HIGH DIMENSIONAL EXPANDERS

ALEXANDER LUBOTZKY

Abstract

Expander graphs have been, during the last five decades, the subject of a most fruitful interaction between pure mathematics and computer science, with influence and applications going both ways (cf. [55], [37], [56] and the references therem). In the last decade, a theory of "high dimensional expanders" has begun to emerge. The goal of the current paper is to describe some paths of this new area of study.

0 . Introductios

Expander graphs are graphs whicii are, at the same time, sparse and highly connected. These two searniagly contradicting properties are what makes this theory non trivial and useful. The existence of such graphs is not a completsly irivial issue, but by now there are many methods to show this: ranúom methods, K azhdan property (T) from representation theory' of semisimple Lie groups, Ramanujan conjecture (as proved by Dedigne and Drinfedd) from the theory of automorphic forms, the derinentary Zig-Zag method and "interlacing polynomials".

The dif nition of expander graphs can be expressed in several different spuuivalent ways (combinatorial, spectral gap etc. - see [55], [40], . V'nen one comes to develop a high dimensional theory; i.e a theory of f nite simplicial complexes of dimension $d \geq 2$, which resembies that of expander graphs in dimension $d=1$, the generalizations of the dif erent properties are (usually) not equivalent. One is led to notions like: coboundary expanders, cosystolic expanders, topological expanders, geometric expanders, spectral expanders etc. each of which has its importance and applications.

In §1, we recall very brief y several of the equivalent def nitions of expander graphs (ignoring completely the wealth of their applications). These will serve as pointers to the various high dimensional generalizations.

In §2, we will start with the spectral def nition. For this one needs "discrete Hodge theory" as devel oped by Eckmann ([22]). In this sense the classical work of Garland [29], proving Serre's conjecture on the
vanishing of the real cohomology groups of arithmetic lattices of p-adic Lie groups, can be considered as the earliest work on high dimensional expanders. His "local to global" method which treats the f nite quotients of the Bruhat-Tits building has been rediscovered in recent years, with many applications, some of them will be described in $\S 2$.

In §3, we turn our attention to Gromov's topological and geometric expanders (a.k.a. the topological and geometric overlapping prapesties). These quite intuitive directions were shown to be reated to two much more abstract def nitions of coboundary and cosystolic ('high dimensional) expanders. The last ones are def ned using the language of \mathbb{F}_{2}-cohomology. Here also a "local to global" method enabies to produce topological expanders from f nitequotients of Brułai-T-Tits buildings of p-adic Lie groups.

Section 4 will deal with random simplicial corrplexes, while in $\S 5$ we will brief y mention several applications andiconnections with computer science

1. A FEW WORDS ABOUT EXPANDER GRAPHS

Let $X=(V, E)$ be a f nite corinected graph with sets of vertices V and edges E. The Chesger constant of X, denoted $h(X)$, is:

$$
h(X)=\inf _{A, B \subseteq V} \frac{|E(A, B)|}{\min (|A|,|B|)}
$$

where the int mum runs over all the possibilities of disjoint partitions $V=A \cup B$ and $E(A, B)$ is the set of edges connecting vertices in A to vertices in B.

The graph X is ε-expander if $h(X) \geq \varepsilon$.
Let $L^{2}(V)$ be the space of real functions on V with the inner product $\langle f, g\rangle=\sum_{v 2 V} \operatorname{deg}() f() g()$ and $L_{0}^{2}(V)$ the subspace of those which are orthogonal to the constant functions. Similarly, $L^{2}(E)$ is the space of functions on the edges with the standard inner product.
Wef x an arbitrary orientation on theedges, and for $e \in E$ wedenote its end points by e and e^{+}. Let $d: L^{2}(V) \rightarrow L^{2}(E)$ be the map $(d f)(e)=f\left(e^{+}\right)-f(e)$ for $f \in L^{2}(V)$ and $\Delta=d^{*} d: L^{2}(V) \rightarrow L^{2}(V)$ when d^{*} is the adjoint of d. The operator Δ is called the Laplacian of the graph. One can show (cf. [55, Chap. 4]), that it is independent of the chosen orientation. One can check that

$$
\Delta=I-M
$$

when M is the Markov operator on $L^{2}(V)$, i.e,

$$
(M f)()=\frac{1}{\operatorname{deg}(~)} \sum_{f y j(x, y) 2 E g} f() .
$$

The smallest eigenvalue of Δ is 0 and it comes with multiplicity one if (and only if) X is connected, which we will always assume. The eigenfunctions with respect to 0 are the constant functions and as $\underline{\Delta}$ is self adjoint, $L_{0}^{2}(V)$ is invariant under Δ and the spectral gap

$$
\lambda_{1}(X)=\inf \left\{\left.\frac{\langle\Delta f, f\rangle}{\langle f, f\rangle} \right\rvert\, f \in L_{0}^{2}(V)\right\}
$$

is the smallest eigenvalue of Δ acting on $L_{0}^{2}(V)$.
Thefollowing result is a discrete analogue of the ciassical Cheeger inequality (and its converse by Buser). This discrete version was proved by Tanner, Alon and Milman (the reader is referred again to [55, Chap. 4] for a detailed history).

Theorem 1.1. If X is a finite connecter k-regular graph, then:

$$
\frac{h^{2}(X)}{2 k^{2}} \leq \lambda i(X) \leq \frac{2 h(X)}{k}
$$

We are usually interested in inf nite families of k-regular graphs ("sparse"). Such a farrily forms a family of expanders (i.e, $h(X) \geq \varepsilon$ for the same $\varepsilon>0$. for every X) if and only if $\lambda_{1}(X) \geq \varepsilon^{0}>0$ for the same ε^{0} for every X. I.e, Theorem 1.1 says that expanders can be def ned, equivalently, either by a combinatorial def nition or using the spectral gap der nition. Expressing this using the adjacency operator A rather than the Laplacian Δ : being expanders means that the second :argest eigenvalue $\lambda(X)$ of A is bounded away from k, which is the langest one

Strictly speaking the notion of expanders requires spectral gap only in one side of the spectrum of A, but in many applications (eg. if one wants to estimate the rate of convergence of the random walk on X to the uniform distribution) one needs bounds on both sides. Recall that $-k$ is also an eigenvalue of A if X is bi-partite We can now def ne: A k-regular connected graph is Ramanujan if all eigenvalues λ of A are either $\lambda= \pm k$ or $|\lambda| \leq 2 \sqrt{k-1}$. By the well-known AlonBoppana theorem, the bound $2 \sqrt{k-1}$ is the best one can hope for for an inf nite family of k-regular graphs. Let us recall that for the k-regular inf nite tre $T=T_{k}$, the classical result of Kesten asserts that the spectrum of the adjacency operator on $L^{2}\left(T_{k}\right)$ is exactly the interval $[-2 \sqrt{k-1}, 2 \sqrt{k-1}]$. In a way Kesten's result lies beyond
the Alon-Boppana theorem and there are many generalizations of this philosophy (cf. [31]).

Ramanujan graphs were presented by Lubotzky-Phillips-Sarnak [54], Margulis [65], Morgenstern and recently by Marcus-SpielmanSrivastava [64].

There are several other ways to def ne expanders. Let us mention here one which has been observed only quite recently and has a riaturai extension to high dimensional simplicial complexes.

Let X be a f nite connected k-regular graph, with adjacency matrix A, denote $k=q+1$ and

$$
\mu(X)=\max \{|\lambda| \mid \lambda \text { ev. of } A, \quad \lambda \neq \pm k\}
$$

So X is Ramanujan if $\mu(X) \leq 2 \sqrt{q}$. If X is bipartiits, write $V=V_{0} \cup V_{1}$ where V_{0} and V_{1} are the two sides, and if net $V=V_{0}=V_{1}$. Let

$$
\left.L_{00}^{2}(X)=\left\{f \in L^{2}(V) \mid \sum_{v 2 V_{i}} f_{i}\right)=0, \quad \text { for } i=0,1\right\}
$$

So, $\mu(X)$ is the largest (in absolute value) eigenvalue of A when acting on $L_{00}^{2}(X)$. For $\lambda \in[2 \sqrt{q}, q+1]$ write $\lambda=q^{1 / p}+q^{(p 1) / p}$ for a unique $p \in[2, \infty]$, so $\lambda=2 \sqrt{q}$ when $p=2$.

Now, let $\pi: T=T_{k} \rightarrow(X)$ be a covering map. For a $\mathrm{fxed} \mathrm{o}_{0} \in T$, let $S_{r}=\left\{\in T \mid\right.$ dis ance,$\left.\left.{ }_{0}\right)=r\right\}$ and for $f \in L_{00}^{2}(X)$ and $\in T$, let $\tilde{f}()=\frac{1}{\mathrm{j} r_{r} \mathrm{j}} \sum_{s 2 S_{r}} f(\pi(s$,$) if r=\operatorname{dis}(, 0)$, i.e \tilde{f} is the averaging of the lift of f around n.

