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Abstract
Structured representation is of remarkable significance in subspace clustering. However,
most of the existing subspace clustering algorithms resort to single-structured representation,
which may fail to fully capture the essential characteristics of data. To address this issue,
a novel multi-structured representation subspace clustering algorithm called block diagonal
sparse representation (BDSR) is proposed in this paper. It takes both sparse and block diagonal
structured representations into account to obtain the desired affinity matrix. The unified
framework is established by integrating the block diagonal prior into the original sparse
subspace clustering framework and the resulting optimization problem is iteratively solved
by the inexact augmented Lagrange multipliers (IALM). Extensive experiments on both
synthetic and real-world datasets well demonstrate the effectiveness and efficiency of the
proposed algorithm against the state-of-the-art algorithms.

Keywords Subspace clustering · Multi-structured representation · Sparse structure · Block
diagonal structure · Spectral clustering

1 Introduction

Subspace clustering, also known as subspace segmentation, aims to partition a set of data
samples approximately drawn from a union of linear subspaces [1]. It has beenwidely applied
in many fields, such as image clustering [2–5], image classification [6,7], image compres-
sion [8,9], video separation [10] and video summarization [11]. Among the popular subspace
clustering methods, the spectral-type based methods are extremely promising [12], which
attracts the increasing attention of researchers. These kinds of methods typically perform
subspace clustering in two stages, that is, first learning affinity matrix that encodes the sub-
space membership information from the given data, and then applying spectral clustering on
the learned affinity matrix to obtain the final clustering result.
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Up to now, three dominant branches of structured representation have been designed
and embedded in subspace clustering algorithms, i.e., sparse representation, low-rank rep-
resentation and block diagonal representation. Accordingly, the fundamental algorithms are
referred as sparse subspace clustering (SSC) [13,14], low-rank representation (LRR) [15,16]
and block diagonal representation (BDR) [17], respectively. In general, the former two build
the affinity matrix by implicitly seeking the sparsest or the lowest rank linear representation
of each sample relative to the rest samples or the entire data samples, whereas the latter
one explicitly pursues block diagonal structure to calculate the affinity matrix. On the basis
of these algorithms, lots of improved algorithms are constantly emerging [18–29]. When
the observed data samples are insufficient or contaminated by an overwhelming amount of
noises, latent low-rank representation (LLRR) [30] is brought forward. Least squares regres-
sion (LSR) [31] is implemented to encourage the grouping effect, where ridge regression
may have similar behavior as LRR in the context of statistics. Non-linear latent space sparse
subspace clustering (NLS3C) [32] is devised as the kernel extension of SSC to complex
non-linear manifold learning. In view of the influence of symmetric components, low-rank
representation with symmetric constraint (LRRSC) [33] is put forward. Discriminative and
coherent subspace clustering (DCSC) [34] is modeled, which enforces the coherence and
discrimination of the affinity matrix as well as the label. Symmetry constrained latent low
rank representation with converted nuclear norm SLLRRC [35] is presented by introduc-
ing a kind of converted nuclear norm and integrating strategy of the symmetric constraint.
Although encouraging performance has been met, the algorithms mentioned above are still
challenging due to the lack of reliable guidance for global characteristics identification. In
other words, they just focus on single-structured representation, and none of them are able
to comprehensively understanding the diversity of characteristics. To this end, several multi-
structured representation subspace clustering algorithms have been proposed in recent years.
Correlation adaptive subspace segmentation (CASS) [36] is brought forward, which uses
the trace Lasso to adaptively interpolate SSC and LSR. Low-rank sparse subspace cluster-
ing (LRSSC) [37] is implemented for the sparsity and low-rankness of the representation.
Implicit block diagonal low-rank representation (IBDLR) [38] is devised by combining the
block diagonal representation and low-rank representation. As a matter of fact, the multi-
structured representation exploits intrinsic properties, i.e., complementarity and consistency,
among different structures to jointly enhance the generalization ability of learning models.

