
Recurrent Collaborative Filtering for Unifying General and Sequential
Recommender

Disheng Dong1, Xiaolin Zheng1

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

3350

Recurrent Collaborative Filtering (RCF) that brings together
the advantages of both general recommender and sequential
recommender. Specifically, we employ a multi-task learn-
ing approach to jointly modeling the different aspects of the
user behavioral data: (1) the general recommender part per-
forms ordinary matrix factorization based collaborative fil-
tering to capture the general tastes of users, and (2) the se-
quential recommender part utilizes recurrent neural network
(RNN) to leverage the sequential item-to-item relations. We
further optimize a joint loss with shared user and item vec-
tors (embeddings) between the MF and RNN. In this way, the
global user information is propagated to the sequential rec-
ommender method; in the meantime the sequential informa-
tion is injected into the general recommender method.

To sum up, our main contributions are as follows:

• To exploit the sequential dependencies among items, we
adapt recurrent neural network (RNN) to play the part of
sequential recommender. Furthermore, we incorporate
user vectors in sequential prediction to allow the RNN
to attend to the global user preferences.

• We build a unified recommender by subsuming ma-
trix factorization and recurrent neural network within
a multi-task learning framework, which ties model pa-
rameters across the two methods to enforce information
transfer, thus capturing both the sequential item relations
and global user-item relations simultaneously.

• By conducting extensive experiments on Netflix and
MovieLens datasets, we demonstrate that our model can
achieve superior performance both as a general and a
sequential recommender when compared to the state-of-
the-art approaches.

2 Related Work
2.1 General Recommender
General Recommender recommends items through model-
ing the users’ general tastes from their historical interactions.
These items are not expected to be interacted with by a user
in his/her next move, but may be interacted with eventually.
One of the most effective approaches to this task is collabo-
rative filtering based upon matrix factorization (MF), where
user and item latent vectors are learned to discover the un-
derlying user preferences [Koren et al., 2009]. MF-based
methods can be further categorized according to two types of
data that they deal with: explicit feedback and implicit feed-
back. Explicit feedback oriented methods formulate recom-
mendations as a rating prediction problem, where users’ rat-
ings directly reflect their preferences [Koren et al., 2009].
However, explicit ratings are not always available and users
more often interact with items through implicit feedback, e.g.,
clicks. Many of the recent MF-based methods tend to deal
with implicit feedback by borrowing the idea of the Learning-
to-Rank technique, which hinges on the design of an effective
objective loss function to optimize [Karatzoglou et al., 2013].

General recommender is good at capturing the general fea-
tures of user behaviors. Nevertheless, without considering the
sequential patterns, general recommender can hardly adapt its
recommendations directly to users’ recent interactions.

2.2 Sequential Recommender
Sequential Recommender views the interactions of a user
as a sequence and aims to predict which item the user will
interact with next. A typical solution to this setting is to
compute an item-to-item relational matrix, whereby items,
which are most similar (nearest) to the last interacted one,
are recommended to users. For example, Markov Chains
based methods estimate an item-to-item transition proba-
bility matrix that predicts the probability of the next item
given the last interaction of the user [Shani et al., 2005;
Rendle et al., 2010]. Prod2Vec, inspired by word embedding
technique [Mikolov et al., 2013], learns distributed item rep-
resentations from the interaction sequences and uses them to
compute a cosine similarity matrix [Grbovic et al., 2015].

Recently, Recurrent Neural Network (RNN), which is a
state-of-the-art deep learning method for sequence modeling,
has shown to be effective in capturing the sequential user be-
havioral patterns [Zhang et al., 2014; Hidasi et al., 2016;
Devooght and Bersini, 2017]. Different from the previous
methods, applying RNN to sequential recommender intro-
duces the capability of modeling the whole historical inter-
actions.

