
Mathematics of Machine Learning: An
introduction
Sanjeev Arora

Princeton University Computer Science
Institute for Advanced Study

Abstract

Machine learning is the subfield of computer science concerned with
creating machines that can improve from experience and interaction. It
relies upon mathematical optimization, statistics, and algorithm design.
Rapid empirical success in this field currently outstrips mathematical un-
derstanding. This elementary article sketches the basic framework of ma-
chine learning and hints at the open mathematical problems in it.

An updated version of this article and related articles can be found on
the author’s webpage.
MSC: 68-02, 68Q99, 68T05.

The dictionary defines the act of “learning” as gaining or acquiring knowledge
or skill (in something) by study, experience, or being taught. Machine learning,
a field in computer science, seeks to design machines that learn. This may seem
to fly in contradiction to the usual view of computers as fixed and logic-based
devices whose behavior is completely fixed by their programmer. But this view
is simplistic because it is in fact straightforward to write programs that learn
new capabilities from new experiences and new data (images, pieces of text,
etc.). This learnt capability can become part of its program, and of course,
any newly learnt capabilities can also be trivially copied from one machine to
another.

Machine learning is related to artificial intelligence, but somewhat distinct
because it does not seek to recreate only human-like skills in a machine. Some
skills —e.g., detecting patterns in millions of images from a particle accelerator,
or in billions of facebook posts— may be easy for a machine, but beyond the
cognitive abilities of humans. (In fact, lately machines can go beyond human
capabilities in some image recognition tasks.) Conversely, many human skills
such as composing good music and proving math theorems seem beyond the
reach of current machine learning paradigms.

The quest to imbue machines with learning abilities rests upon an emerging
body of knowledge that spans computer science, mathematical optimization,
statistics, applied math, applied physics etc. It ultimately requires us to math-
ematically formulate nebulous concepts such as the “meaning”of a picture, or a

1

newspaper article. This article provides a brief introduction to machine learn-
ing.

The mathematical notion closest to machine learning is curve-fitting, which
has long been a mainstay of science and social science. For example, the sup-
posed inverse relationship between an economy’s inflation and unemployment
rates, called the Philips curve, was discovered by fitting a curve to economic
data over a few decades. Machine learning algorithms do something similar,
except the settings are more complicated and with many more —sometimes,
tens of millions—variables. This raises many issues, computational as well as
statistical. Let’s introduce them with a simple example.

1 Introduction: the linear model
Suppose a movie review consists of a paragraph or two of text, as well as a
numerical score in [0, 1] (0 = worst and 1 = best). The machine is trying to
learn how to predict the numerical score when given only the text part of the
review. As training data, it is given N movie reviews and their scores; that
is, (x1, y1), (x2, y2), . . . , (xN , yN)) where xi is a piece of text and yi is a score.
From this dataset it has to figure out the rule for predicting the score from the
text.

If the English vocabulary has V words, then each xi can be seen as a vector
in ℜV , where the j’th coordinate is the number of times the j’th word appears in
this piece of text. Note that V is large, say 100, 000, so this vector representation
is very sparse (i.e., has very few nonzero entries) when the text review consists
of a few dozen words.

The simplest approach for prediction involves a linear model. To simplify
the description, assume each review has the same length, namely, has k words.
The model assumes that each word has an associated sentiment weight, which
is a scalar. The model says that the review’s score can be predicted by adding
up the sentiment weights of all words in the review. Note that if a word occurs
k times then it contributes k times its weight.

In other words, if θ⃗ is the vector of sentiment weights for all V dictionary
words, then the machine tries to predict yi from θ⃗ · xi. The learning algorithm
consists of finding the best fit for θ⃗ via the classic least squares method.

min
�

N∑
i=1

(θ⃗ · xi − yi)2 (1)

After training we expect to find that the weights assigned to words are
meaningful. Positive words like terrific, enjoyable, loved etc. get high weights
and negative words like terrible, hated, avoid get low or negative weights.

To finish our discussion we need to address two important issues.

2

First, we can discretize θ∗ by rounding off entries in θ∗ to the nearest integer
multiple of ϵ, since this can affect the predicted score by at most ϵ/2. Now all
entries in θ∗ are at least ϵ, which means there are at most m = ∥θ∗∥2/ϵ2 of them.
The number of possible choices for such vectors is at most T =

(
V
m

)
(1/ϵ)m where

recall that V denotes the number of words in the dictionary. Now (3) follows
from standard concentration bounds provided the number of training samples
exceed c0 log T/ϵ

2 for some suitable (and explicit) constant c0. This number
grows roughly as ∥θ∗∥2 log V/ϵ2, which is usually much smaller than V .

