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1. Introduction

Rationality is the key assumption behind standard economic models of

human behavior. The idea that individuals maximize their own self-interest

subject to resource constraints has led to numerous breakthroughs including

expected utility theory (von Neumann and Morgenstern, 1944), game theory

(von Neumann and Morgenstern, 1944; Nash, 1950), rational expectations

(Lucas Jr, 1972), the e±cient markets hypothesis (Samuelson, 1965; Fama,

1970), and option pricing theory (Black and Scholes, 1973; Merton, 1973).

The in°uence of this paradigm goes far beyond academia���it underlies

current macroeconomic and monetary policies, and has become an integral

part of the rules and regulations that govern ¯nancial markets today (Hu,

2012).

On the other hand, psychologists and economists have documented many

violations of rational models in human behavior, often referred to as

\cognitive biases". These systematic deviations from rational behaviors are

hard to reconcile with the standard economic models, and are therefore

considered irrational behaviors. Representatives of these cognitive biases

include probability matching, the tendency to choose randomly between

heads and tails when asked to guess the outcomes of a series of independent

biased-coin tosses, where the randomization matches the probability of the

biased coin (Grant et al., 1951; Herrnstein, 1961); loss aversion, the tendency

to take greater risk when choosing between two potential losses and less risk

when choosing between two potential gains (Tversky and Kahneman, 1974;

Tom et al., 2007); uncertainty e®ect, where a risky prospect is valued less

than its worst possible outcome (Gneezy et al., 2006); and con¯rmation bias,

the tendency to search for or interpret information in a way that con¯rms

one's preconceptions (Mahoney, 1977). Such anomalous behaviors have also

been observed in many non-human subjects ranging from bacteria to pri-

mates (Harder and Real, 1987; Kirman, 1993; Smallwood, 1996; Chen et al.,

2006; Ben-Jacob, 2008; Santos and Chen, 2009), which suggests that they

may have a common and ancient origin, and an evolutionary role that belies

their apparent shortcomings.

The debate between rational models of behavior and their systematic

deviations has attracted an enormous amount of research in economics,

psychology, and evolutionary biology (Becker, 1962; Stanovich and West,

2000; Rabin and Thaler, 2001; McKenzie, 2003; Burnham, 2013; Gneezy and

List, 2013). For instance, bounded rationality (Simon, 1955) and prospect

theory (Kahneman and Tversky, 1979; Tversky and Kahneman, 1992)
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principle vividly with the example of a single ant traversing a mixed terrain of

sand, rocks, and grass. The ant's path seems highly complex, but the com-

plexity is due more to the environment than the ant's navigational algorithm.

Much of the rationality debate among economists and psychologists

focuses on whether the rational models can help people make better inferences

and decisions in the real world (McKenzie, 2003). Instead, our framework

provides an evolutionary explanation for seemingly irrational behaviors and

di®erent degrees of irrationality in the population. The results have wide-

spread implications for asset pricing and ¯nancial markets, corporate be-

havior, and disciplines beyond ¯nance such as science, management, and

public policy.

For example, it is well-known that irrational traders persist in ¯nancial

markets (De Long et al., 1990, 1991; Biais and Shadur, 2000; Hirshleifer et al.,

2006; Kogan et al., 2006) and that behaviors such as herding prevail, espe-

cially during crisis (Bowe and Domuta, 2004; Drehmann et al., 2005; Hirsh-

leifer and Teoh, 2009). These behaviors can a®ect asset prices and create

bubbles and crashes. From the corporate ¯nance perspective, managers do



the entire population, and therefore, the important link between rational and

irrational behaviors. Over time, only a certain degree of mutation and irra-

tionality in the population will persist.

The roles of stochastic environments (Ishii et al., 1989; Kussell and Leibler,

2005; Acar et al., 2008; Gaal et al., 2010; Frank, 2011) and mutation (King,

1972; Taddei et al., 1997; Drake et al., 1998) have been extensively studied by

evolutionary biologists. Several quantitative models have been developed to

understand the magnitude of mutation rates (Kimura, 1960; Levins, 1967;

Leigh Jr., 1970; Gillespie, 1981; Travis and Travis, 2002; Desai and Fisher,

2011; Liberman et al., 2011). While some of our results will be familiar to

evolutionary biologists, they do not appear to be widely known in an eco-

nomic context. For completeness, we derive them from ¯rst principles and

provide the link between mutation and rationality.