Theorem 1.2 (Kamber [40]). $\mu(X) \leq \lambda$ if and only if $\tilde{f} \in L^{p+\varepsilon}(T)$ for all $f \in L_{00}^{2}(X),{ }_{0} \in T$, and $\varepsilon>0$. As a corollary X is Ramanujan iff

$$
\tilde{f} \in L^{2+\varepsilon}(T), \forall_{0}, \forall f, \forall \varepsilon
$$

2. High dimensional expanders: spectral gap

As described in $\S 1$, the notion of expander graphs can be expressed via a spectral gap property of the Laplacian. This aspect has a natural high dimension version, but to present it one needs the language of real cohomology. Let us start by recalling the basic notations.
2.1. Simplicial complexes and cohomology. A f nite simplicial complex X is a f nite collection of subsets, closed under inclusion, of a f nite set $X^{(0)}$, called the set of vertices of X. The sets in X are called simplices or faces and we denote by $X^{(i)}$ the set of simplices of X of dimension i (i-cells), which are the sets in X of size $i+1$. So
$X^{(1)}$ is comprised of the empty set, $X^{(0)}$ - of the vertices, $X^{(1)}$ - the edges, $X^{(2)}$ - the triangles, etc. Let $d=\operatorname{dim} X=\max \left\{i \mid X^{(i)} \neq \emptyset\right\}$ and assume X is a pure simplicial complex of dimension d, i.e, for every $F \in X$, there exists $G \in X^{(d)}$ with $F \subseteq G$. Throughout this discussion we will assume that $X^{(0)}=\left\{{ }_{1}, \ldots,{ }_{n}\right\}$ is the set of vertices and we $\mathrm{f} x$ an order ${ }_{1}<{ }_{2}<\ldots<{ }_{n}$ among the vertices. Now, if $F \in X^{(i)}$ we write $F=\left\{j_{0}, \ldots, j_{i}\right\}$ with $j_{0}<{ }_{j_{1}}<\ldots<j_{j_{i}}$. If $G \in X^{(i)}$, wie denote the oriented incidence number $[F: G]$ by $(-1)^{\ell}$ if $F \backslash G=\left\{{ }_{\text {je }}\right\}$ and 0 if $G \nsubseteq F$. In particular, for every vertex $\in X^{(0)}$ and for the unique face $\emptyset \in X^{(1)},[: \emptyset]=1$.
If \mathbb{F} is a f ed then $C^{i}(X, \mathbb{F})$ is the \mathbb{F}-vector space of the functions from $X^{(i)}$ to \mathbb{F}. This is a vector space of dimensior $\left.X^{(2)}\right\rangle$ over \mathbb{F} where the characteristic functions $\left\{e_{F} \mid F \in X^{(i)}\right\}$ sene as a basis.
The coboundary map $\delta_{i}: C^{i}(X, \mathbb{F}) \rightarrow C^{i+i}(X, \mathbb{F})$ is given by:

$$
\left(\delta_{i} f\right)(F)=\sum_{G 2 X^{(0)}}[F \cdot G] f(G) .
$$

So, if $f=e_{G}$ for some $G \in X^{(i)}, \delta_{i} z_{G}$ is a sum of all the simplices of dimension $i+1$ containing G with signs ± 1 according to the reative orientations.

It is well known and easy, to provethat $\delta_{i} \circ \delta_{i 1}=0$. Thus $B^{i}(X, \mathbb{F})=$ $\operatorname{im} \delta_{i 1}$ - "thespace of u-coboundaries" is contained in $Z^{i}(X, \mathbb{F})=\operatorname{ker} \delta_{i}$ - the i-cocydles and the quotient $H^{i}(X, \mathbb{F})=Z^{i}(X, \mathbb{F}) / B^{i}(X, \mathbb{F})$ is the i-th cohomoiogy, group of X over \mathbb{F}.
In a dival way one can look at $C_{i}(X, \mathbb{F})$ - the \mathbb{F}-vector space spanned by the siriplices of dimension i. Let $\partial_{i}: C_{i}(X, \mathbb{F}) \rightarrow C_{i}(X, \mathbb{F})$ be the boundary map def ned on the basis element F by: $\partial F=$ $\sum_{\left(G Z X^{(i-1)}\right.}[F: G] \cdot G$, i.e if $F=\left\{{ }_{j 0}, \ldots, j_{i}\right\}$ then $\partial_{i} F=\sum_{t=0}^{i}(-1)^{t}$ $\left\{j_{0}, \ldots, \widehat{j_{t}}, \ldots, j_{i}\right\}$. Again $\partial_{i} \circ \partial_{i+1}=0$ and so the boundaries $B_{i}(X, \mathbb{F})=\operatorname{im} \partial_{i+1}$ are inside the cycles $Z_{i}(X, \mathbb{F})=\operatorname{ker} \partial_{i}$ and $H_{i}(X, \mathbb{F})=Z_{i}(X, \mathbb{F}) / B_{i}(X, \mathbb{F})$ gives the i-th homology group of X over \mathbb{F}. As \mathbb{F} is a fedd, it is not dif cult in this case to show that $H_{i}(X, \mathbb{F}) \simeq H^{i}(X, \mathbb{F})$.

In the next section, we will need the case $F=\mathbb{F}_{2}$ - the feld of two elements, but for the rest of Section 2 we work with $F=\mathbb{R}$. In this case $C^{i}(X, \mathbb{R})$ has the natural structure of a Hilbert space, where for $f, g \in C^{i}(X, \mathbb{R}), \quad\langle f, g\rangle=\sum_{F 2 X^{(i)}} \operatorname{deg}(F) f(F) g(F)$, when $\operatorname{deg}(F)=\#\left\{G \in X^{(d)} \mid G \supseteq F\right\}$. Now, $C_{i}(X, \mathbb{R})$ is the dual of $C^{i}(X, \mathbb{R})$ in a natural way and we can identify them and treat the operators
$\Delta_{i}^{u p}=\delta_{i}^{*} \delta_{i}, \Delta_{i}^{\text {down }}=\delta_{i} \quad \delta_{i}^{*}{ }_{1}$ and $\Delta_{i}=\Delta_{i}^{u p}+\Delta_{i}^{\text {down }}$ as operators from C^{i} to C^{i}, all are self-adjoint with non-negative eigenvalues. One may check that

$$
\left(\delta_{i}^{*} f\right)(G)=\frac{1}{\operatorname{deg}(G)} \sum_{F 2 X^{(i+1)}}[F: G] \operatorname{deg}(F) f(F)
$$

for $f \in C^{i+1}(X, \mathbb{R})$ and $G \in X^{(i)}$, so in the regular case δ_{i}^{*} is equal to ∂_{i+1} up to a constant multiple. Def ne $\mathcal{Z}_{i}=\operatorname{ker} \delta_{i}^{*}{ }_{1}$ and $\mathcal{B}_{i}=\operatorname{im} \delta_{i}^{*}$ (so in the regular case $\mathcal{Z}_{i}=Z_{i}, \mathcal{B}_{i}=B_{i}$). The following proposition, going back to Eckmann [22], is elementary:

Proposition 2.1 (Hodge decomposition). $C^{i}=B^{i} \oplus \mathcal{H}^{i} \oplus \mathcal{B}_{i}$ when $\mathcal{H}^{i}=\operatorname{Ker}\left(\Delta_{i}\right)$ is called the space of Harmonic cycles. In fact $\mathcal{H}^{i} \simeq$ $H^{i}(X, \mathbb{R})$. Note that $\Delta_{i}^{u p}$ vanishes on $\mathcal{Z}^{i}=B^{i} \oplus \mathcal{H}^{i}$.

Def nition 2.2. The i-dimensional spectral gap of X is $\lambda^{(i)}(X)=$ $\min \left\{\lambda \mid \lambda\right.$ e.v. of $\left.\left.\Delta_{i}^{u p}\right|_{\left(B^{i}\right)^{\perp}}\right\}$. One may check that $\left(B^{i}\right)^{?}=\mathcal{Z}_{i}$, and as $\Delta_{i}^{u p}=\delta_{i}^{*} \circ \delta_{i}$, we have

$$
\lambda^{(i)}(X)=\inf _{f 2\left(B^{i}\right)^{\perp}}\left\{\frac{\left|\left\langle\Delta_{i}^{u p} f, f\right\rangle\right|}{\langle f, f\rangle}\right\}=\left(\inf _{f 2 Z_{i}}\left\{\frac{\|\delta f\|}{\|f\|}\right\}\right)^{2} .
$$

Also, $\Delta_{i}^{u p}$ vanishes also on \mathcal{H}^{i}, so $\lambda^{(i)}(X)>0$ implies $H^{i}(X, \mathbb{R})=\{0\}$, and the converse is also true

For a k-regular graph $\left(B^{0}\right)^{?}=Z_{0}=L_{0}^{2}(X)$ and so $\lambda_{1}(X)$ that was def ned in $\S 1$ for a graph X, is $\lambda^{(0)}(X)$ in the notations here Wedef ne:

Def nition 2.3. A pure d-dimensional simplicial complex will becalled ε-spectral expander if for every $i=0, \ldots, d-1, \quad \lambda^{(i)} \geq \varepsilon$.