By now it should be clearer what role the tunable λ multiplier plays in (2).
For best generalization we wish to find a solution θ∗ that minimizes the ℓ2 norm.
Increasing λ penalizes solutions θ with higher ℓ2 norm, so it serves to balance
the ℓ2 norm against the total ℓ2 error on training data. So the algorithm can
start with a high value of λ (which rules out all θ except those with very low
norm) and then perform binary search to home in on a value that balances
the error in (3) and the ℓ2 norm just exactly so that the we end up with the
minimum norm solution.

The above simple argument can be strengthened in various ways and ulti-
mately connects with broader questions in statistics [HTF09] as well as beautiful
parts of discrete mathematics such as VC dimension and Rademacher complex-
ity [BDSS14].

2 Supervised learning
The above simple example illustrates a more general paradigm: supervised learn-
ing, which concerns learning to classify data-points after seeing many labeled
examples. This is the most well-known and successful paradigm of machine
learning. To illustrate it we use a famous and empirically successful example,
image recognition. Imagine we have divided everyday objects into k classes:
chair, building, dog, drink etc. and want to train the machine to assign the cor-
rect label when given an image. Here each image is in pixel format, so assume it
is a point in ℜd The training data contains N images of each class, where N is
some modest number (such as 1000). Let the labels be {1, 2, . . . , k}

yj denotes jth coordinate of y:

min�

N∑
i=1

k∑
j=1

yi
j log(f�(x

i)j) (cross entropy loss). (5)

This framework for supervised learning goes by the name Empirical Risk
Minimization (ERM) [Vap98]. The learning generalizes if the expected loss
of the optimum solution θ∗ on the entire distribution is close to that on the
samples. The flip side of this issue is statistical efficiency —determining the
minimum number of samples that lead to good generalization—as was discussed
earlier.

Regularization. Often the performance of gradient descent on an objective
g(θ)—both with regards to optimization speed and generalization—is greatly
aided by adding a regularization term h to the objective, turning it into g(θ) +
λh(θ). This h(θ) term shapes the optimization landscape, and its effect can be
tuned by varying the multiplier λ. The term λ∥θ∥22 in (2) is in fact a form of
regularization, and aids generalization as we saw.

2.1 Mathematical optimization in machine learning
The problems in (2) (4) (5) are instances of the following general problem where
g : ℜn → ℜ and K is a compact subset of ℜn.

min g(θ)

θ ∈ K

The minimum exists, but can we find it efficiently? One could imagine using a
variety of algorithms to solve such an optimization problem —optimization the-
ory is quite well-developed! Usually design of such algorithms needs to assume
that the objects in question are efficiently computable. Specifically, given a θ
we need to be able to (a) efficiently compute f(θ) and (b) check if θ ∈ K. Both
assumptions are easily true in machine learning setting.

In practice, machine learning algorithms often use some variant of gradient
descent, which seems to give the best balance between performance and scala-
bility. Basically the same algorithm that is covered in freshman calculus, this
algorithm iteratively improves the solution, starting at initial point θ0 and then
finding θ1, θ2, . . . , such that at step t

st+1 ← θt − η∇g(θt)) (6)
θt+1 ← Proj(st+1,K) (7)

where η > 0 is called learning rate and Proj(st+1,K) is the point in K closest
to st+1, also called projection of st+1 on K. Pythagoras theorem implies mono-
tonicity: g(θt+1) ≤ g(θt). In general, gradient descent started with arbitrary θ0

5

Figure 1: Gradient descent on a nonconvex function is not guaranteed to reach
the global minimum.

is not guaranteed to reach the minimum, as is clear from the figure. It converges
to a stationary point where ∇(f) = 0, and at best we can hope this is a local
optimum.

A well-behaved special case is when g is a convex function and K is a convex
body, as is the case in (2). Then gradient descent does reach the global optimum
if run long enough. Under modest conditions —e.g., a bound on the Lipschitz
constant—it approaches the global optimum quite quickly. A comprehensive
survey of such convex optimization procedures appears in [BV08].