2.3 Unified Recommender
There are some recent attempts to build a unified recom-
mender by considering both the sequential relations among
items and general preferences of users. Factorized Personal-
ized Markov Chains (FPMC) combines Markov Chains with
matrix factorization to construct user-specific transition ma-
trices, which are jointly decomposed to achieve better next-
basket recommendation [Rendle et al., 2010]. Similarly, Hi-
erarchical Representation Model (HRM) nonlinearly aggre-
gates item vectors with global user vectors to form the context
vectors that are predictive for the next-basket items [Wang
et al., 2015; Yu et al., 2016]. Both FPMC and HRM focus
on improving sequential recommender methods by involving
the general user preferences. On the other hand, [Liang et
al., 2016] considers developing a better matrix factorization
based general recommender by exploiting a co-occurrence
item-to-item matrix to capture the sequential patterns.

Our model belongs to this category, and the advantages
of our method over the previous work are two-folds. First,
unlike previous methods which use one recommendation
paradigm to aid the other, our proposed model considers both
paradigms at the same time, thus can make recommenda-
tions both as a general recommender and a sequential recom-
mender. Second, we adapt recurrent neural network to model
the sequential relations among items, and our model thereby
is more effective in exploiting the whole historical sequential
information.

3 Preliminaries
3.1 MF based Collaborative Filtering
This paper focuses on binary implicit feedback data and deals
with a sparse N ×M user-item interaction matrix R, where
each entry ri,j ∈ {0, 1} records whether user i has interacted
with item j. The idea of matrix factorization is to learn ef-
fective user and item latent vectors (embeddings) from the

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

3351

matrix R to model user preferences. Let ui and vj represent
the vector of user i and item j, respectively. We predict the
probability that user i interacts with item j as:

r̂i,j = σ(ui · vj + bi + bj), (1)
where σ(x) is the logistic sigmoid function. We include user
and item bias terms bi and bj in the equation; we find that
these terms are important to improve model performance.

However, training this model faces the challenge of lack-
ing negative feedback, a.k.a., one-class problem [Pan et al.,
2008]. While ri,j = 1 indicates positive preference, ri,j = 0
does not necessarily mean negative preference. To address
this problem, we adopt the sampling method, which samples
negative examples from the missing values [Pan et al., 2008].
Let S+ denote the set of observed interactions in R and S−
denote the set of sampled negative interactions. We maximize
the corresponding log-likelihood by equivalently minimizing
the binary cross-entropy loss:

Lg = −
∑

(i,j)∈S+∪S−
ri,j logr̂i,j +(1−ri,j)log(1− r̂i,j). (2)

We call this method Basic-MF, which will then be used as the
building block for our proposed model.

3.2 Sequence Modeling via RNN
Recently, Recurrent Neural Network (RNN) has become the
state-of-the-art approach to modeling sequential data. Given
a variable-length sequence (x(0), x(1), · · · , x(T)), RNN main-
tains a hidden state vector h(t) over time step t, which can be
considered as the cumulative summary of the sequence infor-
mation till the time step t, and is computed by:

h(t) = f(h(t−1), x(t)), (3)
where f is a recurrent function that defines the central archi-
tecture of RNN.

Popular choices for f are the Long Short-Term Memory
unit (LSTM) [Hochreiter and Schmidhuber, 1997] and Gate
Recurrent Unit (GRU) [Cho et al., 2014], both adopting a
gating mechanism to allow modeling long-term sequential
dependencies. We use the GRU in our model, as it has been
shown to outperform the LSTM in modeling the sequential
item relations [Hidasi et al., 2016].