By studying the impact of selection on behavior rather than on genes, we

are able to derive evolutionary implications that cut across species, physiol-

ogy, and genetic origins. In the same way that di®erent magni¯cations of a

microscope reveal di®erent details of a specimen, applying evolutionary

principles to behavioral variations leads to di®erent insights that may be

more relevant for economics, psychology, and behavioral ecology. Our focus

on behavior as the object of selection is a di®erent lens through which the

e®ects of evolution may be studied.

In the remainder of this paper, we ¯rst describe the binary choice model

with mutation. Then, we show that mutation and irrational behaviors are

essential in evolution. Furthermore, the degree of irrationality is determined

by evolution to match the degree of environmental stochasticity. We con-

clude with a brief discussion and provide additional technical details and

proofs in Appendix A.

2. Binary Choice Model with Mutation

We begin with the binary choice model (Brennan and Lo, 2011). Consider a

population of individuals that live for one period, produce a random number

of o®spring asexually, and then die. During their lives, individuals make only

one decision: they choose from two actions, a and b, and this results in one of

two corresponding random numbers of o®spring, xa and xb, described by some

well-behaved probability distribution function, �ðxa; xbÞ. We assume that xa
and xb are not perfectly correlated, and

Assumption 1. xa and xb are bounded non-negative random variables, and

Pðxa ¼ xb ¼ 0Þ ¼ 0.
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Assumption 2. ðxa; xbÞ is independent and identically distributed (IID)

over time and identical for all individuals in a given generation.

Note that Assumption 1 simply rules out the degenerate case that no

o®spring is produced at all. Now suppose that each individual chooses a with

some probability f 2 ½0; 1� and b with probability 1� f , denoted by the

Bernoulli variable I f , hence the o®spring of an individual is given by

x f ¼ I f xa þ ð1� I f Þxb; I f ¼ 1 with prob f

0 with prob 1� f :

�

We shall henceforth refer to f as the individual's behavior since it completely

determines how the individual chooses between a and b. Assume for the

moment that there is nomutation, so that o®spring from a type f individual are

still of type f . The following proposition (Brennan and Lo, 2011) summarizes

the population dynamics of the binary choice model without mutation.

Proposition 1. Under Assumptions 1 and 2, suppose that the total number

of type f individuals in generation T is n f
T . As both the number of generations

and the number of individuals in each generation increase without bound,

T �1 log n f
T converges almost surely to the log-geometric-average growth rate

�ðf Þ ¼ E½logðfxa þ ð1� f ÞxbÞ�: ð1Þ
Furthermore, the growth-optimal behavior f � is given by

f � ¼
1 if E½xa=xb� > 1 and E xb=xa½ � < 1

solution to ð3Þ if E½xa=xb� � 1 and E½xb=xa� � 1

0 if E½xa=xb� < 1 and E½xb=xa� > 1;

8<
: ð2Þ

where f � is de¯ned implicitly in the second case of (2) by

E
xa

f �xa þ ð1� f �Þxb

� �
¼ E

xb
f �xa þ ð1� f �Þxb

� �
; ð3Þ

and the expectations in (1)�(3) are with respect to �ðxa; xbÞ.
The growth-optimal behavior, f �, is a function of the particular environ-

ment �ðxa; xbÞ. The role of � is critical in our framework, as it represents the

entirety of the implications of an individual's actions for reproductive success.

Embedded in � is the biological machinery that is fundamental to evolution,

i.e., genetics. However, this machinery is of less interest to economists than

the link between behavior and reproductive success, which is summarized

compactly by �. The speci¯cation of � also captures the fundamental dis-

tinction between traditional models of population genetics (Levins, 1968;
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but assume a probability distribution over all possible types. We consider a

simple form of mutation: an o®spring of type-f mutates equally likely to all

types.

To be more speci¯c, consider a discrete type space. Let f take values in a

¯nite set ff1; f2; . . . ; fKþ1g (for example, f0; 1
K ;

2
K ; . . . ;

K�1
K ; 1g) where K is a

positive integer. The world hasK þ 1 types in total. In addition toAssumptions

1 and 2, we further assume that:

Assumption 3. Each type-f individual mutates with a small probability

� > 0 to type g 6¼ f . Once it mutates, it mutates with equal probability �
K to

any type g 2 ff1; f2; . . . ; fKþ1gnff g.
Note that Assumption 3 is a simple and special form of mutation. From the

behavioral point of view, it is general enough to capture the most important

characteristics of mutation, which is to provide the link between di®erent

behaviors. With this particular structure, we are able to parametrize the

degree of mutation with a single parameter �.