But in general, problems (4), (5) are not convex and gradient descent can
converge, at best, to a local optimum. A nonconvex problem may have multi-
ple local optima, with some having lower objective values than others. So it is
unclear which ones gradient descent ends up at. Nevertheless, in practice gradi-
ent descent works quite well: the solutions found are generally of good quality.
Explaining why this happens is an important open problem. It is known that
regularization can help, and a cottage industry of tricks has sprung up for regu-
larizing the problem. Another important trick that helps is stochastic gradient
descent, whereby one estimates the gradient of ERM objective 4 via a small
sample of training samples: this improves the running time, and also seems to
act as a regularizer.

2.2 Nonconvex models and deep learning
Clearly, the linear model studied above is simplistic. It associates a sentiment
score with each word, and sums up the sentiment scores of the words in a review
to get an idea of the numerical score. Thus the score only depends upon the
multi-set of words in it and completely ignores linguistic structure: “Good, is
it not?”gets the same score as “It is not good.”Clearly, a fuller understanding
of the text must involve more nuanced consideration of larger units such as
phrases and sentences. One could try to hand-design features that the machine
should pay attention to, e.g., those involving antonyms, synonyms etc. While
these can help to some extent, empirically the best results are obtained by
just letting the machine automatically figure out the features that it finds most
useful. The most powerful current technique for doing this is to train a deep
net. A thorough treatment of deep learning appears in the text [GBC16].

6

Deep net is a modern name for neural net, a notion from the 1940s. It
is loosely inspired by the neurons of human brain, specifically the way they
are interconnected via wiring that transmits electric signals and their mode of
producing an output depending upon the sum of the incoming signals. A deep
net with d hidden layers consists of d matrices A1, A2, . . . , Ad, and a specific
function σ : ℜ → ℜ called the nonlinearity. The most popular nonlinearity σ
these days is the rectilinear linear function RELUb(x) = max{0, x− b}. Here b
is called the bias, and it is also a parameter of the network together with the
Ai’s. Defining y0 = x0 this net computes y1, y2, . . . , yd where yi+1 = σ(Aiy

i).
Here σ(z) denotes the vector obtained by applying σ to each coordinate of z.
Also we are assuming that the dimensions of yi’s and Ai’s match so that the
matrix-vector products are well-defined. Each coordinate of a computed vector
yi is refered to as a node of the net, and each entry of one of the Ai’s is refered
to as an edge. The output of the net is yd. The size of the net is the number of
nodes in it. The number of parameters is the number of edges plus the number
of nodes.

A deep net thus defines an input-output behavior, mapping the input vector
x0 to the output vector yd = fA1;A2;:::;Ad ;⃗b(x

0) where Ai’s are the layer matrices
and b⃗ is the vector of all bias values at the nodes. Thus this model can be
used to do supervised learning, where the trainable parameters are the matrices
and the biases. (An important subcase of a deep net is a convolutional deep
net where the matrices Ai’s have a specific compact representation whereby the
same weight is reused in a fixed pattern across the input. These are easier to
train in practice especially on data such as images which have patterns that are
well-represented by such nets. We will ignore convolution in this survey.)

How does depth help in deep nets? While a net with a single hidden layer
(i.e., depth 2) can in principle express any function computed by a net with more
layers, doing so may come at a cost of requiring vastly more nodes [ES16, Tel16].
Training such a vast net would be computationally infeasible. Thus increasing
depth allows a more succinct net to do interesting classification tasks.

To train d-layer deep nets for supervised learning using the above-mentioned
Empirical Risk Minimization paradigm, we need to solve an optimization prob-
lem that solves for the matrices A1, A2, . . . , Ad and the bias vector b⃗. Writing
out the expression for Empirical Risk we find it to be nonconvex in the vari-
ables. Nevertheless, we can plough ahead and try to solve it using some variant
of gradient descent.

Backpropagation: To do gradient descent millions of times we need a quick
way to compute the gradient of the objective. Since the final output is obtained
by applying a composition of single layers, computing the gradient is a simple
matter of applying the chain rule. Anybody who’s taken freshman calculus
can write this gradient. The tricky issue is to do so efficiently, meaning given
the matrix entries and the bias values, to compute the gradient using as few
basic operations —additions and multiplications— as possible. (An elementary
operation like addition and multiplication is, simplistically speaking, a unit of

7

effort for the computer’s CPU.) Applying chain rule naively would require a
number of operations that grows quadratically in the number of parameters.
Since modern deep nets are often trained with tens of millions of parameters,
quadratic in that number would be rather large even for today’s computers. A
clever algorithm called backpropagation can compute the gradient with number
of operations that is linear in the number of parameters. This is a crucial saving
that enables deep learning to get off the ground, so to speak. An elementary
exposition of backpropagation and its variants appears at [AM16].