The GRU computes h(t) as a linear interpolation between
the previous state vector h(t−1) and the candidate vector c(t):

h(t) = (1− o(t))� h(t−1) + o(t) � c(t), (4)

where o(t) acts as the update gate, and is given by:

o(t) = σ(Woh(t−1) + Uox(t) + bo). (5)
Here, let � denote the elementwise product, W·, U· and b·
denote the GRU parameters to be estimated, and tanh denote
the elementwise hyperbolic tangent function. The candidate
vector c(t) is computed as follows:

c(t) = tanh(Wc(h(t−1) � r(t)) + Ucx(t) + bc), (6)

where r(t) acts as a reset gate that controls which parts of the
previous hidden state to consider at the current time step, and
is calculated by:

r(t) = σ(Wrh(t−1) + Urx(t) + br). (7)

4 Recurrent Collaborative Filtering
4.1 RNN for Modeling User Interaction Sequences
With a slight abuse of notation, we use x(t)i to denote the item
that user i interacts with at the t-th interaction. Note that
x(t)i takes on value in {1, · · · ,M}, which correspond to the
column indexes of the user-item interaction matrixR, and the
items are embedded into vectors before we input them into
the RNN defined in Eq.(3). Here, we consider the relative
time steps, i.e., the first, second, etc., interaction with respect
to a user, and let (x(0)

i , x(1)
i , · · · , x(Ti)

i) denote the interaction
sequence of user i, where Ti is the maximum time index of
the sequence.

The goal of the sequential recommender is to predict which
item a user will interact with next given his/her previous in-
teractions. We achieve this by using the GRU-based RNN to
model a conditional probability p(x(t)

i |x
(<t)
i), which defines

a softmax distribution over the M target items:

p(x(t)
i = j|x(<t)

i) =
exp(ej · h(t)i)∑M
k=1 exp(ek · h(t)i)

, (8)

for all possible items j = 1, · · · ,M . Here, ej denotes the
embedding vector of item j and h(t)

i is the hidden state vector
of user i at time step t. We tie the output weights with the in-
put item embeddings, which proves to be effective in learning
the embedding vectors [Press and Wolf, 2016].

Directly maximizing the (log) probability defined in Eq.(8)
over all users and time steps is impractical, because the cost of
computing the full softmax is proportional to the total number
of items, which is often extremely large. Therefore, we adopt
the negative sampling technique [Mikolov et al., 2013] for
efficient optimization, and minimize the following objective,
which aims to distinguish the target items from the sampled
items using logistic regression:

Ls = −
N∑
i=1

Ti∑
t=0

{logσ(ex(t)i
·h(t)

i)+k·Ej′∼Pm
[logσ(−ej′ ·h(t)

i)]},

(9)
where k is the number of negative samples, and j′ is the sam-
pled item drawn from a noise distribution Pm.

4.2 Joint Modeling
In order to simultaneously model the general user prefer-
ences over items and the sequential item relations, we pro-
pose a novel method named Recurrent Collaborative Filtering
(RCF), where a multi-task learning approach is employed to
combine the aforementioned Matrix Factorization (MF) with
RNN. The architecture of RCF is illustrated in Figure 1. In
particular, we jointly model the problem of sequential and
general prediction, with the following strategies to allow in-
formation transfer between the two tasks:

(1) Parameter sharing. We constrain the item embed-
dings used in RNN to be the same as the item latent vec-
tors used in matrix factorization. Formally, let ej = vj , for
j = 1, · · · ,M . In this way, we can capture the sequential
patterns as well as the general user preferences into the item
representations.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

3352

 0 1 0 1 1 1 0

4 2 5 6
t=0 t=1 t=2 t=3

4 2 5 6

(a)Time-ordered interaction sequence

2 5 6

GRU GRU GRU

user i

 Sequential prediction via RNN

General prediction via MF
(b)User-item interaction matrix

Two different views of recommendation

Multi-task learning

1 2 4 5 6 73user
item

Ri

Ri

ui

ui v1

v2

v3

v4 v5

v6 v7v2 v4 v5≈

Figure 1: Illustration of RCF. The left-hand side shows two different views of recommendation task: sequential prediction and general
prediction, with their corresponding methods in the right-hand side. The two methods are unified in a multi-task learning framework. The
sequential part (RNN) incorporates global user vectors to attend to the general user preferences, while in the meantime the general part (MF)
shares item latent vectors with the item embeddings used in RNN to capture the sequential patterns.