Recall that the Alon-Boppana theorem asymptotically bounds the spectral gap of k-regular graphs by that of their universal cover, the k-regular tree In higher dimension the situation is more involved:

Theorem 2.4 ([74]). For an infinite complex X, let $\lambda^{(i)}(X)$ be the bottom of the spectrum of $\Delta_{i}^{u p}(X)$ on $\left(B^{i}\right)^{\text {? }}$. Let $\left\{X_{n}\right\}$ be a family of quotients of X, such that the injectivity radius of X_{n} approaches infinity. If zero is not an isolated point in the spectrum of $\Delta_{i}^{u p}(X)$, on $\left(G^{i}\right)^{?}$, then

$$
\lim _{n!} \inf _{1}\left\{\lambda^{(i)}\left(X_{n}\right)\right\} \leq \lambda^{(i)}(X) .
$$

this case the Alon-Boppana principle can be violated (see [74, Thm. 3.10] for an example).
2.2. Garland method. The seminal paper of Howard Garland ([29], see also [10]), can be considered as the frst paper on high dimensional expanders. It gave examples of spectral expanders, by a method which bounds the eigenvalues of the simplicial complex by the eigenvaluis of its links. Garland's method has been revisited in recent years with various simplif cations and extensions. Let us give here one of them, but we need more def nitions: If F is a face of X of dimension i, the link of F in X denoted $\ell k_{X}(F)$, is

$$
\ell k_{X}(F):=\{G \in X \mid F \cup G \in X, F \cap G=\emptyset\} .
$$

One can easily check that if X is a puresimpliciai complex of dimension $d, \operatorname{dim}\left(\ell k_{X}(F)\right)=d-i-1$.

Garland's method can be conveniert!y summarized by the following theorem. Note that if $\operatorname{dim}(X)=d$ and $\operatorname{dim}(F)=d-2$, then $\ell k_{X}(F)$ is a graph.

Theorem 2.5 (Garland, cf. [35]). If $\operatorname{dim}(X)=d$ and for every face F of dimension $d-2$, $\lambda^{(1)}\left({ }^{(} k_{X}\left(F^{\prime}\right)\right) \geq \varepsilon$, then

$$
\lambda^{(d)}{ }^{1)}(X) \geq 1+d \varepsilon-d .
$$

So, Garland's mex hod enables to give a fairly good bound on $\lambda^{\left(d{ }^{1)}\right.}(X)$ if a!! links of $d-2$ faces are very good expanders. One can use the result to bound also $\lambda^{(j)}(X)$ for $j \leq d-1$, by replacing X with its $j+1$ skeleton, i.e, the collection of all the faces of X of dimension at rrost $j+1$. In fact, even more: if the links of the $(d-2)$-faces are evcellent expander graphs and the 1-skeleton is connected, then the complex is spectral expander (cf. [70]). In the next subsection, we will explain Garland's motivation and results. But in recent years his method have been picked up in various dif erent directions. Most of them have to do with vanishing of some cohomology groups.

One of the nicest applications of Garland's method is the work of Zuk [89], Pansu[72] and Ballman-Swiatkowski [4]. The starting point of these works is the well-known result that a discrete group Γ has Kazhdan property (T) if $H^{1}(\Gamma, V)=\{0\}$ for every unitary representation of Γ on any Hilbert space. These authors used Garland's work to deduce such a vanishing result for H^{1} if Γ acts cocompactly on an inf nite contractible simplicial complex of dimension 2 all of whose vertex links are very good expanders. The most amusing is Zuk's method
which enables (sometimes) to deduce property (T) from a presentation of Γ by generators and relations. For example it shows property (T) for some random groups (see also [48]). This is very dif erent than the way K azhdan produced thef rst groups with property (T) and it shows that property (T) is not such a rare property.

A work of a similar favor but in a dif erent direction is the work of DeChif re, Glebsky, Lubotzky, and Thom ([16]). Recall frst (vaguieivi) the basic def nition of "group stability": Consider the degree n linitary" group $U(n)$ with an invariant metric d_{n}. We say that a groip I pre sented by a f nite set of generators S with f nitely many réaitions R, is $\left(U(n), d_{n}\right)$-stable if every almost representation ρ of Γ into $U(n)$ is close to a representation $\tilde{\rho}$. By "almost" we mearn that $\rho(r)$ is very close to the identity for every $r \in R$ and "close" misans that $\rho(s)$ and $\tilde{\rho}(s)$ are close w.r.t. d_{n}, for every $s \in S$. One can study these questions w.r.t. dif erent distance functions, e... t.he one induced by the Hilbert-Schmidt norm, the operator norm or the L^{2}-norm, a.k.a. the Frobenius norm.

Let usstick to the L^{2}-norm. In $\left\{16\right.$ it is shown that if $H^{2}(\Gamma, V)=\{0\}$ for every unitary representation of Γ, then Γ is $\left(U(n), d_{L^{2}}\right)$-stable. Then the Garland method is ussi (along the line of the results mentioned above for H^{1}) to prociuce many examples of L^{2}-stable groups by considering actions nin 3 -dimensional inf nite simplicial complexes, whose edge-links are excel! ent expanders. This implies that many high rank cocompact lattices in simple p-adic Lie groups are $\left(U(n), d_{L^{2}}\right)$-stable Themost striking application is proving that there exists a group which is not i^{2}-aipproximated (the reader is referred to [16] for the def nitions and exacic results and to [85] for background and applications).
in [35], Gundert and Wagner used the Garland method to estimate the eigenvalues of random simplicial complexes - see also §4. For some stronger versions of Garland's method - see [69], [70] and the references therein.
2.3. B ruhat-Tits buildings and their \mathbf{f} nite quotients. Let K be a non-Archimedean local f eld, i.e, K is a f nite extension of \mathbb{Q}_{p}, the f eld of p-adic numbers, or K is $\mathbb{F}_{q}(())$-thef eld of Laurent power series over a f nitef eld \mathbb{F}_{q}. Let \mathcal{O} bethering of integers of K, \mathcal{M} the(unique) maximal ideal of \mathcal{O}, and $\mathbb{F}_{q}=\mathcal{O} / \mathcal{M}$ the f nite quotient where $q=p^{\ell}$ for some prime p and $\ell \in \mathbb{N}$. Let G be a K-simple simply connected group of K-rank r, eg, chematich $={ }_{n}$ in which case $r=n-1$, and let $G=G(K)$.
chadradio303

Bruhat and Tits developed a theory which associates with G an inf nite(if $r \geq 1$) contractiblesimplicial complex $\mathcal{B}=\mathcal{B}(G)$ of dimension r. Here is a quick description of it: G has $r+1$ conjugacy classes of maximal compact subgroups (cf. [77, Theorem 3.13, p. 150]) and a unique class of maximal open pro- p subgroups, called I wahori subgroups. The vertices of \mathcal{B} are the maximal compact subgroups (so they come with $r+1$ "colors" according to their conjugacy class) and a set of $i+1$ such vertices form a cell if their intersection contains an I wahori subgroup. This is an r-dimensional simplicial complex whose maximal faces can be identif ed with G / I when I is a f xed I wahori subgroup (for more see [13], [77] and [57] for a quick explicit description of $\mathcal{B}\left(\mathrm{SL}_{n}\left(\mathbb{Q}_{p}\right)\right)$. The case of $\mathcal{B}\left(\mathrm{SL}_{2}(K)\right)$, which is a $(q+1)$-regular tree, is studied in detail in [81]).

Let Γ be a cocompact lattice in G, i.e, a discrete subgroup with $\Gamma \backslash G$ compact. Assume, for simplicity that Γ is torsion free, a condition which can always be achieved by passing to a f nite index subgroup. Such Γ is always an arithmetic lattice if $r \geq 2$ by Margulis arithmeticity Theorem ([66]) and, at least if $\operatorname{char}(K)=0$, there are always such lattices by Bored and Harder ([9]). When we $f \times K$ and G and run over all such lattices in G, for example, over the inf nitely many congruence subgroups of Γ, we obtained a family of bounded degree simplicial complexes, i.e every vertex is included in a bounded number of faces. These simplicial complexes, give the major examples of "high dimensional expanders" discussed in this paper.

Garland's method described in the prev:
and [11, Chap. XI]) by representation theoretic methods, but Garland's method has its own life in various other contexts.
In Section 1, Theorem 1.2, we saw that expander graphs can also be def ned as " L_{p}-expanders" for a suitable $2 \leq p \in \mathbb{R}$. This def nition can be extended to high dimensional simplicial complexes and is especially suitable in the context of this subsection.