Computational and statistical complexity. It can be shown that finding
the optimum deep net is in general computationally intractable. However, this
refers to computational complexity for unnatural, worst-case instances. Real-life
instances are better behaved, and clearly good training is possible. Furthermore,
there is evidence that overparametrizing the network with many more parame-
ters than necessary can simplify the training. Consequently, today’s deep nets
are often trained with many more parameters than the number of training ex-
amples. A priori this raises fears that overparametrization would lead to lack
of generalization but in practice generalization does not appear to suffer. Ex-
plaining why generalization happens is an open problem, unlike in the linear
case described earlier.

What fueled deep learning’s rise? While the basic ingredients of deep
learning were known for several decades, a confluence of factors around 2011
led to its rapid progress and adoption. The first was availability of large labeled
datasets. Datasets for training image recognition software used to be created in
academia, and it was just not feasible for a small academic team to hand-label a
very large number of images. Starting a decade ago, researchers could use crowd-
sourcing to create datasets containing millions of humanly-labeled images, such
as ImageNet [DDS+09]. The second factor was availability of extremely fast
Graphical Processing Units (GPUs) that brought the power of supercomputers
to grad student desktops and fed a wave of experimentation that led to deep
learning’s resurgence. The third factor is developments in the theory of opti-
mization for machine learning. The new generation of researchers understand
notions such as regularization and acceleration and were able to employ them
effectively —as well as design new ideas such as batch normalization, dropout,
AdaGrad, Adam, etc.—to improve optimization —specifically, what things to
try when training a large net fails initially.

Finally. enormous corporate interest in uses of deep learning leads to enor-
mous research effort in industry as well.

3 Unsupervised learning
The techniques discussed thus far can train machines to do classification tasks
where the output is a scalar (or small number of scalars) and there is plentiful
training data that has been labeled by humans. But this captures only a small

8

part of what we humans consider as learning. One suspects that a big part of
our learning is unsupervised, whereby we passively observe the world around us
and notice patterns in it. When we see a new animal or bird while visiting a
new continent, we do not need to be told its name to already be able to describe
it, and relate it to animals we’ve seen in the past. Efforts to endow machines
with such capabilities have not been as successful.

Viewed from a distance, all methods for unsupervised learning try to for-
malize a notion of “high level”descriptor of data. If the training datapoints are
x1, x2, . . . ,, one assumes that each has an implicit (i.e., unknown) high level
descriptor h1, h2, To give an (advanced) example, xi could be a pixel-level
description of a photo of an unknown bird, and hi could say in some form “white
bird with long legs and long beak.” Clearly, each hi corresponds to multiple (even
infinitely many) images and conversely even an image can have multiple high
level descriptions. Methods for unsupervised learning allow for this possibility.
They define some (possibly loose) way to go from xi to hi and vice versa. The
following is a non-exhaustive list of ideas that have been tried for many years.

3.1 Dimension reduction of some sort
Dimension reduction amounts to finding low-dimensional vectors y1, y2, . . . , that
capture the “essential properties”of x1, x2, The simplest example is to try
to approximate the distance: for all i, j the distance between yi and yj is ap-
proximately the same as between xi and xj .

Specific formulations include Principal Component Analysis (project to top k
eigen-directions of

∑
i x

i⊗xi), Manifold Learning (assume there is an unknown
low-dimensional manifoldM such that each xi = hi + noise where hi is a point
on the manifold), tSNE, etc.

3.2 Fitting a bayesian model to the data
This method assumes that there is a distribution p�(x, h) from which the sample
xi’s were generated. Here θ is a vector of parameters that describe the distribu-
tion, and ptheta comes from a specific family of distributions. To give a simple
example, a multivariate gaussian distribution is given by the density function
pΣ(x, h) = exp((x−h)TΣ(x−h)

2) where h is the mean and Σ−1 is the covariance
matrix. Hence we can think of x as h with some added noise.

Examples of bayesian models in unsupervised learning include topic mod-
els, hidden markov models, mixed membership models, indian buffet process,
hierarchichal topic models, Restricted Boltzmann Machines etc.

