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1. Introduction

Rationality is the key assumption behind standard economic models of
human behavior. The idea that individuals maximize their own self-interest
subject to resource constraints has led to numerous breakthroughs including
expected utility theory (von Neumann and Morgenstern, 1944), game theory
(von Neumann and Morgenstern, 1944; Nash, 1950), rational expectations
(Lucas Jr, 1972), the efficient markets hypothesis (Samuelson, 1965; Fama,
1970), and option pricing theory (Black and Scholes, 1973; Merton, 1973).
The influence of this paradigm goes far beyond academia—it underlies
current macroeconomic and monetary policies, and has become an integral
part of the rules and regulations that govern financial markets today (Hu,
2012).

On the other hand, psychologists and economists have documented many
violations of rational models in human behavior, often referred to as
“cognitive biases”. These systematic deviations from rational behaviors are
hard to reconcile with the standard economic models, and are therefore
considered irrational behaviors. Representatives of these cognitive biases
include probability matching, the tendency to choose randomly between
heads and tails when asked to guess the outcomes of a series of independent
biased-coin tosses, where the randomization matches the probability of the
biased coin (Grant ¢4 d ., 1951; Herrnstein, 1961); loss aversion, the tendency
to take greater risk when choosing between two potential losses and less risk
when choosing between two potential gains (Tversky and Kahneman, 1974;
Tom ¢4 d ., 2007); uncertainty effect, where a risky prospect is valued less
than its worst possible outcome (Gneezy €4 d ., 2006); and confirmation bias,
the tendency to search for or interpret information in a way that confirms
one’s preconceptions (Mahoney, 1977). Such anomalous behaviors have also
been observed in many non-human subjects ranging from bacteria to pri-
mates (Harder and Real, 1987; Kirman, 1993; Smallwood, 1996; Chen ¢4 d .,
2006; Ben-Jacob, 2008; Santos and Chen, 2009), which suggests that they
may have a common and ancient origin, and an evolutionary role that belies
their apparent shortcomings.

The debate between rational models of behavior and their systematic
deviations has attracted an enormous amount of research in economics,
psychology, and evolutionary biology (Becker, 1962; Stanovich and West,
2000; Rabin and Thaler, 2001; McKenzie, 2003; Burnham, 2013; Gneezy and
List, 2013). For instance, bounded rationality (Simon, 1955) and prospect
theory (Kahneman and Tversky, 1979; Tversky and Kahneman, 1992)

1850009-2



provide alternative perspectives for understanding human behavior beyond
the maximization of expected utility. At the same time, numerous empirical
studies are devoted to understanding the relationship between individual
rationality and decision-making in the real world (Hsu



principle vividly with the example of a single ant traversing a mixed terrain of
sand, rocks, and grass. The ant’s path seems highly complex, but the com-
plexity is due more to the environment than the ant’s navigational algorithm.

Much of the rationality debate among economists and psychologists
focuses on whether the rational models can help people make better inferences
and decisions in the real world (McKenzie, 2003). Instead, our framework
provides an evolutionary explanation for seemingly irrational behaviors and
different degrees of irrationality in the population. The results have wide-
spread implications for asset pricing and financial markets, corporate be-
havior, and disciplines beyond finance such as science, management, and
public policy.

For example, it is well-known that irrational traders persist in financial
markets (De Long ¢4 d ., 1990, 1991; Biais and Shadur, 2000; Hirshleifer ¢4 d .,
2006; Kogan ¢4 d ., 2006) and that behaviors such as herding prevail, espe-
cially during crisis (Bowe and Domuta, 2004; Drehmann ¢4 ., 2005; Hirsh-
leifer and Teoh, 2009). These behaviors can affect asset prices and create
bubbles and crashes. From the corporate finance perspective, managers do
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the entire population, and therefore, the important link between rational and
irrational behaviors. Over time, only a certain degree of mutation and irra-
tionality in the population will persist.

The roles of stochastic environments (Ishii ¢4 d ., 1989; Kussell and Leibler,
2005; Acar ¢4 d ., 2008; Gaal ¢4 d ., 2010; Frank, 2011) and mutation (King,
1972; Taddei ¢4 d ., 1997; Drake ¢4 d ., 1998) have been extensively studied by
evolutionary biologists. Several quantitative models have been developed to
understand the magnitude of mutation rates (Kimura, 1960; Levins, 1967,
Leigh Jr., 1970; Gillespie, 1981; Travis and Travis, 2002; Desai and Fisher,
2011; Liberman ¢ d ., 2011). While some of our results will be familiar to
evolutionary biologists, they do not appear to be widely known in an eco-
nomic context. For completeness, we derive them from first principles and
provide the link between mutation and rationality.

By studying the impact of selection on behavior rather than on genes, we
are able to derive evolutionary implications that cut across species, physiol-
ogy, and genetic origins. In the same way that different magnifications of a
microscope reveal different details of a specimen, applying evolutionary
principles to behavioral variations leads to different insights that may be
more relevant for economics, psychology, and behavioral ecology. Our focus
on behavior as the object of selection is a different lens through which the
effects of evolution may be studied.

In the remainder of this paper, we first describe the binary choice model
with mutation. Then, we show that mutation and irrational behaviors are
essential in evolution. Furthermore, the degree of irrationality is determined
by evolution to match the degree of environmental stochasticity. We con-
clude with a brief discussion and provide additional technical details and
proofs in Appendix A.