(2) Additive attention. We involve the user latent vectors
to form new hidden state vectors that are predictive for the
next item, allowing the RNN to attend to the global informa-

tion of user preferences. That is, let h̃
(t)

i = h(t)i + ui, for
i = 1, · · · , N . This additive approach is inspired by the pop-
ular Seq2Seq model, where the target sequence decoder uses
attention mechanism to incorporate the context vectors that
are obtained from the source sequence encoder [Bahdanau et
al., 2014].

(3) Multi-task loss. To perform joint optimization, we
adopt a convex combination of the losses defined in Eq.(2)
and Eq.(9). Since both methods require sampling the nega-
tive items, we use a shared negative sampling process in the
combined loss. This is reasonable in that such a popularity-
based sampling strategy makes sense for both methods.

Therefore, considering all the aforementioned strategies,
we obtain the following objective to minimize:

L =−
N∑
i=1

Ti∑
t=0

{(1− α)logσ(ex(t)i
· h̃(t)

i) + αlogσ(r̂
i,x(t)i

)

+k · Ej′∼Pm
[(1− α)logσ(−ej′ · h̃

(t)

i)

+
α

k
log(1− σ(r̂i,j′))]}+ γΩ(θ).

(10)
Here, k can be seen as the sampling ratio with respect to
the number of positive observations. The trade-off parameter
α ∈ [0, 1] balances the relative importance of the two tasks to
the overall objective. θ represents the collection of model pa-
rameters including the user and item vectors used in MF and
the weight matrices used in RNN. Ω(θ) is a `2-regularization
term with its effect controlled by the hyper-parameter γ.

4.3 Training and Prediction
Given the interaction sequence (x(0)

i , x(1)i · · · , x
(Ti)
i) of

user i, training sequences are generated as: (x(0)
i , x(1)i),

(x(0)
i , x(1)i , x(2)i), · · · , (x(0)

i , x(1)i · · · , x
(Ti)
i), where the last el-

ement of each sequence is considered as the label to be pre-
dicted from the previous elements. This approach can avoid

leaking future information and has shown promising results
in live testing [Covington et al., 2016]. We adopt embed-
ding dropout [Tan et al., 2016] to make the model more ro-
bust against noisy interactions. We use the Back Propagation
Through Time (BPTT) algorithm to train our proposed RCF
and experiment with adagrad [Duchi et al., 2011].

After training, the model performs Top-K recommenda-
tion for each user by ranking the user’s preference scores over
the test (unobserved) items. RCF is capable of handling the
two recommendation paradigms.

As a sequential recommender, RCF can take h̃
(t)

i as the
“profile” vector of user i at time step t. We use r̂(t)i,j to repre-
sent the preference score of user i over item j at time step t;
and compute r̂(t)i,j by:

r̂
(t)
i,j = h̃

(t)

i · ej , (11)

It is worth noting that h̃
(t)

i is updated with the interaction xti,
which provides RCF with the potential ability for dynamic
recommendation.

As a general recommender, RCF can represent user i as the
vector ui and predict the preference score over item j by:

r̂i,j = ui · ej + bi + bj . (12)
Here, we omit the logistic sigmoid transformation for clarity,
since it doesn’t influence the relative rank of users’ prefer-
ences over items.

5 Experiments
5.1 Setup
Datasets
We conduct experiments on the two widely used datasets:
MovieLens and Netflix. The datasets are preprocessed to en-
sure that each user has a minimum of 20 ratings. Following
[Rendle et al., 2009], we transform the ratings into binary
feedback data, where each entry is marked as 0/1 indicating
whether the user has interacted with (rated) the item. Note
that both datasets are time stamped, with which we can pro-
duce a time-ordered interaction sequence for each user. The
statistics of the final datasets are summarized in Table 1.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

3353

Dataset #Interactions #Users #Items Sparsity

MovieLens 1,000,209 6,040 3,706 95.53%
Netflix 99,884,940 429,584 17,770 98.69%

Table 1: Statistics of the evaluation datasets.