Let \mathcal{B} be one of the Bruhat-Tits buildings described above anci π. $\mathcal{B} \rightarrow X$ the covering map. Let $f \in L_{0}^{2}\left(X^{(r)}\right)$, i.e a function orthograriai to the constants on the r-cells of X (one can consider also i-cells for $0 \leq i \leq r$, but we stick to these for simplicity of the exposition, the reader is referred to [39] for a more general setting\%. Nors, using the notion of W-distance on $\mathcal{B}^{(r)}$, when W is the ari ne Weyl group of G, one can def ne for a f xed ${ }_{0} \in \mathcal{B}^{(r)}$, a function \tilde{f} on $\mathcal{B}^{(r)}$ - the r faces of \mathcal{B}, as follows: For $\in \mathcal{B}^{(r)}$, let $\left.\tilde{f}^{\prime} ;\right)=\frac{1}{\mathrm{j} S_{t}} \sum_{s 2 S_{t}} f(\pi(s))$ when $S_{\ell}=\left\{s \in \mathcal{B}^{(r)} \mid W\right.$-distance $\left(s,{ }_{0}\right)=W \cdot$ distance $\left.\left(,{ }_{0}\right)\right\}$.
Def nition 2.6. We say that X is Λ_{p}-expander if for every ${ }_{0}$ and f as above $\tilde{f} \in L^{p+\varepsilon}\left(\mathcal{B}^{(r)}\right)$ for every $\varepsilon>0$.

Applying Oh's result [69]; whici) gives the exact rate of decay of the matrix coef cients of the uinitary representations of G, the so-called "quantitative propety (T) ", Kamber deduced that X as above are always L_{p}-expanders when $p=p(G)$ according to the following table

W	\tilde{A}_{n}	\tilde{E}_{n}	\tilde{C}_{n}	\tilde{D}_{n}, n e en	\tilde{D}_{n}, n odd	\tilde{E}_{6}	\tilde{E}_{7}	\tilde{E}_{8}	\tilde{F}_{4}	\tilde{G}_{2}
p	$2 n$	$2 n$	$2 n$	$2(n-1)$	$2 n$	16	18	29	11	6

Let us stress that this is not just an abstract result. From this fact, we can deduce non-trivial inequalities on the eigenvalues of various "Hecke operators" acting on the faces of X. The reader is referred to [39] for more in this direction.
2.4. Ramanujan complexes. Ramanujan graphs stand out among expander graphs as the optimal expanders from a spectral point of view (cf. [86]). These are the f nite connected k-regular graphs X for which every eigenvalue λ of the adjacency matrix $A=A_{X}$ satisf es either $|\lambda|=k$ or $|\lambda| \leq 2 \sqrt{k-1}$. The f rt constructions of such graphs were presented as an application of the works of Deligne (in characteristic zero) and Drinfeld (in positive characteristic) proving the so called Ramanujan conjecture for GL_{2} (see [55] for a detailed survey). Recently, a new (non-constructive) method has been presented in [64].

It is therefore not surprising that following the work of Laurent Lafforgue [49] (for which he got the Fields Medal) extending Drinfeld's work from GL_{2} to GL_{d}, general d, several mathematicians have started to develop a high dimensional theory of Ramanujan simplicial complexes, cf. ([14], [50], [63], [62], [80]). One may argue what is "the right" def nition of Ramanujan complexes (see the above references and [43], [41], [27], [39], [52]). This topic deserves a survey of its (ovii). Here we just brief y point out some directions of research which carne out in the work of several mathematicians.
In the context of $X=\Gamma \backslash \mathcal{B}$ where \mathcal{B} a Bruhat-T its building associated with $G=G(K)$ as in §2.3, and Γ a cocompact lattice adting on it, the most sentible def nition seems to be the following:

Def nition 2.7. In the notation above, Γ 芯 is called a Ramanujan complex if every inf nite dimensionai irreviucible I-spherical G subrepresentation of $L^{2}(\Gamma \backslash G)$ is tempered.

Recall that I is the Iwahori subgroup cief ned above, a representation is I-spherical if it contains a non-zeso I-f xed vector and it is tempered if it is weakly-contained in $L^{2}(G)$.

This def nition can be expressed also in other ways; it is L_{2}-expander in the notations of [39] anú Def nition 2.6 above. It can also be expressed in a combinatorial-spectral way. For the group SL_{2}, in which case \mathcal{B} is a $(q+1)$-regular tree and $X=\Gamma \backslash \mathcal{B}$ is a $(q+1)$-regular graph, this det nition is equivalent to the graph being Ramanujan graph. Rarraniuj an complexes are also optimal among high-dimensional expancders (́see [50], [63] and [74]). For most applications so far (such as t'ie geometric and topological expanders to be presented in §3) one dies not need the full power of the Ramanujan property and quancitative Property (T) (á la Oh [68], see §2.3) suf ces. On the other hand the study of the cut-of phenomenon of Ramanujan complexes in [52] did use the full power of the Ramanujan property. The same can be said about the application of Ramanujan graphs and Ramanujan complexes to the study of "golden gates" for quantum computation (see[76] and [73]), where the Ramanujan bounds give a distribution of elements in $S U(2)$ with "optimal entropy".
TheRamanujan graphs of [54] (a.k.a. theLPS-graphs) have also been used to solve other combinatorial problems. For examplethey give the best (from a quantitative point of view) known examples of "high girth, high chromatic number" graphs. After f nding the appropriate high dimensional notions of "girth" and "chromatic number", these results
can indeed be generalized to the Ramanujan complexes constructed in [62], (se [59], [30], [25]).

Ramanujan graphs can be characterized as those graphs whose associated zeta functions satisfy "the Riemann Hypothesis (RH)" - se [55], for an exact formulation and references. An interesting direction of research is to try to associate to high dimensional complexes suitable "zeta functions" with the hope that also in this context the Ramaniujaness of the complex can be expressed via the RH. For this direction or research - see [84], [42], [17], [43], [41], [39] and [52].

3. Geometric and Topological expanders

In this chapter we will describe a phenomenon winich is truly high dimensional; the geometric and topological overiapping properties which lead to geometric and topological expariners. The latter call for coboundary and cosystolic expanders.
3.1. Geometric and Topological overlapping. Our story begins with a result of Boros and Füredi [12], at the time two undergraduates in Hungary, who proved the foiloning result, as a response to a question of Erdös: If P is a set of n points in \mathbb{R}^{2}, then there exists a point $\in \mathbb{R}^{2}$ which is covered by $\left(\frac{2}{9}-o(1)\right)\binom{n}{3}$ of the $\binom{n}{3}$ af ne triangles determined by thiese points. Shortly afterward Bárany [5] proved the d-dimensional version: For every $d \in \mathbb{N}, \exists 0<C_{d} \in \mathbb{R}$, such that if $P \subseteq \mathbb{R}^{d}$ with $|P|=n$, then there exists $\in \mathbb{R}^{d}$ which is covered by at least $\left(\begin{array}{c}\binom{n}{d+1}\end{array}\right)$ of the $\binom{n}{d+1}$ af ne simplices determined by these points.

Wihile $2 / 9$ is optimal for $d=2$, it is not known what are the optimal $C_{d} \cdot s$, neither what is their rate of convergence to 0 , when d goes to infif nity.

Bárany's result can be rephrased as: Let $\Delta_{n}^{(d)}$ be the complete d dimensional simplicial complex on n vertices (i.e the collections of all subsets of $[n]$ of size at most $d+1$) and $f: \Delta_{n}^{(d)} \rightarrow \mathbb{R}^{d}$ an af ne map. Then there exists $\in \mathbb{R}^{d}$ which is covered by at least $C_{d}\binom{n}{d+1}$ of the images of the d-dimensional faces.

In [32], Gromov proved the following amazing result: Bárany's the orem above is true for every continuous map $f: \Delta_{n}^{(d)} \rightarrow \mathbb{R}^{d}$. In fact, he proved it with constants $C_{d} \in \mathbb{R}$ which were better than what was known before for af ne maps. The reader is encouraged to draw the 2-dimensional case to realize how surprising and even counter-intuitive this theorem is! Gromov also changed the point of view on these types
of results; rather than thinking of them as properties of \mathbb{R}^{d}, think of them as properties of the simplicial complex X. Let us now def ne:

Def nition 3.1. A d-dimensional pure simplicial complex X is said to be ε-geometric (resp. ε-topological) expander if for every af ne (resp. continuous) map $f: X \rightarrow \mathbb{R}^{d}$, there exists $\in \mathbb{R}^{d}$ such that ε-proportion of the images of the d-cells in $X^{(d)}$, covers the point

So Bárany (resp., Gromov) Theorem is the claim that $\Delta_{n}^{(d)}$, the com plete simplicial complex of dimension d on n vertices, is C_{i}-gscrinetric (resp., C_{d}-topological) expander.