We would like to emphasize that each individual lives for only one period

in our model, and therefore its mutant o®spring may be viewed as \new

entrants" in the next generation's population because they represent di®erent

behaviors than their predecessors. Also, there is no intelligence or volition

ascribed to behavior f ; we are simply providing a formal representation for it,

and then investigating its evolutionary implications. To that end, individuals

choosing between a and b according to the same f may be viewed as con-

sisting of the same \type", where types are indexed by f and range contin-

uously from 0 to 1, including the endpoints. In this manner, we are able

to study the evolutionary dynamics of each type of individual over many

generations.

Once mutation is introduced into the population, it is no longer possible

to analyze the population dynamics of each type f separately. The entire

system is a multi-type branching process in random environments (Smith and

Wilkinson, 1969; Tanny, 1981). Let nt ¼ ðn f1
t ; . . . ;n

fKþ1

t Þ0 be the column

vector of the number of individuals of all K þ 1 types in generation t.

The following proposition describes the population dynamics between two

generations.

Proposition 2. Under Assumptions 1�3, as n g
t�1 increases without bound

for all g 2 ff1; f2; . . . ; fKþ1g, nt can be written as

nt ¼ At � nt�1 a:s: ð4Þ
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where At :¼ M � Ft. Here, M is a constant mutation matrix:

M ¼

1� �
�

K
� � � �

K
�

K
1� � � � � �

K

..

. ..
. . .

. ..
.

�

K

�

K
� � � 1� �

0
BBBBBBBBB@

1
CCCCCCCCCA
;

and Ft is a stochastic fecundity matrix:

Ft ¼
f1xa;t þ ð1� f1Þxb;t � � � 0

..

. . .
. ..

.

0 � � � fKþ1xa;t þ ð1� fKþ1Þxb;t

0
BB@

1
CCA;

with 0 ¼ f1 < f2 < � � � < fKþ1 ¼ 1.

Equation (4) gives the fundamental relationship between individuals in

two consecutive generations. With probability 1, nt can be written as the

product of two matrices and nt�1. Ft represents the reproducibility of dif-

ferent types of individuals, and M represents a re-distribution of types as a

result of mutation. The natural question is: How does nt behave in the limit?

We summarize the asymptotic behavior of a population with mutation in the

following proposition.

Proposition 3 (Growth rate). Under Assumptions 1�3, there exists a

number �� such that

�� ¼ lim
T!1

1

T
log c 0nT ¼ lim

T!1
1

T
log jjAtAt�1;







non-extinction sample paths. However, extinction is important in evolution,

and particularly of interest with mutation. In this sub-section, we investigate

the extinction probability of di®erent behaviors f in di®erent environments

�ðxa; xbÞ.
Consider a speci¯c behavior f 2 ff1; f2; . . . ; fKþ1g starting with an initial

population n f
0 > 0, where the type f is de¯ned as extinct if n f

T ¼ 0 for some

T > 0, and surviving otherwise. In terms of extinction, there are two sce-

narios in which the number of generation T increases without bound

(i) limT!1Pðn f
T > 0Þ ¼ 0: the population is extinct with probability 1;

(ii) limT!1Pðn f
T > 0Þ > 0: the population survives with positive probability.

Note that in case (ii), if limT!1Pðn f
T > 0Þ < 1, then the extinction prob-

ability depends on the initial population, n0. However, when n0 is relatively

large, the survival probability is close to 1. To be more speci¯c, we de¯ne that

the type f is immortal









Table 1 gives eight di®erent environmental conditions, for which we plot

the optimal degree of mutation and the optimal log-geometric-average

growth rate as a function of E½T 1� and E½T 2� in Fig. 1. In these ¯gures, the

colored plane shows the optimal mutation rates; the transparent surface, for

which the height is indicated by the z-axis, shows the optimal log-geometric-

average growth rate associated with that optimal mutation rate.

Symmetric regimes. Environment 1 assumes that one of the actions in

each regime leads to no o®spring. Results are consistent with the example of

two behaviors: the optimal degree of mutation is inversely proportional to

E½T 1� þ E½T 2�. However, the growth rate is proportional to E½T 1� and E½T 2�:
the longer the length of a regime, the faster the population grows.

Table 1. Probability table for the simulation of optimal muta-
tion rates: Environments 1–8.

