Knots, three-manifolds and instantons

P. B. Kronheimer and T. S. Mrowka

Low-dimensional topology is the study of manifolds and cell complexes in dimensions four and below. Input from geometry and analysis has been central to progress in this field over the past four decades, and this article will focus on one aspect of these developments in particular, namely the use of Yang-Mills theory, or gauge theory. These techniques were pioneered by Simon Donaldson [7, 9] in his work on 4-manifolds, but the past ten years have seen new applications of gauge theory, and new inieractions with more recent threads in the subject, particularly in 3-dimensional topcingy.

This is a field where many mathematical techniques have fornd applications, and sometimes a theorem has two or more independent proofs, drawing on more than one of these techniques. We will focus primarily on some questions and results where gauge theory plays a special role.

1. Representations of fundamencal groups

1.1. Knot groups and their representstions. Knots have long fascinated mathematicians. In topology, they provide blueprints for the construction of manifolds of dimension three and four. For this exposition, a knot is a smoothly embedded circle in 3-space, and a link is a disjoint union of knots. The simplest examples, the trefoil knot and the Hopf link, are shown in Figure 1 alongside the trivial round circle, the "unknot".

Knot theory is a subiect with many aspects, but one place to start is with the knot group, defined as the fundamental group of the complement of a knot $K \subset \mathbb{R}^{3}$. We will write it as $\pi(K)$. For the uriknot, $\pi(K)$ is easily identified as \mathbb{Z}. One of the basic tools of 3-dimensional topology is Dehn's Lemma, proved by Papakyriakopoulos in 1957, which provides a convers:

Thecrem 1.1 (Papakyriakopoulos, [38]). If the knot group $\pi(K)$ is \mathbb{Z}, then K is the unknot.

Figure 1. The unknot, trefoil and Hopf link.

[^0]It is a consequence of Alexander duality that the abdianization of $\pi(K)$ is \mathbb{Z} for any knot. (This is the first homology of the complement.) So we may restate the result above as saying that the unknot is characterized by having abelian fundamental group. In particular, if we are able to find a homomorphism $\pi(K) \rightarrow G$ with non-abelian image in any target group G, then K must be genuinely knotted. We begin our account of more modern results with the following theorem.

Theorem 1.2 (Kronheimer-Mrowka, [29]). If K is a non-trivial knot, then thereejists a homomorphism,

$$
\rho: \pi(K) \rightarrow \mathrm{SO}(3),
$$

with non-abdian image, fromtheknot group to the 3 -dimensional rotation grioup.

There are two aspects to why this result is interesting. First, reprasentations of the knot group in particular types of target groups are a central part of the subject: the case that G is dihedral leads to the "Fox colorings" [16], and the more gereral case of a twostep solvable group is captured by the Alexander polynomiai and related invariants. But there are non-trivial knots with no Fox colorings and triviai Alexander polynomial. It is known that $\pi(K)$ is always a residually finite groip, so there are always non-trivial homomorphisms to finite groups; but it is perhaps surprising that the very smallest simple Lie group is a target for all non-trivial knots.

Secondly, the theorem is of interest for the techiniques that are involved in its proof, some of which we will describe later. A rich collection of tools from gauge theory are needed, and these are coupled with more classical tools from 3-dimensional topology, namely the theory of incompressible sufaces and decomposition theory, organized in Gabai's theory of sutured manifoilds [17].
1.2. Orbifolds from knots. The knot group $\pi(K)$ has a distinguished conjugacy class, namely the class of the meridional dements. A meridional element m is one represented by a small loop running once around a circle linking K. If we take a planar diagram of a knot (a generic projection of K into \mathbb{R}^{2}), and take our basepoint for the fundamental group to lie above the plane, then there is a distinguished meridional element m_{e} for each arc e of the diagram (a path running from one undercrossing to the next). The elements m_{e} generate the knot group and satisfy a relation at each crossing, the Wirtinger relations [16]. (See Figure 2.)