2. Binary Choice Model with Mutation

We begin with the binary choice model (Brennan and Lo, 2011). Consider a
population of individuals that live for one period, produce a random number
of offspring asexually, and then die. During their lives, individuals make only
one decision: they choose from two actions, ¢ and b, and this results in one of
two corresponding random numbers of offspring, z, and 1, described by some
well-behaved probability distribution function, ®(z,, ). We assume that z,
and % are not perfectly correlated, and

Assumption 1. z, and % are bounded non-negative random variables, and
P(z, =1 =0) =0.
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Assumption 2. (7,,%) is independent and identically distributed (IID)
over time and identical for all individuals in a given generation.

Note that Assumption 1 simply rules out the degenerate case that no
offspring is produced at all. Now suppose that each individual chooses ¢ with
some probability f € [0,1] and b with probability 1 —f, denoted by the
Bernoulli variable F, hence the offspring of an individual is given by

o ~[1 with prob f
v l'f%—i_(l_ lf)%’ £ = {0 with prob 1 —f.
We shall henceforth refer to f as the individual’s behavior since it completely
determines how the individual chooses between « and b. Assume for the
moment that there is no mutation, so that offspring from a type f individual are
still of type f. The following proposition (Brennan and Lo, 2011) summarizes
the population dynamics of the binary choice model without mutation.

Proposition 1. Und'r  ssu ki ons 1 and 2, suppost 4hab 45 bobd nu her
of 491 finduidudsin € wraionTis . sboihilg nu her of € 1 ons
and i nu BT of induidudsin€acly €8T on i nere us€ 6k ok bound,
(! log nfr comfr®s d mosh surthVio el 09-F o0 Bimic-mfra® 9rowfy rat

u(f) = Ellog(fz, + (1 —f)m)]. (1)

kT Wt 4 drodf-ophi ml b€ v or f*is 41f nby

1 if Ejz,/m] >1 and Em/z,)<1
f* = { solution to (3) if E[z,/w%]>1 and E[m/z,)>1 (2)
0 if E[z,/w] <1 and E[m/z,]> 1,

wif € fis of fut di whicid Vinigg scondcast of (2) bV

z, B T
=l ri=ra) Sl a-rm) @)
and bl €xpfesabi onsim (1)—(3) ar€ @bl r€spfes bo (T, ).

The growth-optimal behavior, f*, is a function of the particular environ-
ment ®(z,, ). The role of ® is critical in our framework, as it represents the
entirety of the implications of an individual’s actions for reproductive success.
Embedded in @ is the biological machinery that is fundamental to evolution,
i.e., genetics. However, this machinery is of less interest to economists than
the link between behavior and reproductive success, which is summarized
compactly by ®. The specification of ® also captures the fundamental dis-
tinction between traditional models of population genetics (Levins, 1968;

1850009-6



VARIETY IS THE SPICE OF LIFE

Wilson and Bossert, 1971; Dawkins, 1976) and more recent applications of
evolution to behavior (Hamilton, 1964; Trivers, 1971; Wilson, 1975; Maynard
Smith, 1982); the former focuses on the natural selection of traits (determined
by genetics), whereas the latter focuses on the natural selection of behavior.
Although behavior is obviously linked to genetics, the specific genes involved,
their loci, and the mechanisms by which they are transmitted from one
generation to the next are of less relevance to economic analysis than the
ultimate implications of behavior for reproduction, i.e., ®. In the jargon of
econometrics, ® may be viewed as a “reduced form” representation of an
individual’s biology.

This simple and general model generates a remarkably rich set of behaviors
(see Brennan and Lo (2011)). For example, the three possible behaviors in (2)
are a generalization of the “adaptive coin-flipping” strategies of Cooper and
Kaplan (1982). The behavior f* that emerges through the forces of natural
selection is quite distinct from the neoclassical economic framework of expected
utility in one important respect: expected utility theory implies deterministic
behavior. Furthermore, intelligence has a natural definition in this frame-
work—any type of behavior that is positively correlated with reproductive
success—and bounds on the level of intelligence arise organically from physio-
logical and environmental constraints on this correlation (Brennan and Lo,
2012). By considering different sources of randomness in reproductive success,
risk aversion can be derived in this framework as a consequence of systematic
reproductive risks (Zhang ¢4 d ., 2014b). An extension of Proposition 1 may also
be interpreted as a primitive form of group selection, in which natural selection
appears to operate at the group level instead of, or in addition to, the level of
individuals, traits, or genes (Zhang ¢4 d ., 2014a).

In this stylized model of evolution, we are able to derive behaviors purely
from evolution. We do not need any assumption on individual utility func-
tions. In fact, the growth-optimal behavior in Proposition 1 does not always
align with individually-optimal behavior if individuals maximize their
expected number of offspring (Brennan and Lo, 2011). What is optimal from
the evolutionary perspective, or what we call “rational behaviors”, depends
on the environment. This is an important distinction from the neoclassical
economic framework which assumes certain exogenous utility functions and
derives behaviors given utility functions.

2.1. Mutation: A link between optimal and suboptimal behavior

Now, we add mutation to the binary choice model. In general, mutation
implies that the offspring of type-f individuals are not necessarily of type-f,
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but assume a probability distribution over all possible types. We consider a
simple form of mutation: an offspring of type-f mutates equally likely to all
types.

To be more specific, consider a discrete type space. Let f take values in a
finite set {f},fs,....fri1} (for example, {0,L,2, ... 221 1}) where /7is a

positive integer. The world has #5+ 1 types in total. In addition to Assumptions
1 and 2, we further assume that:

Assumption 3. Each type-f individual mutates with a small probability
e > 0 to type Y # f. Once it mutates, it mutates with equal probability + to

any type ge {flaf27 s 7f17_+1}\{f}‘

Note that Assumption 3 is a simple and special form of mutation. From the
behavioral point of view, it is general enough to capture the most important
characteristics of mutation, which is to provide the link between different
behaviors. With this particular structure, we are able to parametrize the
degree of mutation with a single parameter e.