Motivated by the success of multi-structured representation for subspace clustering, we
investigate the joint structure of the sparse and block diagonal representations. Devoted
to taking advantage of the flexible calculation of sparse structure and the real distribution
of block diagonal structure, we therefore propose the block diagonal sparse representation
(BDSR) in this paper. The proposed algorithm is capable of learning the desired affinity
matrix, which enjoys both sparse and block diagonal structures, yielding reliable clustering
result. The strength of the algorithm is that it explores the internal association of data from
two aspects of complementarity and consistency without bringing extra computing costs.
In addition, we utilize the inexact augmented Lagrange multipliers (IALM) [39] to derive
closed form solution to the resulting optimization problem, hence the algorithm is executed
simply and quickly. The main contributions of this paper can be summarized below.

(1) We propose a novel multi-structured representation subspace clustering algorithm by
simultaneously incorporating the sparse constraint and block diagonal prior.

(2) We develop an optimization strategy for the minimization problem of the proposed algo-
rithm. In this approach, the closed form solutions of all subproblems are derived.
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Table 1 Clustering error (%) and
computational time (s) of IBDLR
and BDSR on the synthetic
dataset with different noise ratios

Ratio Algorithm Error Time

0% IBDLR 0.00 68.49

BDSR 0.00 24.20

30% IBDLR 3.45 194.71

BDSR 0.00 24.58

60% IBDLR 4.25 436.04

BDSR 0.00 24.86

90% IBDLR 6.73 640.15

BDSR 2.38 25.24

σ = 0% σ = 30% σ = 60% σ = 90%

(a)Binarized A by IBDLR

σ = 0% σ = 30% σ = 60% σ = 90%

(b)Binarized A by BDSR

Fig. 1 The �
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Fig. 3 Convergence curves of
BDSR on the COIL20 database
with different subject classes
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Table 3 shows the clustering results of various algorithms on theExtendedYaleB database.
As can be seen from Table 3, the performance of BDSR is the best and far better than other
competitors, especially LRR. In particular, IBDLR has the smallest standard deviation of
clustering error on the dataset with 8 subject classes.

Figure 5 shows the affinity matrix A produced by BDSR using the t-distributed stochastic
neighbor embedding (t-SNE) [46] on the Extended Yale B database with different subject
classes. From Fig. 5, it can be seen that the affinity matrix A has great distinguishing power
because each category in the affinity matrix is quite scattered from the visualizations.

4.3.3 Motion Segmentation

As a well-known motion segmentation dataset, the Hopkins 155 database3 consists of 120
sequences of two motions, 35 sequences of three motions and 1 sequence of five motions
[47]. Figure 6 shows some original image samples from theHopkins 155 database. On the one
hand, we keep the original feature trajectories of each motion in 2F-dimensional subspace
without any preprocessing, where F denotes the number of frames in the video. On the other
hand,we project the original data into 4k-dimensional subspace by using principal component

3 http://www.vision.jhu.edu/data/hopkins155/.
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Fig. 5 The affinity matrix A
produced by BDSR using t-SNE
on the Extended Yale B database
with different subject classes
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Fig. 6 Some original image samples from the Hopkins 155 database

Table 4 Clustering error (%) and
computational time (s) of various
algorithms on the Hopkins 155
database

Dim. Algorithm Error Time

Mean Med. Max. Std.

2F SSC 2.65 0.00 46.97 7.61 0.97

LRR 1.71 0.00 33.33 4.86 1.14

LRRSC 1.50 0.00 33.33 4.36 4.34

SLRRC 0.94 0.00 23.52 3.87 2.51

BDR-B 1.43 0.00 41.41 5.45 1.26

BDR-Z 1.17 0.00 37.69 5.73 1.26

IBDLR 0.95 0.00 26.83 4.37 6.52

BDSR 0.74 0.00 21.84 3.08 0.68

4k SSC 2.65 0.00 45.50 7.53 0.89

LRR 2.17 0.00 43.38 6.58 0.53

LRRSC 1.56 0.00 43.38 5.48 4.25

SLRRC 1.51 0.00 40.84 5.28 0.89

BDR-B 2.07 0.00 49.49 6.11 1.24

BDR-Z 1.96 0.00 48.48 6.56 1.24

IBDLR 1.48 0.00 45.16 6.09 5.46

BDSR 0.82 0.00 39.69 3.95 0.65
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Fig. 7 Mean clustering error of
BDSR using different parameters
on the Hopkins 155 database with
different feature dimensions
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