Thieorem 1.2 can be refined to say that ρ can be chosen so that $\rho(m)$ has order 2 in $S(3)$, for one (and hence all) meridional elements. This refinement can be helpfully reinterpreted in terms of the fundamental group of an orbifold Recall that an orbifold is a space locally modeled on the quotient of a manifold by a finite group, and that its singular set is the locus of points which have non-trivial stabilizer in the local models. Given a knot or link K in a 3-manifold Y, one can equip Y with the structure of an orbifold whose non-trivial stabilizers are all $\mathbb{Z} / 2$ and whose singular set is K. Let us write $\operatorname{Orb}(Y, K)$ for this orbifold. The orbifold fundamental group in this situation can be described as the fundamental group of the complement of the singular set with relations

$$
m^{2}=1
$$

imposed, for all meridional elements. Thus the refinement we seek can be stated:
Theorem 1.3 (Kronheimer-Mrowka, [29]). If K is a non-trivial knot in S^{3}, and $O=$ $\operatorname{Orb}\left(S^{3}, K\right)$ is the corresponding orbifold with $\mathbb{Z} / 2$ stabilizers, then thereexists a homomorphismfrom the orbifold fundamental group,

$$
\rho: \pi_{1}(O) \rightarrow \mathrm{SO}(3)
$$

Figure 2. (A) The Wirtinger redation, $m_{f} m_{e_{2}}=m_{e_{1}} m_{\varepsilon_{f}}$ holds in the fundamental group of the complement. (в) The corresponding points on the sphere lie on a geodesic arc. The reflection about the green axis interchanges the two blue points.

with non-abdian image

Using the Wirtinger presentation described above, this result can be given a concrete interpretation. An element of order 2 ini $\Sigma(3)$ is a 180° rotation about an axis A in \mathbb{R}^{3}, an these are therefore parametrized by the points A of $\mathbb{R} \mathbb{P}^{2}$. So if we are given a diagram of K, then a representation $\rho \cdot \pi(K) \rightarrow \mathbf{S O}(3)$ which sends meridians to elements of order 2 can be described by giving a point $A(e)$ in $\mathbb{R} \mathbb{P}^{2}$ for each arc e, satisfying a collection of constraints coming from the Wirtinger relations at the crossings. So the concrete version of Theorem 1.3 is the following.

Theorem i.4. Given any diagram of a non-trivial knot K, we can f nd a non-trivial assignment $e \mapsto A(e)$,

$$
\{\text { arcs of thediagram }\} \rightarrow \mathbb{R} \mathbb{P}^{2}
$$

so that inefoilowing condition holds: whenever e_{1}, e_{2}, f arearcs meeting at a coossing, with f being the overrossing arc (seeFigure ${ }^{2}$), the point $A\left(e_{2}\right)$ is theref ection of $A\left(e_{1}\right)$ in the poirt $A(f)$.

The last condition in the theorem means that $A\left(e_{1}\right), A(f), A\left(e_{2}\right)$ are equally spaced along a geodesic, see Figure 2. The case that all the $A(e)$ are equal is the trivial case, and corresponds to the abelian representation. Dihedral representations arise when the points $A(e)$ lie at the vertices of a regular polygon on \mathbb{R}^{1}. A configuration corresponding to a non-dihedral representation of the $(5,7)$-torus knot is illustrated in Figure 3 .
1.3. Three-manifolds and $\boldsymbol{S O}$ (3). Having considered a knot or link in \mathbb{R}^{3} and an associated orbifold, we consider next a closed 3-manifold Y and its fundamental group $\pi_{1}(Y)$. From the solution of the Poincaré conjecture [33], we know that $\pi_{1}(Y)$ is nontrivial if Y is not the 3 -sphere. Motivated by the discussion of knot groups in the previous section, one might ask:

Question 1.5. Let Y bea dosed 3-manifold with non-trivial fundamental group. Does thereexist a non-trivial homomorphism $\rho: \pi_{1}(Y) \rightarrow \mathbf{S O}(3)$?

Figure 3. The green arcs in the diagram on the lefi contain all the over-crossings. The blue arcs consist only of under-crossings. In the right-hand picture, the green vertices are axes $A_{(}(e)$ corresponding to green $\operatorname{arcs} e$ in the knot diagram. The blue vertices correspond to blue arcs.