We would like to emphasize that each individual lives for only one period
in our model, and therefore its mutant offspring may be viewed as “new
entrants” in the next generation’s population because they represent different
behaviors than their predecessors. Also, there is no intelligence or volition
ascribed to behavior f; we are simply providing a formal representation for it,
and then investigating its evolutionary implications. To that end, individuals
choosing between ¢ and b according to the same f may be viewed as con-
sisting of the same “type”, where types are indexed by f and range contin-
uously from 0 to 1, including the endpoints. In this manner, we are able
to study the evolutionary dynamics of each type of individual over many
generations.

Once mutation is introduced into the population, it is no longer possible
to analyze the population dynamics of each type f separately. The entire
system is a multi-type branching process in random environments (Smith and
Wilkinson, 1969; Tanny, 1981). Let n; = (nfl,...,n{”“)’ be the column
vector of the number of individuals of all /41 types in generation 4.
The following proposition describes the population dynamics between two
generations.

Proposition 2. Und'r ssu mhions 1—3, us nf_l i eT€ us€s dh ok bound
for db g€ {f1,f5,... . fri1}, 0y canbe withé n as

n, = Ag Iy _1 a.s. (4)
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mé/i,O:fl <f2 < - <f,r(+1 =1

Equation (4) gives the fundamental relationship between individuals in
two consecutive generations. With probability 1, n; can be written as the
product of two matrices and n,_;. F, represents the reproducibility of dif-
ferent types of individuals, and M represents a re-distribution of types as a
result of mutation. The natural question is: How does n; behave in the limit?
We summarize the asymptotic behavior of a population with mutation in the
following proposition.

Proposition 3 (Growth rate). Und'r ssu wphions 1—3, 451¢ €ashs a
o RET 1 S iy by

1 1
pte = Jim - loge'nr = lim - log[|A A,
“—o00 * t—o0 ™
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proportion of the offspring from the behavior that grows the fastest. There-
fore, the ratio of the individuals of any two behaviors can be lower bounded
by some positive constant, and no single behavior can grow exponentially
faster than any other behaviors. Note that pu, is called the Wz W ® L a-
PUBOV € fhar acttTishi € € Tpo 1€ 1 of matrix A, in the probability literature, and
Corollary 1 in the next sub-section gives an estimate of p,.

Another difference between the mutation and non-mutation populations is
the asymptotic ratio between different types of populations. Without mu-
tation, p(f) is different for different f, and therefore the ratio wy / r con-
verges to zero for any f # f* (see Proposition 1). However, p, is the same with
mutation for all types of f, and the ratio nfﬁ / w# is typically stochastic even in
the long run as T increases without bound. We have ergodic theorems to
characterize the asymptotic behavior of this ratio in the next sub-section.

2.2. Asymptotic population dynamics

Under Assumptions 1-3, let B = 1'n, be the total population size at time %
and

n, nfll’ n{fﬁl ' (5)
yt.—ﬂ— Zun¥*772qn7’

be the normalized population vector in generation 4. Because of the dynamics
(4) between two consecutive generations, {y; };—, is a vector-valued Markov
process, with a compact state space

1
Y = {y = (Y V) ly > O,Z?/i — 1}.

1=1

The one-step transition probability for y € % and BC % is:

niv. Bi=Fo( 3 e B, ©)

Without mutation, because different behaviors grow at different exponential
rates, y; converges almost surely to a basis vector ¢, = (0,...,1,...,0) as
T . In the case of positive mutation rates, similar results exist only for
non-random matrices F; in (4), in which case the long run proportion vector
converges to the eigenvector of F, (see models in Robson (1996a) and Gaal
¢ d. (2010) for examples). In the case of positive mutation rates when F,
are random matrices, environmental uncertainty implies that y; is typically
stochastic even in the long run (see simulation results in the Appendix).
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However, the following ergodic theorem (Tuljapurkar, 1990) allows us to
characterize the asymptotic behavior of y;:

Proposition 4 (Stochastic ergodic theorem). Und'r ssu wphions 1—3,
ley 2,() be s dsiribuion of y,, 40 L, (-) comfrEs ho o shab onary
dsiribuii on L) pd sV as T i nert uses aib o boune

,lelim Lr=4&.

Proposition 4 asserts that the proportion vector, y;, converges weakly as
T 0. In addition, by basic properties of Markov chains, the stationary
distribution, .Z, satisfies the following equation:

2(B= /] iy, BZ(dy)

for any BC #%. An important application of Proposition 4 is that it provides
a formula to estimate the exponential growth rate u.. Note that the total
population size

BR=1n =1MFn,_, =1F,n,_, = B 1'F,y, ,,

so the log-geometric-average growth rate p, can be expressed as
pte = Eflog(1'Fyy;_1)], (7)

where the expectation is taken over the joint stationary distribution of
(Fu,¥i1)-
Corollary 1 (Bounds of growth rate). 4 f* b¢ 45¢ ophi mwl b€ favi or
whhouh i akion (€€ Broposikion 1). Ung'r ssu mphions 1-3,1if 4§ 4Vgf
spuct is o 1s€ € noudh sue bl f* € {f1,fo, . frn ) 0D

plf*) = log(1 — )| < i < (). (8)

Corollary 1 asserts that the growth rate p, is slightly less than the optimal
population growth rate without mutation. We will identify the cases where
mutation does speed up growth in non-stationary environments in Section 3.