Environment 1 Environment 2

Regime 1 Regime 2 Regime 1 Regime 2

Prob. 1
3

1
3

1
3

1
3

1
3

1
3

Prob. 1
3

1
3

1
3

1
3

1
3

1
3

xa 3 2 1 0 0 0 xa 3 2 1 1 1 1
xb 0 0 0 3 2 1 xb 1 1 1 3 2 1

Environment 3 Environment 4

Regime 1 Regime 2 Regime 1 Regime 2

Prob. 0.8 0.2 0.8 0.2 Prob. 0.8 0.2 0.8 0.2
xa 3 0 0 3 xa 3 1 1 3
xb 0 3 3 0 xb 1 3 3 1

Environment 5 Environment 6

Regime 1 Regime 2 Regime 1 Regime 2

Prob. 0.8 0.2 0.8 0.2 Prob. 0.8 0.2 1
3

1
3

1
3

xa 3 0 1 3 xa 3 1 1 1 0
xb 0 3 3 1 xb 1 3 3 2 1

Environment 7 Environment 8

Regime 1 Regime 2 Regime 1 Regime 2

Prob. 0.8 0.2 0.8 0.2 Prob. 0.8 0.2 1
3

1
3

1
3

xa 3 0 3 1 xa 3 1 3 2 1
xb 0 3 1 3 xb 1 3 1 1 0
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(a) Environment 1 (b) Environment 2

(c) Environment 3 (d) Environment 4

(e) Environment 5 (f) Environment 6

Fig. 1. Optimal degree of mutation and optimal log-geometric-average growth rate as a
function of regime lengths E½T 1� and E½T 2�. The sub¯gures summarize the simulation results
of the environments in Table 1. The colored plane with the colorbar shows the optimal
mutation rates; the transparent surface, for which the height is indicated by the z-axis, shows
the optimal log-geometric-average growth rate associated with that optimal mutation rate.
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Environment 2 considers the case where actions a and b both produce a

positive number of o®spring. As expected, the growth rates are much higher

than those in environment 1. The optimal degree of mutation is inversely

proportional to the length of a regime, except for two regions where the

length of one regime is much larger than that of the other (the region

E½T 1� > 25;E½T 2� < 12, and the region E½T 1� < 12;E½T 2� > 25). In these

two regions, the optimal degree of mutation drops to nearly zero because one

regime is signi¯cantly shorter than the other and therefore it is not worth

sacri¯cing growth in one regime for the other by mutation.

Environments 3 and 4 add dependency between xa and xb in each regime.

In those two cases, simulation results are similar to environment 1.

Asymmetric regimes. The four experiments considered so far are sym-

metric in terms of the two regimes. In other words, the second regime is

simply a copy of the ¯rst regime with xa and xb reversed. As a consequence, all

results are expected to be symmetric with respect to the line E½T 1� ¼ E½T 2�.
In this part we consider asymmetric regimes and investigate how this changes

the optimal mutation rates and growth rates.

Environment 5 is a mixture of environments 3 and 4: regime 1 is from

environment 3 and regime 2 is from environment 4. In this case the optimal

behavior is f �1 ¼ 0:8 in regime 1 and f �2 ¼ 0 in regime 2. There are several

interesting observations. First of all, both the optimal degree of mutation and

the growth rate are no longer symmetric with respect to E½T 1� and E½T 2�.
Secondly, the growth rate increases as E½T 2� increases and decreases as E½T 1�
increases. This is because regime 2 has a larger geometric-mean ¯tness than

regime 1, and the growth rate increases as the proportion of generations in

(g) Environment 7 (h) Environment 8

Fig. 1. (Continued)
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also produce more sophisticated behaviors such as overcon¯dence (Johnson

and Fowler, 2011), altruism and self-deception (Trivers, 1971; Becker, 1976),

and state-dependent strategies like the Hawk–Dove game (Maynard Smith,

1984), which emerge as a result of more complex environmental conditions. In

our framework, if we assume that one individual's action is correlated with

the reproductive success of another individual, individuals engaging in stra-

tegic behavior will reproduce more quickly than those with simpler behaviors

such as probability matching. If the actions of individuals in the current

generation can a®ect the reproductive success of individuals in future gen-

erations, even more complex dynamics are likely to emerge as in the well-

known overlapping generations model (Samuelson, 1958). In a resource-

constrained environment in which one individual's choice can a®ect another

individual's reproductive success, strategic interactions such as reciprocity

and cooperation will likely emerge within and across generations (Trivers,

1971; Nowak and High¯eld, 2011).