It is not known whether the answer is $y \approx s$ in general. Stated this way, the interesting case for this question is when Y is a homrlogy 3-sphere i.e. a 3-manifold with the same (trivial) homology as S^{3}. (If Y has non-trivial homology, then $\pi_{1}(Y)$ has a cyclic group as a quotient, and there will always be a representation in $\mathrm{SO}(3)$ with cyclic image.) For homology 3-spheres, an affrmative answer to the question is known when Y has nonzero Rohlin invariant [1], when Y is obtained by Dehn surgery on a knot in S^{3} [27, 29], or when Y carries a taut foliation [28]. See also [3].

There is an interesting variant of this question, for 3-manifolds with non-trivial homology. A representition $\rho: \pi_{1}(Y) \rightarrow \mathrm{SO}(3)$ defines a flat vector bundle on Y with fiber \mathbb{R}^{3}, and such a vector bundle has a second Stiefel-Whiney class w_{2}. Thus the representations ρ can be giouped by this class,

$$
w_{2}(\rho) \in H^{2}(Y ; \mathbb{Z} / 2) .
$$

which is the obstruction to lifting ρ to the double cover $\mathrm{SU}(2) \rightarrow \mathrm{SO}(3)$. The following result completely describes the classes which arise as $w_{2}(\rho)$.

Theorem 1.6. [29] Let Y bea dosed, oriented 3-manifold and let $\omega \in H^{2}(Y ; \mathbb{Z} / 2)$ be given. Suppose that for every embedded 2-sphere S in Y, the pairing $\omega \cdot[S]$ is zero mod 2. T en thereexists a homomorphism $\rho: \pi_{1}(Y) \rightarrow \mathbf{S O}(3)$ with $w_{2}(\rho)=\omega$.

Remark 1.7. The restriction on ω is also necessary as well as sufficient, because a flat vector bundle on a 2-sphere is trivial and must therefore have trivial Stiefel-Whitney class on the sphere.

Remark 1.8. The condition on $\omega \cdot[S]$ is automatically satisfied if Y is irredudible i.e. if every 2 -sphere in Y bounds a ball. To prove the theorem it is enough to consider only irreducible 3-manifolds.

Remark 1.9. If ρ has cyclic image, then $w_{2}(\rho)$ has a lift to a torsion class in the integer homology, $H^{2}(Y)$. The case that there is no such lift is the case that $w_{2}(\rho)$ has non-trivial
image in $\operatorname{Hom}\left(H_{2}(Y), \mathbb{Z} / 2\right)$, and in this case ρ must be non-cyclic. The case that ω has non-trivial image in $\operatorname{Hom}\left(H_{2}(Y), \mathbb{Z} / 2\right)$ is the difficult case for the theorem.

An interesting special case of this theorem is the case that Y is the mapping torus of a diffeomorphism, $h: \Sigma_{g} \rightarrow \Sigma_{g}$, of a surface of genus g. The conjugacy classes of representations $\pi_{1}\left(\Sigma_{g}\right) \rightarrow \mathbf{S O}(3)$ with non-zero w_{2} are parametrized by an orbifold $M\left(\Sigma_{g}\right)$ of dimension $6 g-6$, and the diffeomorphism h gives rise to a map $h^{*}: M\left(\Sigma_{g}\right) \rightarrow M\left(\Sigma_{g}\right)$ by pull-back. It is then a consequence of the above theorem that the diffeomoiphismi h^{*} has fixed points in $M\left(\Sigma_{g}\right)$. In this form, the result was proved independently and with different methods by Ivan Smith [42].
1.4. Spatial graphs. A spatial graph is a graph (tamely) embedded as a topological space in \mathbb{R}^{3}. We will be interested here in finite, trivalent graphs (als) ealied cubic graphs). Thus we are generalizing classical knots and links by allowing vertices of valence 3 . We allow that the set of vertices may be empty, so knots and links are included as a special case, regarded as vertexless graphs. There is a significant literature on spatial graphs: see for example [4].