Appendix A gives additional results for population dynamics with muta-
tion. In particular, we give the asymptotic distribution of total population
size, R; the rate of convergence for the limit distribution, .Z(-); and the
optimal behavior with mutation in the probabilistic sense.

2.3. Extinction probability

When the population is extinct in evolution, stochastic processes n, and y;
become degenerate. Therefore, all results so far are implicitly conditional on

1850009-11



non-extinction sample paths. However, extinction is important in evolution,
and particularly of interest with mutation. In this sub-section, we investigate
the extinction probability of different behaviors f in different environments
D(z,, m).

Consider a specific behavior f € {f;,/,,....f i1} starting with an initial
population nﬁ > 0, where the type f is defined as € 24 ne# if nfw = 0 for some
s 0, and swruiw nd otherwise. In terms of extinction, there are two sce-
narios in which the number of generation T increases without bound

(i) limr_ IP( > 0) = 0: the population is extinct with probability 1;

(ii) limr_, P( > 0) > 0: the population survives with positive probability.

Note that in case (ii), if limr_, P( > 0) < 1, then the extinction prob-
ability depends on the initial population, 7,. However, when %, is relatively
large, the survival probability is close to 1. To be more specific, we define that
the type [ isi wmwnid



So far we have considered stationary environments generating IID
fecundities across time. In this case, mutation does not help increase the
speed of population growth (Corollary 1). This brings us to the next topic,
where non-stationary environments are considered and mutation can indeed
speed up growth.

3. Optimal Degree of Irrationality
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changes or within a period (Ishii ¢4 d ., 1989; Kussell and Leibler, 2005; Acar
€ d.,2008; Gaal ¢4 d ., 2010). We use a simple example to illustrate the idea
of an optimal degree of irrationality in the population.

3.1. An example of two behaviors

For simplicity, we consider a world with only two behaviors f € {0,1}.
Suppose that the fecundities in the two regimes are given by ®!(z,, %) and
®2(z,, 1) that satisfy the following condition:

]P@l(l'b = 0) = ]P)q)z(xu = 0) =1

That is, one choice in each regime results in no offspring for sure. Note that in
regime 1, z, is still a random variable; in regime 2, @ is still a random
variable. In this world, during regime 1, only action « generates positive
offspring; during regime 2, only action b generates positive offspring. There-
fore, both behaviors die out without mutation after a few regime switches.

A positive mutation rate € helps preserve the irrational behaviors in the
current environment to prepare for possible environmental shocks, at the cost
of slowing down the growth of the rational behavior. In other words, a pos-
itive mutation rate implies that there is always a fixed positive fraction of new
entrants into the population in each generation, even if their behavior may be
suboptimal with respect to the current environment.

Proposition 6. "k u positint mbaionrac e > 0,0¢4 ngTO be yig 4oid
nu her of i ndviduds inihf € mire popil uhion ab ki € e of hiE WA cVde,
Uner  ssu mhions 1—3 and b 164 H-subelynd wefl o seribe o b onf
w1t Feundtits ®(z,, 1) and ®2(z,, m) sabisfV

Pq)l(fb - 0) == Pq;?(xa = 0) == 1,

as i mert usts b ok bound A1 log EZTOt’al comfr®€s d sy surtl¥ 4o

m(e) = 2log~ i ~+E[T! + T log(1 - €) + E[T Eg [log 2]
T2
+ E[T2|Eq: [log ), (9)
for 0 <e<1. T wrouh ophi ml wibabi onra® ¢ bhab Wz WEs (9)is
. 2
€ =77 T
E[,L + A 2]

As a special case of Proposition 6, we have the following result when the
lengths of each regime are all IID.
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Corollary 2. Und'r 4l assu ki oms of Boposition 6,ifin addbion b
Le ndifis of Yok i€ 4 B 1 andr€d 8 2 wrt drawn I [fro wa sind€ dsiribui on
o (D), 40 nilg drowh ophi ml b€ hvi or bhab s (9)is

By Proposition 6 and Corollary 2, the optimal mutation rate is simply the
reciprocal of the expected length of a regime. In the long run, the more stable
the environment, the less irrational behaviors are present in the population;
the more frequently environmental changes happen, the more irrational
behaviors prevail in the population. The mutation rate and the amount of
irrational behaviors are not exogenous variables given by Nature. They are
not only necessary, but also important quantities that are selected by Nature
in evolution to match the degree of environmental instability. In this sense,
natural selection shapes the degree of irrationality in the population.

This also implies that the optimal amount of new entrants into the pop-
ulation is determined by the degree of environmental stability. For example,
one would expect a relatively small number of new entrants in areas with
relatively stable market conditions, such as the automobile industry; and
relatively high turnover rates in areas with relatively volatile market condi-
tions, such as the hedge fund industry.

3.2. Generalization and simulation experiments

The implications from the two-behavior example with a special fecundity
structure above can be generalized to any number of types and any fecundity
structures. We use simulation experiments to demonstrate the generality of
the optimal degree of mutation and irrationality. In this section, we consider
eight different environments, and derive the optimal degree of mutation
for each.

In the following experiments, the lengths of regimes 1 and 72 are in-
dependent random variables with expectation E[1 1] and E[7 2], respectively,
ranging from 10 to 37. For a given expectation E[Tl], T s uniformly dis-
tributed in the interval [0.8 x E[71],1.2 x E[T1]], rounding to the nearest
integer. T2 i5 distributed in the same way.