Evaluation Scheme
Since our proposed model can perform the tasks of both se-
quential and general recommender, for a fair comparison with
the previous methods, we consider the following two popular
protocols for evaluating the corresponding recommenders:

Leave-one-out Prediction. This protocol is used for eval-
uating the performance of sequential recommenders [Wang
et al., 2015]. In this protocol, we hold out the penultimate el-
ement of the time-ordered interaction sequence for each user
as validation data; we leave the last element out as test data
and train the final model on the remaining data with the vali-
dation data included.

General Prediction. This protocol evaluates the perfor-
mance of general recommenders. Following [Liang et al.,
2016], we sort all user-item interactions in chronological or-
der, training on the first 80% of the interactions and holding
out the latest 20% for testing. We randomly select 10% of the
interactions from the training set as validation data.

We assess against the test data a ranking list of top-K items
that are recommended for each user. Two popular evaluation
metrics are adopted: Hit Ratio (HR) and Normalized Dis-
counted Cumulative Gain (NDCG) [Wang et al., 2015]. Due
to page limitation, we report the results when K is set to 10;
we found out that different values of K had a slight impact
on the model comparison results.

Parameter Settings
In the experiments, we used the validation data to find the op-
timal hyper-parameters. The dimension of latent vectors (and
hidden vectors in the GRU unit) was fixed as 50. To form a
training batch, we randomly sampled a number of user-item
interactions along with their sequential prefixes; for each in-
teraction, we drawn k negative items from the unobserved
interactions from the noise distribution Pm, for which we
adopted the unigram distribution over items. We truncated
the BPTT algorithm using a fixed window of 20 time steps;
sequences that are shorter than 20 items were padded with
zeros for simplicity. The initial hidden state vectors for the
training sequences were initialized with zeros. We used a sin-
gle recurrent (GRU) layer in our model; we found that addi-
tional layers caused overfitting, thus resulting in worse perfor-
mance. The regularization parameter γ was set to 10−4 for all
datasets. We report other best performing hyper-parameters
in Table 2.

5.2 Leave-one-out Prediction
We compare the performance of RCF (as a sequential recom-
mender) with the following sequential recommender methods
using the leave-one-out prediction protocol:
• Prod2Vec: Prod2Vec has demonstrated to be a promis-

ing approach for next-item prediction [Grbovic et al.,
2015].

• GRU-TOP1: This is a state-of-the-art method for
session-based recommendation and can be easily
adapted to our task [Hidasi et al., 2016].
• HRM: Hierarchical Representation Model (HRM)

[Wang et al., 2015] is a state-of-the-art method for next-
item recommendation.
• RCF-vec: We use the item embeddings learned by RCF

and perform nearest neighbor based recommendation.
By design, RNN-based models can account for arbitrarily

distant historical interactions. However, since a user’s intent
is most related to the recent behaviors, we set the number of
look-back interactions to 10 for GRU-TOP1 and RCF. The
performance results of all the above-mentioned methods are
shown in Table 3. We summarize key observations below.

Firstly, RCF-vec outperforms Prod2Vec, implying RCF’s
ability in learning more effective item embeddings than
Prod2Vec. On the other hand, the performance improvement
of RCF over RCF-vec indicates the necessity of keeping track
of more historical information through the recurrent function.

Secondly, RCF delivers better performance than GRU-
TOP1 across both datasets. The reason is that RCF involves
modeling the general user preferences rather than purely re-
lying on the item-to-item relations.

Thirdly, RCF shows superior performance over HRM.
Since both methods utilize the general user preferences and
the sequential information, we attribute the performance dif-
ference to the consideration of different numbers of historical
interactions (HRM only considers the last interaction).