As with knots and links, we write $\pi(K)$ for the fendamental group of the complement of a spatial graph $K \subset \mathbb{R}^{3}$. For each edge e of K, there is corresponding distinguished conjugacy class of meridional curves m_{e}, obtained from the small circles linking e. Following the same lines as before, we wish to study representations of $\pi(K)$ in $\mathrm{SO}(3)$, with the constraint that the meridional elements map to elements of order 2. Representations of this sort are parametrized by a topological space, the representation variety,

$$
\begin{equation*}
\mathcal{R}(K)=\left\{\rho: \pi(K)-\mathbf{S O}(3) \mid \rho\left(m_{e}\right) \text { has order } 2 \text { for all edges } e\right\} \tag{1}
\end{equation*}
$$

As with knots and links, ihis representation variety for a spatial graph can be interpreted as a space of reoresentations for the fundamental group of an orbifold. Given a trivalent graph K iii a 3-manifold Y, we may construct a 3-dimensional orbifold $\operatorname{Orb}(Y, K)$ whose underlying topological space is Y, whose singular set is K, and whose local stabilizer groups are $\nless / 2$ at the interior points of edges of K. At vertices of K where three edges meet, the ic cal model for the orbifold is the quotient of the 3-ball by the Klein fourgroup, V_{4}. In inis way, $\mathcal{R}(K)$ becomes the space of homomorphisms from the orbifold fundainental group,

$$
\rho: \pi_{1}\left(\operatorname{Orb}\left(S^{3}, K\right)\right) \rightarrow \mathrm{SO}(3)
$$

with the additional property that ρ is injective on each of the non-trivial local stabilizer groups.

The Klein 4 -group V_{4} is contained in $\mathrm{SO}(3)$ as the subgroup of diagonal matrices, and representations $\rho: \pi(K) \rightarrow \mathrm{SO}(3)$ with image in V_{4} play a special and already subtle role. Since V_{4} is abelian, a representation into the Klein four-group factors through the abelianization of $\pi(K)$, namely the homology $H_{1}\left(S^{3} \backslash K\right)$), so we are considering homomorphisms

$$
\tau: H_{1}\left(S^{3} \backslash K\right) \rightarrow V_{4}
$$

which map meridional elements to elements of order 2 . If we write the elements of V_{4} as $\{1, A, B, C\}$, then τ assigns one of three "colors" $\{A, B, C\}$ to each edge e, and this coloring must satisfy the constraint that, at a vertex, the colors of the three incident edges are all different (because the sum of the corresponding elements of H_{1} is zero). Such a 3-coloring of the edges of a trivalent graph is a called a Tait coloring. So we have:

Proposition 1.10. For a trivalent spatial graph K, therepresentations $\rho \in \mathcal{R}(K)$ whose imageis contained in theKlein 4-group V_{4} arein oneto-onecorrespondence with Tait colorings of K.

Notice in particular that this set depends only on the abstract graph K, independent of the embedding. This is a reflection of the fact that the homology group $H_{1}\left(S^{3} \backslash K\right)$ is isomorphic to $H^{1}(K)$ by Lefschetz duality.

The question of whether a cubic graph admits a Tait coloring is difficult. Incteed Tait [43] observed that the four color theorem [2, 40] could be reframed as a question about the existence of Tait colorings as follows. A planar map determines a graph, giving the borders of the countries. A map is called proper if no country has a border with itself, in which case the graph of the borders is bridgeless; that is, no edge (or "bridge") can be removed making the graph disconnected. It is also elementarv to see that it suffices to verify the four color theorem for planar maps whose border graph is trivalent. Tait's observation is that the four-colorability of the regions of the map is equivalent to the existence of a Tait coloring of the border graph. So the four color theorem is equivalent to the statement that every bridgeless trivalent grapin admits a Tait coloring.

While the methods of gauge theory at the time of writirg have not given a proof the four color theorem, one can prove some suggestive results. To state the main result we observe that for spatial graphs there is a natural eyiension of being bridgeless. A spatial bridge is an edge of a spatial graph K for which the meridional loop is contractible in the complement of the graph. Equivalently, it is ate edge e for which we can find a sphere S for which $K \cap S$ is a single point of e, with transverse intersection. Note that the existence of such a spatial bridge implies that $\mathcal{K}(K)$ is empty. The converse is the following non-trivial theorem.