For a given pair (E[Tl], E[T2]), 11 types of behavior from {0,35, %, ..., 1},
starting with one individual, each evolve for 700 to 1,000 generations. The
optimal degree of mutation in each pair of regimes is calculated by taking the

average over 200 to 500 simulation paths.
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Table 1.

tion rates: Environments 1-8.

Probability table for the simulation of optimal muta-

Environment 1

Environment 2

Regime 1  Regime 2 Regime 1  Regime 2
Prob. £ b b3 b b P bbb o3 oLt
z, 3 2 1 0 0 O z, 3 2 1 1 1 1
T 0o 0 0 3 2 1 T 11 1 3 2 1
Environment 3 Environment 4
Regime 1  Regime 2 Regime 1  Regime 2
Prob. 0.8 02 08 02 Prob. 08 02 08 0.2
z, 3 0 0 3 z, 3 1 1 3
Ty 0 3 3 0 T 1 3 3 1
Environment 5 Environment 6
Regime 1  Regime 2 Regime 1  Regime 2
Prob. 0.8 02 08 0.2 Prob. 08 0.2 % % %
z, 3 0 1 3 z, 3 1 1 1 0
T 0 3 3 1 ) 1 3 2 1

Environment 7

Environment 8

Regime 1  Regime 2 Regime 1  Regime 2
Prob. 08 02 08 0.2 Prob. 0.8 0.2 % % %
z, 3 0 3 1 z, 3 1 3 2 1
T 0 3 1 3 T 1 1 1 0

Table 1 gives eight different environmental conditions, for which we plot
the optimal degree of mutation and the optimal log-geometric-average
growth rate as a function of E[1 1] and E[72] in Fig. 1. In these figures, the
colored plane shows the optimal mutation rates; the transparent surface, for
which the height is indicated by the z-axis, shows the optimal log-geometric-
average growth rate associated with that optimal mutation rate.

Symmetric regimes. Environment 1 assumes that one of the actions in
each regime leads to no offspring. Results are consistent with the example of
two behaviors: the optimal degree of mutation is inversely proportional to
E[T1) + E[T2]. However, the growth rate is proportional to E[7 1] and B[ 2):
the longer the length of a regime, the faster the population grows.
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Fig. 1. Optimal degree of mutation and optimal log-geometric-average growth rate as a
function of regime lengths E[©1] and E[12]. The subfigures summarize the simulation results
of the environments in Table 1. The colored plane with the colorbar shows the optimal
mutation rates; the transparent surface, for which the height is indicated by the z-axis, shows
the optimal log-geometric-average growth rate associated with that optimal mutation rate.

1850009-17



T. J. Brennan, A. W. Lo & R. Zhang

2 2
& s
= 0.5 = 05
g 5 0.8
=) o
2 o 2 0
@ &
o) o
3 g
o 05 o 0.5
3 5 10
20 30
- 30 2 -1
ET] 10 Emy
(g) Environment 7 (h) Environment 8

Fig. 1. (Oom' me f)

Environment 2 considers the case where actions « and & both produce a
positive number of offspring. As expected, the growth rates are much higher
than those in environment 1. The optimal degree of mutation is inversely
proportional to the length of a regime, except for two regions where the
length of one regime is much larger than that of the other (the region
E[T1) > 25, E[T?] < 12, and the region E[T1] < 12, E[T?] > 25). In these
two regions, the optimal degree of mutation drops to nearly zero because one
regime is significantly shorter than the other and therefore it is not worth
sacrificing growth in one regime for the other by mutation.

Environments 3 and 4 add dependency between z, and % in each regime.
In those two cases, simulation results are similar to environment 1.

Asymmetric regimes. The four experiments considered so far are sym-
metric in terms of the two regimes. In other words, the second regime is
simply a copy of the first regime with z, and % reversed. As a consequence, all
results are expected to be symmetric with respect to the line E[Tl] = E[TZ]
In this part we consider asymmetric regimes and investigate how this changes
the optimal mutation rates and growth rates.

Environment 5 is a mixture of environments 3 and 4: regime 1 is from
environment 3 and regime 2 is from environment 4. In this case the optimal
behavior is f; = 0.8 in regime 1 and f; = 0 in regime 2. There are several
interesting observations. First of all, both the optimal degree of mutation and
the growth rate are no longer symmetric with respect to E[7 1] and E[2].
Secondly, the growth rate increases as E[ 2] increases and decreases as E[ 1 1]
increases. This is because regime 2 has a larger geometric-mean fitness than

regime 1, and the growth rate increases as the proportion of generations in
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regime 2 increases. Thirdly, a phenomenon similar to that in environment 2

with zero mutation appears when E[7 1] is large and E[7 2] is small.
Environment 6 makes the two regimes more asymmetric. The optimal
behavior is f;" =1 in regime 1 and f; = 0 in regime 2. These results are

similar to those of environment 5.

When mutation is not desirable. Mutation is desirable because the en-
vironment is non-stationary and the two regimes favor different actions.
When these conditions change, mutation is no longer desirable.

Environment 7 reverses actions a and b in the second regime of environment
5. The shape of the transparent surface indicating growth rates is similar to
that of environment 5. However, the optimal degree of mutation is zero for
any combination of E[7 1] and E[7 2] because the optimal behavior is f; = 0.8
in regime 1 and f5 = 1 in regime 2. They are close to each other, and both of
them grow relatively fast in both regimes.

Environment 8 reverses actions « and b in the second regime of environment
6. The optimal behavior is f* = 1 in both regimes and therefore the optimal
mutation rate is 0.