Let us look for a moment at the case of dimensicri ore to see why we call this property "expander": If $X=(V, E)$ is an expander graph and $f: X \rightarrow \mathbb{R}$ any continuous map, choose a point $\in \mathbb{R}$ such that the two disjoint sets

$$
A=\{\in V \mid f()<\} \text { and } B=\{\in V \mid f()>\}
$$

are of size approximately $\frac{\mathrm{jVj}}{2}$. By ine expansion property, there are many edges in E which connect A and B. The image of each such an edge under f must pass through by the mean value theorem. Hence X is also a topological expender.

We should mention thai a topological expander graph X does not have to be an expander graph. Moreover, it does not even have to be connected. For exarruple, assume X is a union of a large expander graph and another sinall (say of size $o(|X|)$) connected component. Then X is a topoiogical expander even though it is not an expander graph.

Anyinay,', Gromov and Bárany Theorems refer to the complete simplicial complexes: note how dif cult is the case $d \geq 2$ and how trivial it is to prove that the complete graph is an expander. Gromov aisu proved that some other interesting simplicial complexes are d dimensional topological expanders, eg., the fag complexes of $d+2$ dimensional vector spaces over fnitef elds or more generally spherical buildings of simple algebraic groups over f nite felds (cf. [61]). All these examples are not of bounded degree Recall (see also Def nition 4.1 below) that we say that a family of d-dimensional simplicial complexes are of bounded degree (resp. bounded upper degree) if for every vertex (resp., every face F of dimension $d-1$) the number of faces containing it is bounded. The non trivial aspect of expander graphs in dimension one is the construction of such graphs of bounded degree.

Gromov [32] put forward the basic questions: Let $d \geq 2$, are there bounded degree d-dimensional geometric/ topological expanders?

The existence of geometric expanders of bounded degree was shown by Fox, Gromov, Laf orgue, Naor and Pach [28] in several ways - most notably are two: the random method which we will come back to in $\S 4$ and the second is by showing that for a $\mathrm{f} x$ ed d, if q is a large enough (depending on d) and fxed , the Ramanujan complexes described in $\$ 2.4$ are geometric expanders of bounded degree A more general version was given by Evra [24].

Theorem 3.2. Given $2 \leq d \in \mathbb{N}$, there exists $q_{0}=q_{0}(d)$ and $\varepsilon=\varepsilon(d)$ such that for every $q>q_{0}$, if K is a non-Archimedean local field of residue degree q and G a simple K-algebraic group of K-rank d, then the finite quotients of $\mathcal{O}=\mathcal{B}(G)(K)$ - the Bruhat-Tits Duitaing associated with $G=G(K)$ - are all $=\underset{\varepsilon}{ }=$-geometric expanders.
Chafidiou03
Theorem 3.2 is deduced in [24] in a similar way as the proof in [28] using a "mixing lemma" and a classical convexity result of Pach [71]. The mixing lemma is deduced there firm Oh's "quantitative property (T) ([68]). The language of L_{p}-expandiers described in $\$ 2$ gives a systematic way to express this. (Ccirpoare also to [75]). The fact that we have an $\varepsilon=\varepsilon(d)$ which is indeucrident of q, provided $q>q_{0}$, (which is more than one needs in order to answer Gromov's geometric question) is due to the fact that for a $\mathrm{f} x \in d d \in \mathbb{N}$, one has the same p in the table in §2.3. which wo-ks for all groups of rank d.
The question of bciunded degree topol ogical expanders is much more dif cult ardi witi be discussed in the next subsections.
3.2. Colooundary expanders. As of now there is only one known method' (with several small variants) to prove that a simplicial complex X is a topological expander. This is via "coboundary expander" which rsuifes the language of cohomology as introduced in §2.1, but this time with \mathbb{F}_{2}-coef cients.
Let X be af nite d-dimensional pure simplicial complex, def ne on it a weight function as follows: for $F \in X^{(i)}$ let

$$
(F)=\frac{1}{\binom{d+1}{i+1}\left|X^{(d)}\right|}\left|\left\{G \in X^{(d)} \mid G \supseteq F\right\}\right| .
$$

One could work with a number of dif erent weight functions, but this one is quite pleasant, for example, it is a probability measure on $X^{(i)}$; one easily checks that $\sum_{F 2 X^{(i)}}(F)=1$. Now for $f \in C^{i}\left(X, \mathbb{F}_{2}\right)$, de note $\|f\|=\sum_{f F 2 X^{(i)} j f(F) \in \cdot g}(F)$. We can now def ne the important notion of "coboundary expanders" - a notion which was independently def ned by

Linial-Meshulam [51] and Gromov [32] (in both cases without calling it coboundary expanders).

Def nition 3.3. Let X be as above:
(a) For $0 \leq i \leq d-1$, def ne the i th coboundary expansion $\hbar_{i}(X)$ of X as:

$$
h_{i}(X)=\min _{f 2 C^{i} \cap B^{i}} \frac{\left\|\delta_{i} f\right\|}{\|[f]\|}
$$

where $[f]=f+B^{i}$ is the coset of f w.r.t. the i-coboundaries and $\|[f]\|=\min _{g 2[f]}\|g\|$. (Note that $\|[f]\|$ is the "normalized distance" of f from B^{i}. Let $h(X)=\min \left\{h_{i}(X) \mid i=0, \ldots, d-1\right\}$.
(b) The complex X is said to be ε-coboundary expander if $h(X) \geq \varepsilon$.

A few remarks are in order here:
(i) The reader can easily check that if X is a k-regular graph, then $h(X)=\frac{2}{k} \cdot h(X)$ where $h(X)$ is the Cheeger constant of the graph as def ned in $\S 1$. So, indeed the above def nition extends the notion of expander graphs.
(ii) The def nition of ε_{i}, and especially the fact that the minimum runs over $f \in C^{i} \backslash B^{i}$ looks unnatural at frst sight, but if we recall that $\|[f]\|$ is exactly the "norm" of the element in $f+B^{i}$ which is closest to B^{i}, we see that this corresponds to going over
such that if X is a d-dimensional complex which is an ε-coboundary expander then it is an ε^{1}-topological expander.

Now, combining Theorem 3.5 with Theorem 3.4, one deduces that $\Delta_{n}^{(d)}$ are topological expanders as mentioned in §3.1.

But these are of unbounded degree. Naturally, as the f nitequotients of the high rank Bruhat-Tits building are spectral and geometric expanders, one tends to believe that they are also topological expanoiers. This is still an open problem. Let us say right away that in geieral these quotients (and even the Ramanujan complexes) are not coboundary expanders. As was explained in [44] for many of the lattices Γ in simple p-adic Lie groups, $H^{1}\left(\Gamma \backslash \mathcal{B}, \mathbb{F}_{2}\right) \neq\{0\}$ since it is equal to $H^{1}\left(\Gamma, \mathbb{F}_{2}\right)=\Gamma /[\Gamma, \Gamma] \Gamma^{2}$ (since \mathcal{B} is contractible) and the latter is often non-zero. Thus $h_{i}(\Gamma \backslash \mathcal{B})=0$ and $\Gamma \backslash \mathcal{B}$ is not a coboundary expanders.

Still, one can overcome this dif culty. For this we need another def nition:

Def nition 3.6. A d-dimensional compiex X is called ε-cosystolic expander, if for every $i=0, \ldots, d-1$, one has $\nu_{i}(X) \geq \varepsilon$ and $\mu_{i}(X) \geq \varepsilon$ when:

$$
i^{\prime},(X)=\min _{f 2 C^{i} \mathrm{n} Z^{i}} \frac{\left\|\delta_{i}(f)\right\|}{\| \Gamma f\rceil \|}
$$

where $\lceil f\rceil=f+Z$ and

$$
\|\lceil f\rceil\|=\min \{\|g\| \mid g \in\lceil f\rceil\}
$$

and

$$
\mu_{i}=\min _{f 2 Z^{i} B^{i}}\|f\| .
$$

For later use, let us denote $\mu(X)=\min \mu_{i}(X)$ and $\nu(X)=$ miiii $\nu_{i}(X)$. So, X is ε-cosystolic expansion if $\mu(X) \geq \varepsilon$ and $\nu(X) \geq \varepsilon$. So, X is " ε-cocycle expander"; it may not be coboundary expander if $H^{i} \neq\{0\}$ (for some $i=0, \ldots, d-1$) but at least every representative of a non-trivial cohomology class is "large".

