limited due to

the sample of 75 subjects, particularly after multiple-testing adjustment, and we leave this to a

future study.

3.6 Individual differences

To jointly study individual differences in decision-making with the variables considered in

Table 2, we consider a logistic regression model at the level of each guess by the individual sub-

ject. Specifically, for individual i, at

https://doi.org/10.1371/journal.pone.0252540


probability of choosing the dominant option—is modeled by:

f ðiÞ ¼ PðyðiÞt ¼ 1Þ

¼ LogisticðIsTheoryMaximizeri þ IsMalei þHasChildi þ AgeBucketi
þHasProbClassExpi þHasGamblingExpi þ HasInvestExperiencei
þ IsStudenti þ IsOwni þ IncomeBucketi þ TotalAssetBucketi
þHasPatterniÞ

ð10Þ

where Logistic(x) = (1 + exp(−x))−1.

We have seen in Section 3.4 that individual decisions are correlated over time. Therefore,

the errors for regression (10) may be autocorrelated. We group trials from the same individual

together, and order their decisions chronologically. In particular, the response variable is orga-

nized as:

ðyð1Þ1 ; y
ð1Þ

2 ; � � � ; y
ð1Þ

T
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

1st subjects T trials

; yð2Þ1 ; y
ð2Þ

2 ; � � � ; y
ð2Þ

T
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

2nd subjects T trials

; � � � ; yðnÞ1 ; y
ðnÞ
2 ; � � � ; y

ðnÞ
T

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
n-th subjects T trials

Þ
0
;

and we apply the Newey-West heteroskedasticity and autocorrelation consistent (HAC) esti-

mator for the variance of the coefficients in the following results. We adopt Newey and West’s

[65] suggestion to choose the truncation parameter to be the integer part of 4(nT/100)2/9,

which is 11 in our case. This indeed increases the variance estimate of our coefficients com-

pared with the case of independent errors, and our results are not materially different with

respect to the choice of the truncation parameter. In fact, we have tried an estimation with

truncation parameter to be 150, the number of total valid decisions for one individual. The

main variable IsTheoryMaximizer remains statistically significant at 5%.

Table 3 summarizes the independent variables in Eq (10). These variables correspond to the

collected personal information of the subjects (see Table 2), categorized to make them proper

binary or ordinal variables. We have dropped several variables that are highly collinear with

the covariates in (10). The p-value of the log-likelihood ratio test of the full model is 4 × 10−54,

implying a high degree of significance.

https://doi.org/10.1371/journal.pone.0252540.t003
https://doi.org/10.1371/journal.pone.0252540


The first variable, IsTheoryMaximizer, encodes whether the

https://doi.org/10.1371/journal.pone.0252540


demographic groups, to other financial and non-financial contexts, and at different magni-

tudes of payoffs.

In addition to testing the evolutionary model of Brennan and Lo [50], our experimental

results suggest that it is valuable to derive behavioral predictions and implications through an

evolutionary lens. Traditional utility-based theories would yield the same maximizing behavior

for all four designs in our experiment. Yet we find evidence for differences in reality, and the

evolutionary framework offers a potential explanation and prediction for such behaviors: the

environment matters.

More generally, financial markets—a collection of individual decision makers—can also be

studied using the same principles, leading to the Adaptive Markets Hypothesis [66, 67] and its

many empirical implications [68–70]. In the same way that micro-level individual decision

making can be better understood through an evolutionary lens, markets and societies at the

system-wide and macroscopic level can also benefit an adaptive perspective.
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