We have modeled mutation in a simple way in this article. There may be

other more complicated forms of mutation one can introduce to the evolu-

tionary framework, including mutation rates that are correlated with the

environment. This would correspond to individual intelligence and arise when

individuals have memory and therefore are able to adapt to the environment

given what has happened in the past.

Much of the rationality debate among economists and psychologists

focuses on whether the rational models can help people make better inferences

and decisions in the real world (McKenzie, 2003). Instead, our framework

provides an evolutionary explanation of irrational behaviors and di®erent

degrees of irrationality in the population. The results suggest that irrational

behaviors are necessary even if they are seemingly ine±cient in the current

environment, and the nature of the stochastic environment determines the

degree of irrationality and the amount of new entrants into the population.

From an application perspective, our results underscore the importance of

addressing di®erent human behaviors in di®erent environments. For exam-

ple, the ¯nancial market is considered to be e±cient most of the time

(Samuelson, 1965; Fama, 1970), and participants with irrational beliefs

constitute a minimal part in the market. However, in periods of economic

turbulence and ¯nancial crisis, irrational behaviors are much more prevalent

than usual. Irrational traders persist and behaviors such as herding prevail.

These behaviors can a®ect asset prices as well as create bubbles and crashes.

From the corporate ¯nance perspective, managers do not always form

beliefs logically, nor do these beliefs convert to decisions in a consistent and

Variety Is the Spice of Life

1850009-21







almost surely, where ~Ft ¼ ð1� ð1þ 1
K Þ�ÞFt is the \mutation-adjusted"

fecundity matrix.

Lemma 2 provides a decomposition of the population vector nt into a linear

combination of a non-mutation vector and t vectors for shorter generational

spans, each of which is weighted by �
K and stands for evolution starting from a

certain time in the past.

Proposition 7 (Asymptotic population distribution). Under Assump-

tions 1�3, there exists some � such that the total population size Pt ¼ 1 0nt at

time t satis¯es:

logPt � t��

�
ffiffi
t

p ) Normalð0; 1Þ

in distribution as t ! 1.

By Proposition 7, the asymptotic distribution of total population is log-

normal, and the mean and variance of logPt both increase linearly with time.

Proposition 8 (Rate of convergence). Under Assumptions 1�3, the

Markov chain fytg1
t¼0 is uniformly ergodic if the support of L ð�Þ has

non-empty interior.1 By uniformly ergodic we mean thatL T converges to the

stationary distribution L geometrically fast:

jjL T ð�Þ �L ð�ÞjjTV � M�T ; T ¼ 1; 2; 3; . . .

for some � < 1 and M <1, where jj � jjTV is the total variation distance

between two probability measures.

Proposition 8 asserts that the rate of convergence in Proposition 4 is ex-

ponential. Therefore, one would expect that the convergence of L Tð�Þ to the

stationary distribution L ð�Þ is very fast on an evolutionary time-scale.

Proposition 9 (Selection of the optimal behavior (Robson, 1996a)).

Suppose the optimal behavior without mutation is f � and �ðf �Þ > 0 (see

Proposition 1). Under Assumptions 1�3, suppose the corresponding element

of f � in the vectoryt is y
�.For any small probability �p > 0 and positive constant

�� > 0, there exists �� 2 ð0; 1Þ such that, for all mutation rates � 2 ð0;��Þ, we have
PL ðy � � 1� ��Þ > 1� �p

with respect to the limit distribution L .

1The support of L ð�Þ is de¯ned to be the set of all points y 2 Y for which every open
neighborhood of y has positive measure.
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(2) The ratios in
xjðtÞ
yjðtÞ
n oKþ1

j¼2
are not all the same. In this case, we have

min
j

xjðtÞ
yjðtÞ

<
xiðt þ 1Þ
yiðt þ 1Þ < max

j

xjðtÞ
yjðtÞ

; for all i:

In both (1) and (2), we have

dðxðt þ 1Þ;yðt þ 1ÞÞ < dðxðtÞ;yðtÞÞ:
That is, each multiplication by A contracts the distance between the two

vectors. Because the supremum in Birkho®'s contraction coe±cient (A.1) can

be taken over a compact set, we have �ðAÞ < 1 with probability 1.