3.3. Optimal degree of irrationality

It is clear that there exists a balance between growth without mutation and
robustness with mutation. The simulation results confirm the inverse relation
between the optimal degree of mutation and expected lengths of regimes
derived analytically in the simple two-behavior model with special fecundity
structure (Proposition 6 and Corollary 2). The relation is robust across a
variety of environmental conditions.

For symmetric regimes, the optimal degree of mutation is inversely pro-
portional to E[ 1] + E[T 2); the growth rate is proportional to both E[1 1] and
E[T 2]. For asymmetric regimes, the growth rate increases as the proportion of
the regime that has a larger geometric-mean fitness increases. The relative
magnitude of the two regimes matters.

The optimal degree of mutation could be zero if one regime is significantly
shorter than the other because it is not worth sacrificing growth in one regime
for the other as long as the inferior behavior does not die out in the shorter
regime. The optimal degree of mutation could also be zero if the optimal
behaviors in two regimes are similar to each other, and both of them grow
relatively fast in both regimes.

The length of regime, or equivalently the frequency of change, is one aspect
of the nature of environmental change. The intensity of each environmental
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also produce more sophisticated behaviors such as overconfidence (Johnson
and Fowler, 2011), altruism and self-deception (Trivers, 1971; Becker, 1976),
and state-dependent strategies like the Hawk—Dove game (Maynard Smith,
1984), which emerge as a result of more complex environmental conditions. In
our framework, if we assume that one individual’s action is correlated with
the reproductive success of another individual, individuals engaging in stra-
tegic behavior will reproduce more quickly than those with simpler behaviors
such as probability matching. If the actions of individuals in the current
generation can affect the reproductive success of individuals in future gen-
erations, even more complex dynamics are likely to emerge as in the well-
known overlapping generations model (Samuelson, 1958). In a resource-
constrained environment in which one individual’s choice can affect another
individual’s reproductive success, strategic interactions such as reciprocity
and cooperation will likely emerge within and across generations (Trivers,
1971; Nowak and Highfield, 2011).

We have modeled mutation in a simple way in this article. There may be
other more complicated forms of mutation one can introduce to the evolu-
tionary framework, including mutation rates that are correlated with the
environment. This would correspond to individual intelligence and arise when
individuals have memory and therefore are able to adapt to the environment
given what has happened in the past.

Much of the rationality debate among economists and psychologists
focuses on whether the rational models can help people make better inferences
and decisions in the real world (McKenzie, 2003). Instead, our framework
provides an evolutionary explanation of irrational behaviors and different
degrees of irrationality in the population. The results suggest that irrational
behaviors are necessary even if they are seemingly inefficient in the current
environment, and the nature of the stochastic environment determines the
degree of irrationality and the amount of new entrants into the population.

From an application perspective, our results underscore the importance of
addressing different human behaviors in different environments. For exam-
ple, the financial market is considered to be efficient most of the time
(Samuelson, 1965; Fama, 1970), and participants with irrational beliefs
constitute a minimal part in the market. However, in periods of economic
turbulence and financial crisis, irrational behaviors are much more prevalent
than usual. Irrational traders persist and behaviors such as herding prevail.
These behaviors can affect asset prices as well as create bubbles and crashes.

From the corporate finance perspective, managers do not always form
beliefs logically, nor do these beliefs convert to decisions in a consistent and

1850009-21



T. J. Brennan, A. W. Lo & R. Zhang

rational manner. Both the economic and regulatory environments can affect
managers’ behaviors. Our model suggests that these behaviors are not nec-
essarily “irrational”; they are simply the result of adaptation. In fact, beha-
viors normally regarded as “irrational” such as overconfidence might even be
beneficial in certain market environments. From this perspective, a stable
environment would help reduce the amount of irrational behavior in the
population, and yield higher economic growth.

Our results also highlight the importance of the entry of new actors into
the market even if they appear suboptimal in the current context, and sug-
gest that the optimal amount of new entrants depends on the degree of
environmental stability. On the other hand, if not properly managed, volatile
environments can lead to increases in the degree of irrationality, implying
higher social costs and lower economic growth.

Finally, our results also highlight the potential dangers of sustained gov-
ernment intervention, which can become a source of systematic risk and cause
volatile environments in its own right (Acharya ¢4 d ., 2011; Lucas, 2011).
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Appendix A

In Appendix A, we provide additional technical details and proofs for the
main results of the paper.

A.1. Birkho®'s contraction coe=cient

The definition and properties of the Birkhoff’s contraction coefficient can be
found in Caswell (2001, pp. 370-372) or Ipsen and Selee (2011, p. 159). Let x
and y be positive vectors. The Hilbert pseudo-metric distance between x and

y is defined as:
5
B max; -\ LY,
d(x,y) :=log <minl- f—) = n}?xlog <%UZ>
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It measures the distance between two vectors in a way that depends only on
their proportional composition, independent of their absolute size. It satisfies
the following conditions:

d(x,y) > 0,

d(x,y) = d(y,x),

d(x,y) < d(x,2) + d(z,y),

dix,y) =0 if and only if x = ay,

d(x,y) = d(ax,by) for a,b>0.
The Birkhof’s contraction coefficient of a non-negative matrix A is defined as

T(A) = SUpM, (A.1)
d(x,y)
where the supremum is taken over all vectors x > 0 and y > 0 that are not
multiples of each other. Note that because d is invariant with respect to the
absolute magnitude of vectors, the supremum can be taken over a compact
subset equivalently, say ||x||; = ||y|: = 1.

If A is a strictly positive matrix, then 7(A) < 1 (see Caswell (2001, p. 372)
for example). Under Assumptions 1-3, the matrix A; might not be strictly
positive. However, there is at least one positive entry in each row of A;, so
7(A;) <1 (see Hajnal (1976) for a discussion on “row allowable” matrices).
We will prove in Lemma 1 that 7(A;) is indeed strictly less than 1.