An extension of Gromov's Theorem 3.5 is given in [21]:
Theorem 3.7. Cosystolic expanders are topological expanders.
It is natural to conjecture that the Ramanujan complexes and more generally the quotients of the high rank Bruhat-Tits buildings, while not coboundary expanders, in general, are still cosystolic expanders. But also this is open. What is known is a somewhat weaker result which still suf ces to answer, in the af rmative, Gromov's question on
the existence of bounded degree topological expanders. The following theorem was proved by K aufman-K azhdan-Lubotzky [44] for $d \leq 3$ and by Evra and Kaufman [26] for general d.

Theorem 3.8. Fix $2 \leq d \in \mathbb{N}$, then there exists $\varepsilon=\varepsilon(d)>0$ and $q_{0}=q_{0}(d)$ such that if K is a local non-Archimedean field of fixed residue degree $q>q_{0}$ and $G=G(K)$ with G simple K-group of K-rank d, then the ($d-1$)-skeletons Y of the tinute (d-dimensional) quotients X of the Bruhat-Tits building $\mathcal{B}=\mathcal{B}(G)$ form a family of bounded degree (d d)-dimensional ε-cosystolic expanders.

As this Theorem holds for every d, it solves Gromov's problem, but in a somewhat unexpected way. We do believe that X in the theorem are also cosystolic expanders and not just Y.

Evra and Kaufman in [26], give a quite gseneral combinatorial criterion to deduce a result like Theorem 3.8. They prove that if X is a d-dimensional complex of bounde! dearee all of whose proper links (i.e $\ell k_{X}(F)$ for every face $F \neq \emptyset$. are coboundary expanders, and all the underlying graphs of all the inks (including $\ell k_{X}(\emptyset)=X$) are "very good" expander graphs, then the $(d-1)$-skeleton of X is a cosystolic expander. The reader is rererred to [26] for the exact quantitative formulation. It is in spirit an " \mathbb{F}_{2}-version" of Garland's local to global method described iri s2.2. It will be interesting to strengthen this re sult to the same les' as Garland's, i.e, to assume only that the proper links are coboundary expanders and connected and X is connected. It will beeven rrore interesting if one could deduce (even with the current hypotinesis; that X itself is a cosystolic expander. This will show that the d-dimensional Ramanujan complexes aretopological expanders and not merely their $(d-1)$ skeletons as we now know.

The issue discussed in this section is only the tip of the iceberg. There are many more interesting problems (see [32], [33]) eg. every d-dimensional complex can be embedded in $(2 d+1)$-dimensional Euclidean space, but only some can be embedded in $2 d$. Prove that high dimensional expanders (in some or any of the def nitions) can not.

4. Random simplicial complexes

As mentioned brief y above, the easiest way to prove existence of bounded degree expander graphs is by random methods. One may hope that this can be extended to the higher dimensional case of d dimensional simplicial complexes. But, here the problem is much more
dif cult. In fact, as of now, there is no known "random mode" for d dimensional simplicial complexes of bounded degree (in the strong sense - see below) which gives high dimensional topological expanders. This is surprising as the existence of such topological expanders is known by now by ([44], [26]) as was explained in §3. One may start to wonder if such a model exists at all, or maybe topological bounded degree expanders of high dimension are very rare objects. Perhaps there is a kind of rigidity phenomenon analogue to what is well known by now in Lie theory and locally symmetric spaces: While there are many dif erent Riemann surfaces (parameterized by Teichmüller spaces), the higher dimensional case is completely dif erent and rigidity results say that there are "very few" and mainly the ones coming from arithmetic lattices.

Let us now leave asidesuch a speculation and give a brief background and a short account of the of t7ttáar \square

In [51] Linial and Meshulam initiated such a theory for 2-dimensional simplicial complexes. A theory which shortly afterward was extended in [67] to the general d-dimensional case. The model studied $X^{d}(n, p)$ (nowadays called the Linial-Meshulam moded for random d-dimensional simplicial complexes) is the following: $X \in X^{d}(n, p)$ is a d-dimensional complex with $[n]$ as the set of vertices, X contains the full $(d-1)$ skeleton, i.e, every subset of $[n]$ of size at most d is in X and a subset of size $d+1$ is in X with probability p, independently of theother d-cells. So $X^{1}(n, p)$ is exactly the Erdös-Rényi model. Now, for $d \geq 2$, such an X is always connected. But, note that $X \in X^{1}(n, p)$ is connected if and only if $H^{0}\left(X, \mathbb{F}_{2}\right)=\{0\}$, so Linial, Meshulam and Wallach study for $d \geq 2$ and $X \in X^{d}(n, p)$, when $H^{d}\left(X, \mathbb{F}_{2}\right)=\{0\}$ and proved the following far reaching generalization of the Erdös-Rényi theorem.

Theorem 4.1 ([51] for $d=2$, [67] for all d). The threshold for the homological connectivity, i.e. the vanishing of $H^{d}\left(X, \mathbb{F}_{2}\right)$ for $X \in$ $X^{d}(n, p)$ is $甲$
got a lot of attention. This mode, for $k \geq 3$, gives almost surely expander graphs of bounded degree.

One would like to have such a model for d-dimensional complexes. But frst , what do we mean by bounded degree? There are two natural meanings in the literature, which coincide for $d=1$.

Def nition 4.1. A pure d-dimensional simplicial complex X is of $d^{2} e^{2}$ gree at most k if every vertex of it is contained in at most k cslis of dimension d (and so in at most $2^{d} \cdot k$ cells of any dimension). It is of upper-degree at most k, if every face of dimension $d-1$ is contained in at most k cells of dimension d.

A natural moded of bounded degree simplicial corriplexes $Y^{d}(n, k)$ is given in [28]: Assume, for simplicity, that $(d+1$, n and take a random partition of $[n]$ into $\frac{n}{d+1}$ subsets each of size $d+1$. Choose independently k such partitions and let Y bethe simpliciai complex obtained by taking its cells to be all these $k \frac{n}{d+1}$ subsets as wíll as all their subsets. The case $d=1$ boils down to the standard riodel of Bollobas.

Theorem 4.2 ([28]). For every fixed $d \in \mathbb{N}, \exists k_{0}=k_{0}(d)$, such that for every $k \geq k_{0}$, a complex $Y \in Y^{z}(n, k)$ is almost surely d-dimensional geometric expander.

This theorem is very promising at frst sight, but unfortunately, $Y \in Y^{d}(n, k)$ is cypically neither coboundary expander nor topological expander. To visualize this think about the $d=2$ case: When k is f xed and n very large, for a typical $Y \in Y^{2}(n, k)$, every edge of Y is contäneri in at most one triangle So, homotopically Y looks more like a oriaph and one can map it into \mathbb{R}^{2} with only small size overlapping points.

So, altogether, this is a nice model which certainly deserves further study (eg. what is the threshold for $k_{0}=k_{0}(d)$ in Theorem 4.3?) but it will not give us the stronger versions of expansion (topological, cosystolic, coboundary etc.). As hinted at the beginning of this section, it is still a major open problem to f nd a random mode (if such at all exists) of d-dimensional bounded degree simplicial complexes which will give, say, topological expanders.

The situation with bounded upper degree is better: In [60] Lubotzky and Meshulam gave a moded for 2-dimensional complexes of bounded upper degree (using the theory of Latin squares) and it was shown to produce coboundary expanders (and so also topological expanders). This was generalized to all d by Lubotzky-Luria-Rosenthal [58], with a
slight twist of the construction, replacing the Latin squares by Steiner systems and using the recent breakthrough of Keevash [46] on existence of designs. Let us brief y describe the general moded $W^{d}(n, k)$.

Let $r \leq q \leq n$ be natural numbers and $\lambda \in \mathbb{N}$. An (n, q, r, λ)-design is a collection S of q-element subsets of $[n]$ such that each r-element subset of $[n]$ is contained in exactly λ elements of S. Given $n, d \in \mathbb{N}$, an (n, d)-Steiner system is an $(n, d+1, d, 1)$-design, namely, a collecrion S of subsets of size $d+1$ of $[n]$, such that each set of size d is contained in exactly one element of S. Using the terminology of simpilicial complexes, an (n, d)-Steiner system can be considered as a d-dirīensional simplicial complex of upper degree one Recently, in a gíciundbreaking paper [46], Peter Keevash gave a randomized corsiciricition of Steiner systems for any f xed d and large enough n satisfying certain necessary divisibility conditions (which hold for inf nitely many $n \in \mathbb{N}$). From now on, we will assume that given a $\operatorname{xed} d \in \mathbb{N}$, the value of n satisf es the divisibility condition from Keevasin's theorem.

Keevash's construction of Steiner syiscems is based on randomized algorithm which has two stages whe will explicitly describe the frst stage and use the second stage as a black box.

Given a set of d-cells $A \bigodot_{=(}^{[n]}\left(\frac{n+1}{}\right)$, we call a d-cell τ legal with respect to A if there is no commoin ($d-1$)-cell in τ and in any cell in A. Non-legal cells are also called forbidden cells.