There are two important problems associated with this approach to unsu-
pervised learning. We assume that the machine is given independent samples
x1, x2, . . . , xN from the distribution p�(x) =

∫
p�(x, h)dh. (In words, “pick a

sample (x, h) from p�(x, h), and discard the h.”) It is customary to assume
p�(x, h) factors as p�(x|h)p�(h) where p�(h) has some simple functional form
that is known. (Note that such a p�(h) always exists by Bayes’ rule, but in
general may not have a simple functional form.)

9

Parameter learning consists of estimating the best θ that explains the data.
The method used is classical maximum likelihood: select the θ that assigns the
maximum probability to the data. Since the data x1, x2, . . . , xN were indepen-
dent samples from the distribution, this amounts to

argmax�

∏
i

p�(x
i). (8)

It is customary to take logarithms and re-express as

argmax�

∑
i

log p�(x
i), (9)

which is the so-called cross-entropy loss.
Inference involves constructing h given x, where θ is assumed to be known.

This involves sampling from the conditional distribution p�(h|x), which is given
by Bayes rule.

While the problems are clear enough, the calculations are not easy. For
fairly simple models, inference and parameter learning can be computationally
intractable. It is customary to use heuristic approaches such as Expectation
Maximization and variational inference. Recently there has been success in
designing provably efficient algorithms for parameter learning via tensor de-
composition methods; see [AGH+14] for a comprehensive introduction.

3.3 Learning to generate portion of a datapoint from the
rest

As mentioned, a full bayesian treatment of unsupervised learning runs into
difficult computational problems that have not been easy to solve for large-
scale problems. A more successful approach is to treat unsupervised learning
more analogously to supervised learning, by observing that there is implicit
supervision in the data itself.

Concretely, in many settings the datapoint x is much larger (i.e, has many
more coordinates) than the latent h, which after all is a meant to be a high-level
description. Thus h in principle could be inferred from (say) the first 3/4th of
coordinates of x. And given h we could predict (at least in a probabilistic sense)
the last 1/4th of the coordinates of x. This train of thought suggests that the last
1/4th coordinates of x can be predicted from its first 3/4th coordinates. Thus
if we try to set ourselves the task of predicting the last 1/4th coordinates of x
from its first 3/4th coordinates, implicitly we must need to learn the underlying
structure, in other words, some version of h.

Concretely, if the input x is written as x1x2 where x1 contains the first 3/4th
of coordinates and x2 the last 1/4th then such a learning approach assumes there
is a mapping f� such that f�(x1) ≈ x2 where ≈ is formalized using some measure
of closeness, e.g., ℓp norm. Here θ is a vector of parameters. For example, θ
could describe a multilayer deep net that maps x1 to x2, and the deep net could

10

be found via something like

argmin�

∑
i

|xi
2 − f�(x

i
1)|22. (10)

This is very analogous to the Empirical Risk Minimization paradigm mentioned
above.

Application: Word embeddings. How can we mathematically capture the
meaning of an English word? From a mathematical viewpoint one is tempted to
reach for mathematical notions such as model theory, which codifies semantics
for formal logic. However, the meaning of a word is much more elusive. For one,
the word may have multiple meanings (bank can refer to a financial institution
or the side of a river), and each meaning may have many shades of meaning (is
paint used in the same sense in he painted the wall and he painted a mural on
the wall?)

In machine learning it has been more useful to represent the meaning of the
word with a vector. This started with work in information retrieval ([TP10])
but recent techniques resort to the general idea sketched above. Specifically, it
assumes that every word w is represented by a vector vw ∈ ℜd for some d which
is not too large or too small. (Depending upon the application, d is chosen to
be a few hundred to a few thousand. There is no good theory explaining the
choice.) Thus the model parameters θ consists of these vectors, one for every
word in the English dictionary. The model is trained by assuming that if we
black out a word in a text corpus, then we can typically figure out the missing
word by looking at say 5 words to the left and to the right. For example in the
famous word2vec method [MSC+13], the precise functional form assumed is

Pr[w | w1, w2, . . . , w5] ∝ exp(vw · (
1

5

∑
i

vwi)). (11)

Training such a model requires some tricks, which we won’t cover here. Note
that the trained embeddings have fascinating properties. One of them is the
ability to solve word analogy tasks. To solve the analogy problem man : woman
:: king : ??, one tries to find the word w such that vw− vking is most similar to
vwoman−vman, that is to say, minimizes ∥vw−vking +vwoman−vman∥22. Among
all 100, 000 words in the English dictionary, the minimizer word happens to be
queen. This simple idea can solve many simple word analogies, though success
rate is far from perfect. This and related discoveries have made word embeddings
a useful tool in natural language processing. A theoretical explanation for the
above method for analogy solving appears in [ALL+16].