Lemma 1 (Contraction properties of A;). Und'r ssu wphions 1—3, 4l
Brio li's congractioneof &€ 1 of A, is shricd Vlessipanl & wosy surdy
P(r(A;) <1)=1.

Because of Assumption 1, there are only finitely many possible random
matrices A; if 2, and % are integers. Therefore, the Birkhoff’s contraction

coefficient 7(A;) is uniformly less than some positive constant § < 1. But
Lemma 1 is enough for the analysis henceforth.

A.2. Additional results for population dynamics

Lemma 2 (Decomposition of population vector). Und'r ssu i ons
1-3,l64 ny=1b¢ o (s5+1)-d HWrsiond edumfeior of I's undlés B =
1'n; o 10k€ bobd popil abi onsit abti 4. ThE nbh popid abi o ehor ub ki TR
4 eanbe wige n gs:

n, = th‘tfl o 'Flno

+%(Ft"'F2m1+1~?t"'F?)Ezl‘i‘""i‘f‘gﬂfll"i‘ﬂl)
&
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d wost swrlV, wigre Fy = (1— (1+L)e)F, is 44  mibabi on-aejust® o’
FeundsV maniz., »

Lemma 2 provides a decomposition of the population vector n; into a linear
combination of a non-mutation vector and 4 vectors for shorter generational
spans, each of which is weighted by - and stands for evolution starting from a
certain time in the past. '

Proposition 7 (Asymptotic population distribution). Und'r ssu By-
Woms 1—3,4E1¢ €nishs so B o suelybhab b 40bd popl akionsi¥ B =1'n, ab
v b sakis fes:
1 —4
s B —bu. = Normal(0, 1)
oV

in dsiribuion as b — oco.

By Proposition 7, the asymptotic distribution of total population is log-
normal, and the mean and variance of log B both increase linearly with time.

Proposition 8 (Rate of convergence). Und'r ssu mhions 1—-3, bif
Birhov ephan {y,}2, is unifor &Y €rdode if 45 suppors of L() has
nont whlinerior.t B unfor k¥erdode 1 Wankhab L1 comfrEstoblf
shabi onar? g skribuki on L o whrie dV fush:

|Zr()=2Cllrv < #', T=123,...

for so® p <1 andg B oo, wiETe ||-||rv is 44 bobd vari aion o shanet
beg e ng wo p?"obab?liél/ W asurts,

Proposition 8 asserts that the rate of convergence in Proposition 4 is ex-
ponential. Therefore, one would expect that the convergence of Z7(-) to the
stationary distribution .Z(-) is very fast on an evolutionary time-scale.

Proposition 9 (Selection of the optimal behavior (Robson, 1996a)).
Suppost 41 opi wl b€ javior @bhous wibdakionis f* and p(f*) >0 (s¢€
Boposikionl). Und'r ssu whions 1—3, suppost 4l €orr€spond nd e
of frinklf £evory,isV* sor an¥s wll probabilis¥ p > 0 aneposititf €onshary
6> 0,457¢ €asise € (0,1) suehblhab, for db mbaki onrats e € (0,€), 18 hart

whr€spF ek ho b i Wb d siribuki on L.

I The support of & () is defined to be the set of all points y € # for which every open
neighborhood of y has positive measure.
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Proposition 9 asserts an important property of .Z: f* without mutation
again dominates the population with mutation in evolution with arbitrarily
high probability, provided that the mutation rate is small enough. However,
explicit calculation of the stationary distribution is difficult. Section A.3
discusses a simulation experiment to understand the limit stationary distri-
bution .Z.

A.3. Simulation for the limit distribution
of population proportions

Let’s consider an example to show how the limit distribution of population
proportions behaves. With ®(z,, %) given in Table A.1, we study a system
with six behaviors f € {0,%,2,... 1}

Figures A.1(a)-A.1(c) show the proportion of each behavior in the entire
population as the number of generation increases in one simulation. Without
mutation, the proportion of different behaviors converges almost surely. With
positive mutation rates, the population proportion vector is stochastic even
in the long run.

Figures A.1(d) and A.l1(e) show the limit distribution of population
proportions for mutation rates ¢ = 0.01 and 0.05. Each subplot shows the
histogram of three behaviors in the last generation T — 500 with 1,000
simulation paths: the optimal behavior f* = 0.8, and two suboptimal behaviors
f =0.6,f =1. We only plot three representative behaviors for simplicity.
From the histogram, it is clear that f* = 0.8 corresponds to the optimal
behavior. As the mutation rate gets smaller, the probability that f* = 0.8
dominates the entire population gets closer to 1.

Furthermore, the final stationary distribution does not behave like normal
because of the heavy tailness observed in the simulation. In particular, a
Kolmogorov—Smirnov test of normality on the distribution of f* = 0.8 pro-
portion gives p-value = 1.08 x 1079, rejecting the normality hypothesis.

Finally, although it is hard to show the evolution of the complete distri-
bution of normalized population vector (5) in one figure, Figures A.1(f) and

Table A.1. Probability table for the sim-
ulation of asymptotic population dynamics.

State 1 State 2
Action prob. p=0.8 prob.1—p=0.2
a z, =3 z, =0
b 7 =0 @ =3
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A.1(g) show the proportion of each behavior in the entire population aver-
aged over 1,000 simulation paths. It is clear that the expectation of the
distribution converges quickly, and the optimal behavior without mutation
again dominates the population in expectation. This supports our results in
Propositions 8 and 9.