To further understand the impact of the historical informa-
tion, we show the performance changes of RCF with respect
to the number of look-back items in Figure 2. The number
of look-back items is set to 10 in the validation phase. How-
ever, we also tried using different numbers of look-back items
for hyper-parameter optimization based on the validation data
and found that the results were broadly the same when the
number of look-back items was set between 6 and 12. Note
that considering zero look-back items reduces the model to a
plain general recommender, that is, Basic-MF.

From the figure, we can see that the performance of RCF
improves gradually initially as the number of look-back items
increases, which, again, shows the necessity of accounting for
more than just the last interaction in sequential recommenda-
tion. However, further increase in the look-back items hurts
the model performance. This suggests that considering long
historical interactions introduces the noise that influences the
prediction accuracy; notwithstanding RCF is relatively robust
to noisy interactions, which can be inferred from the stable
performance of RCF when the number of look-back items is
in the range of 6 ∼ 12 on both datasets.

5.3 General Prediction
We compare the performance of RCF (as a general recom-
mender) to the following baselines using the general predic-
tion protocol:
• BPR: This is a highly competitive baseline for binary

implicit feedback [Rendle et al., 2009].
• Basic-MF: As discussed previously, this method is the

building block of our proposed model.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

3354

Dataset Protocol α Sampling ratio Batch Dropout Learning rate Momentum

MovieLens Leave-one-out 0.2 4 128 0.1 0.1 0.1
MovieLens General 0.8 4 128 0.1 0.1 0.1

Netflix Leave-one-out 0.2 6 256 0.3 0.05 0.3
Netflix General 0.8 6 256 0.3 0.05 0.3

Table 2: Best parametrization for different datasets/protocols.

MovieLens Netflix
Method HR NDCG HR NDCG

Prod2Vec 0.102 0.060 0.085 0.036
RCF-vec (ours) 0.116 0.066 0.092 0.041

GRU-TOP1 0.138 0.074 0.113 0.048
HRM 0.142 0.076 0.114 0.051

RCF (ours) 0.157 0.086 0.126 0.065

Table 3: Performance comparison using leave-one-out prediction
protocol.

0 3 6 9 12 15
Number of look-back items

0.09

0.11

0.13

0.15
0.16

HR

0.04

0.06

0.08
0.09

ND
CG

HR
NDCG

(a) MovieLens

0 3 6 9 12 15
Number of look-back items

0.08

0.10

0.12
0.13

HR

0.03

0.05

0.07

0.09
ND

CG

HR
NDCG

(b) Netflix

Figure 2: Performance of RCF (as a sequential recommender) w.r.t.
the number of look-back items using leave-one-out prediction pro-
tocol.

• CoFactor: This is a state-of-the-art general recom-
mender, which considers the sequential relations among
items [Liang et al., 2016].

Table 4 shows the performance of the compared methods
using the general prediction protocol. We observe that Co-
Factor and RCF consistently outperform BPR and Basic-MF
across the two metrics on both datasets. This is not surpris-
ing because both CoFactor and RCF make use of the addi-
tional information inherent in the item-to-item sequential re-
lations. Nonetheless, CoFactor simply utilizes an item co-
occurrence matrix to approximately model the sequential pat-
terns, thus failing to fully capture the sequential information.
We can see that RCF achieves better performance than Co-
Factor (the relative improvement on MovieLens and Netflix is
3.2% and 5.9%, respectively), which demonstrates that RCF
learns more effective user and item representations for mod-
eling the general user preferences than CoFactor.

Figure 3 shows the performance changes of RCF with re-
spect to the value of trade-off parameter α. Note that we fix
other hyper-parameters as in Table 2. From the figure, we
can see that the performance of RCF first increases then de-
creases as the value of α increases from 0 to 1, which im-
plies that RCF controls its performance as a general recomm-
nder through balancing the value of α. When α = 1, RCF

MovieLens Netflix
Method HR NDCG HR NDCG

BPR 0.787 0.308 0.462 0.152
Basic-MF 0.791 0.343 0.471 0.161
CoFactor 0.818 0.361 0.485 0.182

RCF (ours) 0.844 0.377 0.514 0.197

Table 4: Performance comparison using general prediction protocol.