In the f rst staye of Keevash's construction, also known as the greedy stage, one sedets a sequence of d-cells according to the following procedure !in the f rst step, a d-cell is chosen uniformly at random from $\binom{[n]}{d+1}$. Next, at each step a legal d-cell (with respect to the set of d-calis diosen so far) is chosen uniformly at random and is added to the collection of previously chosen d-cells. If no such d-cell exists the aigorithm aborts. The procedure stops when the number of $(d-1)$ cells which do not belong to the boundary of the chosen d-cells is at most $n^{d} \delta_{0}$ for some f xed $\delta_{0}>0$ which only depends on d. In particular, if the algorithm does not abort the number of steps is at least $\left(\binom{n}{d}-n^{d} \delta_{0}\right) /(d+1) \geq n^{d} /(2(d+1)!)$.

In the second stage, Keevash gives a randomized al gorithmthat adds additional d-cells in order to cover the remaining $(d-1)$-cells that are not contained in any of the d-cells chosen in the greedy stage. We do not need to go into the details of this algorithm. The important thing for us is that with high probability the algorithm produces an (n, d)-Steiner system.

Fix $k \in \mathbb{N}$ and let S_{1}, \ldots, S_{k} be k independent copies of (n, d)-Steiner systems chosen according to the above construction, and let X be the d-dimensional simplicial complex whose d-cells are $\bigcup_{i=1}^{k} S_{i}$, so X contains the complete $(d-1)$-skeleton and it is of upper degree at most k.

We can now state the main result of [58]:
Theorem 4.3. Fix $d \in \mathbb{N}$, there exists $k_{0}=k_{0}(d)$ and $\varepsilon=\varepsilon(d)$, such that for every $k \geq k_{0}$, a random complex $W \in W^{d}(n, k)$ is almost surely an ε-coboundary expander, and hence also a topological expander.

It will be of great interest to study various other propeties of this mode. For example, fnd the threshold for $k_{0}(d)$ (the estimates obtained from [58] are huge and it will be very inisersting to give more realistic upper bound, note that for $d=1, k_{0}\left(d^{d}\right)=3$). Another interesting problem is to study $\pi_{1}(W)$-the fundamental group of W; when is it hyperbolic? has propety (T) ? trivia!? The model W behaves w.r.t. the model X as Bollobas' mod'e' w.r.t. Erdös-Rényi, and this suggests many further directions of research on these bounded upper degree complexes.

5. High dimensional expanders and computer science

In recent years higin dimensional expanders have captured the interest of computer scentists and various connections and applications have popp๓d up. Most of these works are in their infancy. We will give here onli, a feiv short pointers on these developments, with the hope and expstation that the future will bring much more

Probabilistically Checkable Proofs: The PCP theorem, proven in the early 90 's (cf. [3, 2]), is a cornerstone of modern computational cormplexity theory stating that proofs can be written in a robust locallytestable format. PCPs are related to many areas within theoretical computer science ranging from hardness of approximation to delegation and ef cient cloud computing.

The basic PCP theorem can be proven using an expander-graphbased construction [19]. For stronger PCPs, eg. with unique constraints, or shorter proof length, or with lower soundness error, stronger forms of expansion seem to be needed, in particular high dimensional expansion might play a pivotal role. Dinur and Kaufman [18] explore replacing the standard direct product construction (also known as paralle repetition [78]) by a much more of cient bounded-degree high dimensional expanders as constructed in [63, 62]. Direct products are
ubiquitous in complexity, especially as a useful hardness amplif cation construction, and bounded-degreehigh dimensional expanders may potentially be useful in many of those settings.

Locally testable codes: LTCs are an information-theoretic analog of PCPs. These error correcting codes have the additional property that it is possible to locally test whether or not a received word is close to being a codeword. Unlike many problems in coding thisory, this is a property that random codes do not have. This makes it serei more challenging to settle the problem whether LTCs can have both linear rate and distance. The current best construction comes from a PCP and its rate is inverse poly-logarithmic [6, 19]. Hiợ dimensional expanders naturally yied locally testable codes, winose parameters are unfortunately sub-optimal.

Property testing: The central paradion! in property testing is the interplay between local views of an object and its global properties. The object can be a codeword, an NP-proof, or simply a graph. This theory generalizes both PCPs and !-TC's and has signif cant practical applications. It was an unexpented discovery that high dimensional expanders (and especially the cohorrological/ coboundary expanders mentioned above) ft very nativrally into this theory [45]. Specif cally, the orems about high dimerisional expanders readily translateto results on property testing

Quantum computation and quantum error correcting codes:

 Sipser and Spielman [82] showed how extremely good expander graphs yield excelient LDPC error-correcting codes. However, the existence of LDPC quidantum error-correcting codes (even inexplicitly) remains a majior open problem. Recent work by Guth and Lubotzky [36] is a step irithis direction, which is related to our topic: Every simplicial complex gives a "homological error correcting code" (see [8], [88]) but in general they are of poor quality. High dimensional coboundary expanders are related to local testability of codes (see [1]).Another basic problem in quantum computation seeks a f nite universal set of quantum gates that can ef ciently generate an arbitrary unitary matrix in $U(n)$ to desired accuracy. This is solved by Kitaev and Solovay's classical algorithm, but non-optimally. The generators of Lubotzky-Phillips-Sarnak's Ramanujan graphs [53] fare better, but come with no ef cient generative algorithm. Following the breakthrough of Ross-Selinger [79], the case $n=2$ is essentially solved in a
recent work by Sarnak and Parzanchevski [76] who came up with optimal (a.k.a. golden) gates and an explicit generative algorithm based on Ramanujan graphs. In ongoing work they use higher dimensional Ramanujan complexes to f nd such "golden gates" for higher n [73].

Acknowledgments: The author is indebted to S. Evra, G. Kalai, N. Linial, O. Parzanchevski and R. Rosenthal for remarks on an earlier version of this paper which greatly improved it. In addition, triank; are due to ERC, NSF and BSF their support.