A.4. Proofs

Lemma 1. 15 proof € wrdixs 44 dscussion in Gu,s il (2001)
pp. 371-372. L4 A = (6ij) (re1)x(5er1) be un¥ wmyriz drown undgr

ssu i ons 1—3. I Ais sinied¥ positin® 4 nr(A) < 1. f Ais nok siried
positint, beequst Pz, >0o0rz >0)=1, A wusk b¢ o siricdV positin®
wbriz €0e€ ph for 4 1sk edumn or kB (F5+ 1k edumn (bus not boin).
Suppost ik hobl oss of € WrdisY bt 45 1sh €dumof Ais O andbhf €siis
siried U posikinf | andib suFE€s 4o pro T(A) < 1inilis cast.

Now let x(#) = (5 (6 + 1));5" and y(#) = (% (¢ +1)),=* be positive vectors
that are not proportional to each other, and x(# +1)= A -x(4) and
y(h +1)= A -y(4). Then

GG +1)  Dwnt) 3 < ai%(4) > h(#) S zi(4)
Y1) Yaaatalt) G \aaatalt)) Yil) ST Y0)
where ) ;p;; = 1. A careful examination of p;; yields that for any 7,

p1=0, and p; >0 forj=23,..., %+1.

@) Ferl
Therefore, % is a positive weighted average of {% g; }j:2 , and this is true

for alli. Because x(4) and y(#) are not proportional to each other, there are
two possibilities:

el
(1) The ratios in {22 g; }j_2 are all the same, but different from 572 gg In this

case exactly one of the following must be true:

L) _m@E+1) _ ;(4)

mjlnyj(é)<yi(é+1)_mjaxyj(ﬁ), for allz,
or
(% - (% (%
min ]()Si( ><maxuj(), for alls
oY) T uE+L) T Y6)
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) i1
(2) The ratios in {57(”} ., aremnot all the same. In this case, we have

min ) < G0 +1) < maxxj(é)

, for alls.
Pe) S e e

In both (1) and (2), we have
dx( +1),y( +1)) < d(x(t),y(#)).

That is, each multiplication by A contracts the distance between the two
vectors. Because the supremum in Birkhoff’s contraction coefficient (A.1) can
be taken over a compact set, we have 7(A) < 1 with probability 1.

Lemma 2. L5 miéakion mériz M canbe witie n gs

1 €
M = (1 — <1 +‘?{>6>Il’f+1 +?{1p{+111p{+17

WIETE Ly i W0 i of WY maTiz of of Wusion (444 1) x (F5+1). Buddnd
in%o (4)1 1 Boposikon?2 & Fi

1 €
nt a:S MFtnt71 = <1 — (1 +T’,’> 6) Ftnt,l + 7',61”{+1' (A2)

WOl k40 0 o ik Y
1'Fn,_; =1'MF,n,_; = B

wus ust di moredf'Tho obhaim(A.2). Aot d ngi nduei LY fro m(A.2), & fat
W dEsirtdresdy,

Proposition 1. $¢ g nnan and Lo (2011) Broposition 1. Srond Law of
Lar® Vo hers i wfi€s d mosy swt comfre e (€ dso B nnan and
Lo (2011) Broof of Yordlury 1).

Proposition 2. T proofis usi ¢ € 1rdizaionof B nnanand Lo (2011).
g Fbe o Broodli vari e o fit dasin B nnanand Lo (2011), wiehtTuds 1
whly probabilivt f and 0 oilgrist. Pfit “nok bk o i nefcabor W oand
“ miabi onfro mybo 7 indedor M7
) €
b { 1 with prob 1 —¢ T 1 with prob Nz
0 with prob e, 0 with prob 1 — % .
%
In generation 4, type f individuals come from type f individuals without
mutation and type 9(#f) individuals with mutation in generation 4 — 1.
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f
" "1

%fff ZWK 5‘{,(1—];;) To 4

=1 ) i l(fxaé+( f)% )

as n{ | increases without bound. From type 9( 7é

n';i
Zi%fﬂzz Z 4’“’4% T,y + — L) |,
1=1

4f i=1 ytf
= — (qxut+ 1-(1 )

as 1, | increases without bound. Note that

f
TL# —1

niﬁ
n = w{7f+22 7y

i=1 A =1
:5(1 - e) iUz + (1= Fmy)
Z ’[7, qw(“; + ]- - q) )

i (l;éf

(4) simply rewrites the above equation in matrix form.

Proposition 3. A If w1 and Yus sl (2001, p. 386, 14.22), o wIraplic
W ak€rdodeis?? nd ds. I addtion, Elog,||A,|| < oo beequst z, and 1 ar®
bound d, wiEr® log, ||A,|| = max{0,log ||A,[|}. Taerefore, ssu mphion4.2.1
in Tl jupur har (1990)is saiis f¢ , ard Bopositi on3 fdl ows fro wlol japur har
(1990, p. 26 ().

Proposition 4. Becaus® i Tando ® maricts A, ar® ITI) ssu Whions
4.2.1,4.2.3, and4.2.6in il jupurhur (1990) wr¢ sdkis it o, and il €ord usi on
fdlows drecdV fro m‘pﬁjwpm'ﬂmr (1990), p. 29 (J).

Proposition 5. Bur ()
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7©'(07) > 0,7'(17) < 0, which implies that 7(¢) has a unique maximum in



ret-1 Fit-1

0%1—2 ﬁ» /Btl—z

and oy_y + f_1 = 1. o€ 4hab Fy andy,_; or€ i ne if nef in(7), and oy,
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