0 0.2 0.4 0.6 0.8
α

0.3

0.5

0.7

0.9

HR
0.25

0.3

0.35

0.4

ND
CG

HR
NDCG

(a) MovieLens

0 0.2 0.4 0.6 0.8
α

0.37

0.41

0.45

0.49
0.53

HR

0.11 0.13 0.15 0.17 0.19 0.21

ND
CG

HR
NDCG

(b) Netflix

Figure 3: Performance of RCF (as a general recommender) w.r.t. the
value of the trade-off parameter α using general prediction protocol.

reduces to plain Basic-MF and completely discards the se-
quential information, which, however, does not give the best
performance. The results further demonstrate that it is impor-
tant for general recommender to incorporate the information
of the sequential item-to-item relations.

6 Conclusion and Future Work

In this paper, we have proposed a recommendation method
named Recurrent Collaborative Filtering (RCF) that unifies
the general and sequential recommender. RCF subsumes ma-
trix factorization (MF) and recurrent neural network (RNN)
in a multi-task learning framework. In particular, we adapt
RNN to model the sequential user behaviors with the aim of
capturing the whole historical information. Then we opti-
mize a joint loss for MF and RNN, both of which share model
parameters in each other. By design, RCF unites the merits
of general recommender (MF) and sequential recommender
(RNN). Empirically, we show on two real world datasets that
RCF can deliver superior performance both as a general and
a sequential recommender.

For the future work, we plan to encode other types of side
information into RCF to make it more applicable to real sce-
narios. Moreover, it will be computationally appealing to ap-
ply convolutional neural network (CNN), which is more par-
allelizable than RNN, in our model for sequence modeling.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

3355

Acknowledgements
This work was supported in part by the National Natural Sci-
ence Foundation of China (No.U1509221), the National Key
Technology R&D Program (2015BAH07F01), the Zhejiang
Province key R&D program (No.2017C03044).

References
[Bahdanau et al., 2014] Dzmitry Bahdanau, Kyunghyun

Cho, and Yoshua Bengio. Neural machine transla-
tion by jointly learning to align and translate. CoRR,
abs/1409.0473, 2014.

[Cho et al., 2014] Kyunghyun Cho, Bart Van Merriënboer,
Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares,
Holger Schwenk, and Yoshua Bengio. Learning phrase
representations using rnn encoder-decoder for statistical
machine translation. arXiv preprint arXiv:1406.1078,
2014.

[Covington et al., 2016] Paul Covington, Jay Adams, and
Emre Sargin. Deep neural networks for youtube recom-
mendations. In Proceedings of the 10th ACM Conference
on Recommender Systems, pages 191–198, 2016.

[Devooght and Bersini, 2017] Robin Devooght and Hugues
Bersini. Long and short-term recommendations with re-
current neural networks. In Proceedings of the 25th Con-
ference on User Modeling, Adaptation and Personaliza-
tion, pages 13–21, 2017.

[Duchi et al., 2011] John Duchi, Elad Hazan, and Yoram
Singer. Adaptive subgradient methods for online learning
and stochastic optimization. Journal of Machine Learning
Research, pages 2121–2159, 2011.

[Grbovic et al., 2015] Mihajlo Grbovic, Vladan Radosavlje-
vic, Nemanja Djuric, Narayan Bhamidipati, Jaikit Savla,
Varun Bhagwan, and Doug Sharp. E-commerce in your
inbox: Product recommendations at scale. In Proceed-
ings of the 21th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages 1809–
1818, 2015.

[Hidasi et al., 2016] Balázs Hidasi, Alexandros Karat-
zoglou, Linas Baltrunas, and Domonkos Tikk. Session-
based recommendations with recurrent neural networks.
In International Conference on Learning Representations,
2016.