Lemma 2. The mutation matrix M can be written as

M ¼ 1� 1þ 1

K

� �
�

� �
IKþ1 þ

�

K
1Kþ11

0
Kþ1;

where IKþ1 is the identity matrix of dimension ðK þ 1Þ � ðK þ 1Þ. Plugging
into (4) in Proposition 2 we get

nt ¼a:s:MFtnt�1 ¼ 1� 1þ 1

K

� �
�

� �
Ftnt�1 þ

�

K
Pt1Kþ1: ðA:2Þ

Note that the identity

1 0Ftnt�1 ¼ 1 0MFtnt�1 ¼ Pt

was used in order to obtain (A.2). Proceeding inductively from (A.2), we have

the desired result.

Proposition 1. See Brennan and Lo (2011) Proposition 1. Strong Law of

Large Numbers implies almost sure convergence (see also Brennan and

Lo (2011) Proof of Corollary 1).

Proposition 2. The proof is a simple generalization of Brennan and Lo (2011).

Let I f be aBernoulli variable de¯ned as inBrennan andLo (2011),which equals 1

with probability f and 0 otherwise. De¯ne \not mutation" indicator N and

\mutation from g to f " indicator M g!f :

N ¼ 1 with prob 1� �

0 with prob �;

�
M g!f ¼

1 with prob
�

K

0 with prob 1� �

K
:

8><
>:

In generation t, type f individuals come from type f individuals without

mutation and type gð6¼ f Þ individuals with mutation in generation t � 1.

T. J. Brennan, A. W. Lo & R. Zhang

1850009-28



Consider them separately. From type f :

Xn f
t�1

i¼1

x f!f
i;t ¼

Xn f
t�1

i¼1

Ni;tI
f
i;t

0
@

1
Axa;t þ

Xn f
t�1

i¼1

Ni;tð1� I f
i;tÞ

0
@

1
Axb;t

¼a:s: ð1� �Þn f
t�1ðfxa;t þ ð1� f Þxb;tÞ

as n f
t�1 increases without bound. From type gð6¼ f Þ

X
g 6¼f

Xn g
t�1

i¼1

x g!f
i;t ¼

X
g 6¼f

Xn g
t�1

i¼1

M g!f
i;t I g

i;t

0
@

1
Axa;t þ

Xn g
t�1

i¼1

M g!f
i;t ð1� I g

i;tÞ
0
@

1
Axb;t

2
4

3
5

¼a:s: �

K

X
g 6¼f

n g
t�1ðgxa;t þ ð1� gÞxb;tÞ

as n g
t�1 increases without bound. Note that

n f
t ¼

Xn f
t�1

i¼1

x f!f
i;t þ

X
g 6¼f

Xn g
t�1

i¼1

x g!f
i;t

¼a:s:ð1� �Þn f
t�1ðfxa;t þ ð1� f Þxb;tÞ

þ �

K

X
g 6¼f

n g
t�1ðgxa;t þ ð1� gÞxb;tÞ:

(4) simply rewrites the above equation in matrix form.

Proposition 3. By Lemma 1 and Caswell (2001, p. 386, 14.22), demographic

weak ergodicity2 holds. In addition, ElogþjjA1jj <1 because xa and xb are

bounded, where logþjjA1jj ¼ maxf0; log jjA1jjg. Therefore, Assumption 4.2.1

in Tuljapurkar (1990) is satis¯ed, and Proposition 3 follows from Tuljapurkar

(1990, p. 26 (A)).

Proposition 4. Because the random matrices At are IID, Assumptions

4.2.1, 4.2.3, and 4.2.6 in Tuljapurkar (1990) are satis¯ed, and the conclusion

follows directly from Tuljapurkar (1990), p. 29 (J).

Proposition 5. Part (i)



Proposition 6. To clarify notation, let x 1
a;j be the number of o®spring

generated by �1 for action a in the jth generation; x 2
b;j the number of o®spring

generated by
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where

�t�1 ¼
XKþ1

i¼1

yt�1ðiÞfi; 	t�1 ¼
XKþ1

i¼1

yt�1ðiÞð1� fiÞ;

and �t�1 þ 	t�1 ¼ 1. Note that Ft and yt�1 are independent in (7), and �t�1

and 	t�1 are constants conditioning on yt�1, so one have:

�� ¼ EL fE�½logð1 0Ftyt�1Þ�jyt�1g ¼ EL fE�½logð�t�1xa;t þ 	t�1xb;tÞ�jyt�1g
� EL fE�½logðf �xa;t þ ð1� f �Þxb;tÞ�jyt�1g ¼ EL f�ðf �Þjyt�1g ¼ �ðf �Þ;
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