References

[1] Dorit Aharonov and Lior Eldar. Quantum locally testabie codes. SIAM J. Comput., 44(5):1230-1262, 2015.
[2] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Miadhu Sudan, and Mario Szegedy. Proof verification and the hardness oi approximation problems. J. ACM, 45(3):501-555, 1998.
[3] Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs: a new characterization of NP. J. ACM, 45(1):70-12\%, 1998.
[4] W. Ballmann and J. Świątkowski. On L^{2}-cohomology and property (T) for automorphism groups of polyhedral cell complexes. Geom. Funct. Anal., 7(4):615-645, 1997.
[5] Imre Bárány. A generalization oí Carathéodory's theorem. Discrete Math., 40(2-3):141-152, 1982.
[6] Eli Ben-Sasson and Nadhu Sudan. Short PCPS with polylog query complexity. SIAM J. Comprit, 38(2):551-607, 2008.
[7] Béla Bollobás. A provabilistic proof of an asymptotic formula for the number of labelled regular graphs. European J. Combin., 1(4):311-316, 1980.
[8] H. Bombir and M. A. Martin-Delgado. Homological error correction: classical and quanturi codes. J. Math. Phys., 48(5):052105, 35, 2007.
[9] A. Borel and G. Harder. Existence of discrete cocompact subgroups of reductive groups over local fields. J. Reine Angew. Math., 298:53-64, 1978.
[10] Armand Borel. Cohomologie de certains groupes discretes et laplacien p-adique (d'après H. Garland). pages 12-35. Lecture Notes in Math., Vol. 431, 1975.
[11] Armand Borel and Nolan R. Wallach. Continuous cohomology, discrete subgroups, and representations of reductive groups, volume 94 of Annals of Mathematics Studies. Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1980.
[12] E. Boros and Z. Füredi. The number of triangles covering the center of an n-set. Geom. Dedicata, 17(1):69-77, 1984.
[13] F. Bruhat and J. Tits. Groupes réductifs sur un corps local. Inst. Hautes Études Sci. Publ. Math., (41):5-251, 1972.
[14] Donald I. Cartwright, Patrick Solé, and Andrzej Żuk. Ramanujan geometries of type ${ }_{n}$. Discrete Math., 269(1-3):35-43, 2003.
[15] W. Casselman. On a p-adic vanishing theorem of Garland. Bull. Amer. Math. Soc., 80:1001-1004, 1974.
[16] Marcus De Chiffre, Lev Glebsky, Alex Lubotzky, and Andreas Thom. Stability, cohomology vanishing, and non-approximable groups. 2017.
[17] Anton Deitmar and Ming-Hsuan Kang. Geometric zeta functions for higher rank p-adic groups. Illinois J. Math., 58(3):719-738, 2014.
[18] I. Dinur and T. Kaufman. High dimensional expanders imply agreement expanders. In Electronic Colloquium on Computational Complexity (ECCC), volume 24, page 89, 2017.
[19] Irit Dinur. The PCP theorem by gap amplification. J. ACM, 54(3):Art. 12, 44,
[39] Amitay Kamber. lp expander complexes. 2016.
[40] Amitay Kamber. lp expander graphs. 2016.
[41] Ming-Hsuan Kang. Riemann hypothesis and strongly Ramanujan complexes from GL n_{n}. J. Number Theory, 161:281-297, 2016.
[42] Ming-Hsuan Kang and Wen-Ching Winnie Li. Zeta functions of complexes arising from PGL(3). Adv. Math., 256:46-103, 2014.
[43] Ming-Hsuan Kang, Wen-Ching Winnie Li, and Chian-Jen Wang. The zeta functions of complexes from PGL(3): a representation-theoretic approach. Israel J. Math., 177:335-348, 2010.
[44] Tali Kaufman, David Kazhdan, and Alexander Lubotzky. Isoperimetric in. equalities for Ramanujan complexes and topological expanders. Geom. Funct. Anal., 26(1):250-287, 2016.
[45] Tali Kaufman and Alexander Lubotzky. High dimensional expanders and property testing. In ITCS'14-Proceedings of the 2014 Conference on Innovations in Theoretical Computer Science, pages 501-506. ACM, New York, 2014.
[46] Peter Keevash. The existence of designs.
[47] Antti Knowles and Ron Rosenthal. Eigenvalue confinement and spectral gap for random simplicial complexes. Random Structures Algorithms, 51(3):506537, 2017.
[48] Marcin Kotowski and Michał Kotowski Random groups and property (T) : żuk's theorem revisited. J. Lond. Math. Soc (2), 88(2):396-416, 2013.
[49] Laurent Lafforgue. Chtoucas de Driríld et correspondance de Langlands. Invent. Math., 147(1):1-241, 2002.
[50] W.-C. W. Li. Ramanujan hypergraphs. Geom. Funct. Anal., 14(2):380-399, 2004.
[51] Nathan Linial and Roy Meshularn. Homological connectivity of random 2complexes. Combinatorica, 26(4):475-487, 2006.
[52] Eyal Lubetzky, Alex Lubotzky, and Ori Parzanchevski. Random walks on ramanujan complexes and digraphs.
[53] A. Lubotzky, Fi. Prillips, and P. Sarnak. Hecke operators and distributing points on S^{2}. II. Comm. Pure Appl. Math., 40(4):401-420, 1987.
[54] A. Lubotziky, R. Phillips, and P. Sarnak. Ramanujan graphs. Combinatorica, 8(3):261-277, 1988.
[55] Aitexander Lubotzky. Discrete groups, expanding graphs and invariant measures, volume 125 of Progress in Mathematics. Birkhäuser Verlag, Basel, 1994. With an appendix by Jonathan D. Rogawski.
[56] Aiexander Lubotzky. Expander graphs in pure and applied mathematics. Bull. Amer. Math. Soc. (N.S.), 49(1):113-162, 2012.
[57] Alexander Lubotzky. Ramanujan complexes and high dimensional expanders. Jpn. J. Math., 9(2):137-169, 2014.
[58] Alexander Lubotzky, Zur Luria, and Ron Rosenthal. Random steiner systems and bounded degree coboundary expanders of every dimension. 2015.
[59] Alexander Lubotzky and Roy Meshulam. A Moore bound for simplicial complexes. Bull. Lond. Math. Soc., 39(3):353-358, 2007.
[60] Alexander Lubotzky and Roy Meshulam. Random Latin squares and 2dimensional expanders. Adv. Math., 272:743-760, 2015.
[61] Alexander Lubotzky, Roy Meshulam, and Shahar Mozes. Expansion of building-like complexes. Groups Geom. Dyn., 10(1):155-175, 2016.
[62] Alexander Lubotzky, Beth Samuels, and Uzi Vishne. Explicit constructions of Ramanujan complexes of type ${ }_{d}$. European J. Combin., 26(6):965-993, 2005.
[63] Alexander Lubotzky, Beth Samuels, and Uzi Vishne. Ramanujan complexes of type ${ }_{d}$. Israel J. Math., 149:267-299, 2005. Probability in mathematics.
[64] Adam W. Marcus, Daniel A. Spielman, and Nikhil Srivastava. Interlacing families I: Bipartite Ramanujan graphs of all degrees. Ann. of Math. (2), 182(1):307-325, 2015.
[65] G. A. Margulis. Explicit group-theoretic constructions of combinatorial schemes and their applications in the construction of expanders and concentrators. Problemy Peredachi Informatsii, 24(1):51-60, 1988.
[66] G. A. Margulis. Discrete subgroups of semisimple Lie groups, volume 17 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]. Springer-Verlag, Berlin, 1991.
[67] R. Meshulam and N. Wallach. Homological connectivity of raniom k. dimensional complexes. Random Structures Algorithms, 34(3):408-1 i7, 2009.
[68] Hee Oh. Uniform pointwise bounds for matrix coefficients of unitary representations and applications to Kazhdan constants. Duke Math. J, 113(i):133-192, 2002.
[69] Izhar Oppenheim. Vanishing of cohomology with coefficients in representations on Banach spaces of groups acting on buildings. Cominent. Math. Helv., 92(2):389-428, 2017.
[70] Izhar Oppenheim. Local Spectral Expansion Approach to High Dimensional Expanders Part I: Descent of Spectral Gaps. Discrete Comput. Geom., 59(2):293-330, 2018.
[71] János Pach. A Tverberg-type result on multicolored simplices. Comput. Geom., 10(2):71-76, 1998.
[72] Pierre Pansu. Formules de Matsushima, de Garland et propriété (T) pour des groupes agissant sur des espaces syrnétriques ou des immeubles. Bull. Soc. Math. France, 126(1):107-139, 1093.
[73] O. Parzanchevski and P Samak. Golden-gates for $p u(3)$ and $p u(4)$. In preparation.
[74] Ori Parzanchevski and Ron Rosenthal. Simplicial complexes: spectrum, homology and random walks. Random Structures Algorithms, 50(2):225-261, 2017.
[75] Ori Parzanchevski. Ron Rosenthal, and Ran J. Tessler. Isoperimetric inequalities in simplicial complexes. Combinatorica, 36(2):195-227, 2016.
[76] Ori Parzarckevski and Peter Sarnak. Super-Golden-Gates for PU(2). Adv. Matn., 32.7-869-901, 2018.
[77] Vianimir Platonov and Andrei Rapinchuk. Algebraic groups and number theory, volume 139 of Pure and Applied Mathematics. Academic Press, Inc., Boston, MA, 1994. Translated from the 1991 Russian original by Rachel Rowen.
[78] Ran Raz. A parallel repetition theorem. SIAM J. Comput., 27(3):763-803, 1998.
[79] Neil J. Ross and Peter Selinger. Optimal ancilla-free Clifford $+T$ approximation of z-rotations. Quantum Inf. Comput., 16(11-12):901-953, 2016.
[80] Alireza Sarveniazi. Explicit construction of a Ramanujan $\left(n_{1}, n_{2}, \ldots, n_{d-1}\right)$ regular hypergraph. Duke Math. J., 139(1):141-171, 2007.
[81] Jean-Pierre Serre. Trees. Springer-Verlag, Berlin-New York, 1980. Translated from the French by John Stillwell.
[82] Michael Sipser and Daniel A. Spielman. Expander codes. IEEE Trans. Inform. Theory, 42(6, part 1):1710-1722, 1996. Codes and complexity.
[83] John Steenbergen, Caroline Klivans, and Sayan Mukherjee. A Cheeger-type inequality on simplicial complexes. Adv. in Appl. Math., 56:56-77, 2014.
[84] Christopher K. Storm. The zeta function of a hypergraph. Electron. J. Combin., 13(1):Research Paper 84, 26, 2006.
[85] A. Thom. Finitary approximation of groups and their applications. In Proc. of the Int. Congress of Mathematicians 2018, Rio de Janeiro, Rio de Janeiro, 2018. SBM and World Scientific.
[86] Alain Valette. Graphes de Ramanujan et applications. Astérisque, (245):Exp. No. 829, 4, 247-276, 1997. Séminaire Bourbaki, Vol. 1996/97.
[87] N. C. Wormald. Models of random regular graphs. In Surveys in combinatorics, 1999 (Canterbury), volume 267 of London Math. Soc. Lecture Note Ser., pages 239-298. Cambridge Univ. Press, Cambridge, 1999.
[88] Gilles Zémor. On Cayley graphs, surface codes, and the limits of homelogicai coding for quantum error correction. In Coding and cryptology, volume 555 : of Lecture Notes in Comput. Sci., pages 259-273. Springer, Berlin, 2009.
[89] A. Żuk. Property (T) and Kazhdan constants for discrete groups. Geom. Funct. Anal., 13(3):643-670, 2003.

```
Instititue of Mathematics
    Hebrew University
    J erusalem 9190401.
        Israe
alex.lubotzky@m*cin.riiji.ac.il
```