[Hochreiter and Schmidhuber, 1997] Sepp Hochreiter and
Jürgen Schmidhuber. Long short-term memory. Neural
Computation, 9:1735–1780, 1997.

[Karatzoglou et al., 2013] Alexandros Karatzoglou, Linas
Baltrunas, and Yue Shi. Learning to rank for recommender
systems. In Proceedings of the 7th ACM Conference on
Recommender Systems, pages 493–494, 2013.

[Koren et al., 2009] Yehuda Koren, Robert Bell, and Chris
Volinsky. Matrix factorization techniques for recom-
mender systems. Computer, 42:30–37, 2009.

[Liang et al., 2016] Dawen Liang, Jaan Altosaar, Laurent
Charlin, and David M. Blei. Factorization meets the item

embedding: Regularizing matrix factorization with item
co-occurrence. In Proceedings of the 10th ACM Confer-
ence on Recommender Systems, pages 59–66, 2016.

[Mikolov et al., 2013] Tomas Mikolov, Ilya Sutskever, Kai
Chen, Greg S Corrado, and Jeff Dean. Distributed rep-
resentations of words and phrases and their composition-
ality. In Advances in Neural Information Processing Sys-
tems, pages 3111–3119. 2013.

[Pan et al., 2008] Rong Pan, Yunhong Zhou, Bin Cao,
Nathan N Liu, Rajan Lukose, Martin Scholz, and Qiang
Yang. One-class collaborative filtering. In 8th IEEE In-
ternational Conference on Data Mining, pages 502–511,
2008.

[Press and Wolf, 2016] Ofir Press and Lior Wolf. Using the
output embedding to improve language models. arXiv
preprint arXiv:1608.05859, 2016.

[Rendle et al., 2009] Steffen Rendle, Christoph Freuden-
thaler, Zeno Gantner, and Lars Schmidt-Thieme. Bpr:
Bayesian personalized ranking from implicit feedback. In
Proceedings of the 25th Conference on Uncertainty in Ar-
tificial Intelligence, pages 452–461, 2009.

[Rendle et al., 2010] Steffen Rendle, Christoph Freuden-
thaler, and Lars Schmidt-Thieme. Factorizing person-
alized markov chains for next-basket recommendation.
In Proceedings of the 19th International Conference on
World Wide Web, pages 811–820, 2010.

[Shani et al., 2005] Guy Shani, David Heckerman, and Ro-
nen I Brafman. An mdp-based recommender system.
Journal of Machine Learning Research, pages 1265–1295,
2005.

[Tan et al., 2016] Yong Kiam Tan, Xinxing Xu, and Yong
Liu. Improved recurrent neural networks for session-based
recommendations. In Proceedings of the 1st Workshop on
Deep Learning for Recommender Systems, pages 17–22,
2016.

[Wang et al., 2015] Pengfei Wang, Jiafeng Guo, Yanyan
Lan, Jun Xu, Shengxian Wan, and Xueqi Cheng. Learning
hierarchical representation model for next-basket recom-
mendation. In Proceedings of the 38th International ACM
SIGIR Conference on Research and Development in Infor-
mation Retrieval, pages 403–412, 2015.

[Yu et al., 2016] Feng Yu, Qiang Liu, Shu Wu, Liang Wang,
and Tieniu Tan. A dynamic recurrent model for next basket
recommendation. In Proceedings of the 39th International
ACM SIGIR Conference on Research and Development in
Information Retrieval, pages 729–732, 2016.

[Zhang et al., 2014] Yuyu Zhang, Hanjun Dai, Chang Xu,
Jun Feng, Taifeng Wang, Jiang Bian, Bin Wang, and Tie-
Yan Liu. Sequential click prediction for sponsored search
with recurrent neural networks. In Proceedings of the 20th
AAAI Conference on Artificial Intelligence, pages 1369–
1375, 2014.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

3356