3.4 Deep Generative Models
Deep nets, which were mentioned above, have also been used for unsupervised
learning although the successes here are not as spectacular so far. A deep
generative model G consists of a deep net that is defined completely analogously

11

as before, which maps ℜd to ℜn for some d, n. It maps a random seed s, usually
assumed to be a sample from the standard Gaussian distribution in ℜd, to
a vector x in ℜn that is supposed to be a random sample from the target
distribution that we are trying to learn. This model is trained using a set of
samples from the target distribution D (for example, real-life images).

Thus the deep net implicitly defines a probability distribution U , which we
are trying to make close to D. This technically is a subcase of the setting in
Section 3.2, and the main idea in training is to do some form of gradient descent
on the objective (9). Some notable notions in this line of work include Restricted
Boltzman Machines [HS06], Variational Autoencoders [KW14], and Generative
Adversarial Nets [GPAM+15].

4 Reinforcement learning
Reinforcement learning concerns design of autonomous agents that take a se-
quence (potentially of unbounded length) of actions. For example, a self-driving
car that has to take a dozens of actions every second, and maintain a safe course
on the road. Such an agent may be trained a long time in various ways, but
once trained has to be autonomous. Another setting where similar issues arise
is in playing a complicated game like Chess or Go, where machines now outplay
humans.

To formulate the goals of such learning, let’s identify key aspects of such a
system. (a) It needs to maintain some state at every time step, to allow it to
store relevant information from previous steps (e.g., current speed, direction,
separation from nearby vehicles) that will be needed in future steps. We denote
the set of all possible states by S. (b) There is uncertainty in every measurement
and action, which will be modeled via probabilities. (c) In each state the agent
has the choice of some actions. Let A denote the set of possible actions. When
the agent takes action a ∈ A in a state, it makes a probabilistic transition
to another state. (d) The agent moves from state to state as follows. Upon
reaching a state, it takes an action, which causes it to transition probabilistically
to another state, and in the process get some internal reward. This reward is
its “internal motivation,” so to speak. For example, reward function for a self-
driving car may be a simple function of distances from the nearest vehicles in
all four directions. The agent is trying to maximise this reward, as formalized
later.

Similar frameworks have been well-studied in the past century in fields such
as control theory, finance, economic theory, operations research, etc. In machine
learning the above framework is called a Markov Decision Process (MDP). As
sketched above, it consists of the following components: a finite set of states S; a
set of actions A (each action can be taken in each state); a probabilistic transition
function that gives for each pair of states (s, s′) and action a a probability
p(s, a, s′) of transitioning to s′ when action a is taken in state s (for all s, a it
satisfies

∑
s′ p(s, a, s′) = 1); and a reward function that gives for each pair of

states (s, s′) and action a a reward r(s, a, s′) which is obtained when an action

12

a is taken in state s followed by a transition to state s′.
The goal of the learner is to identify a policy π, which maps states to actions.

Once an agent decides a policy π : S → A, the MDP turns effectively into a
markov chain, where p(s, π(s), s′) is the probability of transitioning to s′ at the
next step if the agent is currently at state s. Thus if it is started in a state s0,
the agent’s trajectory is a random sample from the distribution of random walks
starting from s0. It is customary to assume for convenience that this markov
chain is ergodic. Thus if s0, s1, s2, . . . , are random variables listing am infinite
sequence of states that are visited during a random walk starting from s0 then
the expected reward is

E[

∞∑
i=0

R(si, π(si), si+1)].

In general this can be infinite, so it is customary to use a discounting whereby
rewards obtained t steps into the future are treated as if they were multiplied
by a factor γt where γ < 1 is the discount factor. Then total expected reward

E[

∞∑
i=0

γiR(si, π(si), si+1)]

stays finite. (The discounting idea is borrowed from economics, where this is
a formalization of the familiar human instinct to treat a bird in hand as better
than two in the bush.) The policy is optimum if this discount reward is optimum
for every choice of s0. The optimum policy can be computed using dynamic
programming or linear programming in time that is a fixed polynomial of the
number of states.

However, in practice today the set of states is often very large, or even
infinite. For example, perhaps a state is a vector in ℜd and an action is a vector
in ℜk, which makes a policy a function from ℜd to ℜk. Now there is no known
efficient algorithm for finding an optimum policy, and in fact the task is known
to be NP-hard. In practice, various heuristics are known such as policy iteration
and value interation, where the policy being computed is represented implicitly
via a suitable representation, often a deep net. Usually the machine does not
know the underlying MDP and has to learn it while coming up with the policy.
For a detailed introduction see [SB98]. Providing theoretical support for this
heuristic work is an important open problem, since obvious ways to formalize
it run into NP-hard problems. A start would be to formalize what it means for
training to generalize here, since the above algorithms such as policy iteration
do an exploration to progressively improve the policy, which takes us far afield
from the independent sample framework utilized in our treatment of supervised
learning in Section 1.

We note that the above framework can be changed in various ways to pro-
vide other well-studied frameworks that we will not describe here, such as on-
line computation, bandit optimization, etc.. These capture less general types
of sequential decision-making, which retain aspects of classical optimization by
restricting attention to convex functions. For an introduction see [Haz].

13

Acknowledgements
Sanjeev Arora’s work is supported by the NSF, ONR, Simons Foundation, SRC,
Yahoo Research and Mozilla Foundation. Thanks to Mark Goresky, Avi Wigder-
son and Yi Zhang for useful feedback on the manuscript.

References
[AGH+14] Animashree Anandkumar, Rong Ge, Daniel Hsu,

Sham M. Kakade, and Matus Telgarsky. Tensor de-
compositions for learning latent variable models. Jour-
nal of Machine Learning Research, 15:2773–2832, 2014.
http://jmlr.org/papers/v15/anandkumar14b.html.

[ALL+16] Sanjeev Arora, Yuanzhi Li, Yingyu Liang, Tengyu Ma, and Andrej
Risteski. A latent variable model approach to pmi-based word em-
beddings. Trans. Assoc. Comp. Linguistics, pages 385–399, 2016.

[AM16] Sanjeev Arora and Tengyu Ma. Backpropagation: An introduc-
tion, 2016. http://www.offconvex.org/2016/12/20/backprop/.

[BDSS14] Shai Ben-David and Shai Shalev-Schwartz. Un-
derstanding Machine Learning: From Theory to
Algorithms. Cambridge University Press, 2014.
http://www.cs.huji.ac.il/ shais/UnderstandingMachineLearning/.

[BV08] Stephen Boyd and Lieven Vandenberghe. Convex
Optimization. Cambridge University Press, 2008.
https://web.stanford.edu/ boyd/cvxbook/.

[DDS+09] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-
Fei. Imagenet: A large-scale hierarchical image database. In
Proc. IEEE CVPR, 2009.

[ES16] Ronen Eldan and Ohad Shamir. Power of depth for feedforward
neural networks. In Proc. Conference on Learning Theory, 2016.

[GBC16] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learn-
ing. MIT Press, 2016. http://www.deeplearningbook.org.

[GPAM+15] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu,
David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua
Bengio. Generative adversarial networks. In Proc. Neural Infor-
mation Processing Systems, 2015.

[Haz] Elad Hazan. Online convex optimization.
http://ocobook.cs.princeton.edu.

14

[HS06] Geoff Hinton and Ruslan Salakhutdinov. Reducing the dimension-
ality of data with neural networks. Science, pages 504–507, 2006.

[HTF09] Trevor Hastie, Robert Tibshirani, and Robert Friedman. The El-
ements of Statistical Learning. Springer Verlag, 2009.

[KW14] Diederik Kingma and Max Welling. Auto-encoding variational
bayes. In Proc. International Conference on Learning Representa-
tions, 2014.

[MSC+13] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeff
Dean. Distributed representations of words and phrases and their
compositionality. In Proc. Neural Information Processing Systems,
2013.

[SB98] Richard Sutton and Arthur Barto. Reinforcement Learning: An
Introduction. MIT Press, 1998.

[Tel16] Matus Telgarsky. Benefits of depth in neural networks. In
Proc. Conference on Learning Theory, 2016.

[TP10] Peter Turney and Patrick Pantel. From frequency to meaning:
Vector space models of semantics. Journal of Artificial Intelligence
Research, 37:141–188, 2010.

[Vap98] Vladimir N. Vapnik. Statistical Learning Theory. Wiley, 1998.

15