Theorem 1.11. [26i for any trivalent graph $K \subset \mathbb{R}^{3}$ without a spatial bridge the representation variety $\mathcal{R}(F)$ is non-empty.

We conclude this section with some remarks to put this result in context. There is an action of S() 3) on $\mathcal{R}(K)$ by conjugacy. Representation with image V_{4} are characterized by the fact their stabilizer is exactly V_{4} under this action. For a graph with at least one vertex, the possible groups that can arise as stabilizers are $V_{4}, \mathbb{Z} / 2$ and the trivial group. One can show (see [26]) that, for planar graphs, if there is a representation with nontrivial stabilizer then there is also one with V_{4} stabilizer, and hence a Tait coloring of K. Theorem 1.11 is agnostic regarding the possible stabilizers of the representation that it guarantees. There are planar graphs with only V_{4} representations, as well as many with both V_{4} representations and irreducible representations (the simplest being the 1-skeleton of the dodecahedron.)

Bridgeless trivalent graphs with no Tait colorings are called snarks. The simplest one is the Petersen graph, shown in a spatial embedding in Figure 4.

Trivially, the four color theorem says that there are no planar snarks. For any spatial embedding of a snark, Theorem 1.11 guarantees the existence of a representation $\pi(K) \rightarrow$ SO(3).

Theorem 1.11 also says that even a graph with a bridge, when embedded in a spatially bridgeless manner, will have a nontrivial representation. An example is shown Figure 5 . On the left, the "handcuffs" are shown embedded in \mathbb{R}^{3} with a spatial bridge, and the representation variety $\mathcal{R}\left(K_{1}\right)$ is empty. On the right, the same abstract graph is shown with a more interesting embedding. The representation variety $\mathcal{R}\left(K_{2}\right)$ in this case consists

Figure 4. The dodecahedral graph admits a Tait coloring, while the Petersen graph, the simplest snark, has none.

Figure 5. The staridard handcuffs and the tangled handcuffs.
of the $\mathrm{SO}(3)$ orbit of a single representation ρ whose image in $\mathrm{SO}(3)$ is the symmetry group of a cube.

2. Background on instantons and four-manifolds

The theorems discussed above are proved by means of more general results based on non-vanishing theorems for Floer's instanton homology for 3-manifolds, first introduced in [15. Before introducing the instanton homology groups, we discuss their natural historical precursor, the invariants of smooth 4-manifolds developed by Simon Donaldson in the 1980's [9].
2.1. Instanton moduli spaces. The story begins with the work of Donaldson and his use of gauge theory in 4-dimensional topology. On an oriented Riemannian manifold X of dimension $2 n$, the Hodge $*$-operator maps n-forms to n-forms,

$$
*: \Omega^{n}(X) \rightarrow \Omega^{n}(X)
$$

and satisfies $*^{2}=(-1)^{n}$. When n is even, this gives rise to a decomposition into the ± 1 eigenspaces, the self-dual and anti-self-dual n-forms,

$$
\Omega^{n}(X)=\Omega_{+}^{n}(X) \oplus \Omega_{-}^{n}(X)
$$

The case of dimension 4 and $n=2$ plays a special role, because if $E \rightarrow X$ is a vector bundle and A is a connection in E, then the curvature of the connection is a 2 -form with
values in the endomorphisms of E :

$$
F_{A} \in \Omega^{2}(X ; \operatorname{End}(E)) .
$$

Only in dimension 4, therefore, we can decompose the curvature into its self-dual and anti-self-dual parts, $F_{A}^{+}+F_{A}^{-}$and we can consider the anti-self-dual Yang-Millsequations,

$$
F_{A}^{+}=0
$$

The solutions are the anti-seff-dual connections A, sometimes called instantons on X.
We shall first consider the case that the structure group G for the bundle is $\operatorname{SiJ}(i v)$, so that E is a rank- N bundle with a hermitian metric and trivialized deterininant. Our connections A will be $\operatorname{SU}(N)$ connections: they will respect the trivialization. The isomorphism classes of pairs (E, A) consisting of an $\operatorname{SU}(N)$ bundle E with an anti-self-dual connection A are parametrized by a moduli space $M_{N}(X)$ (which cependis also on the Riemannian metric). When X is closed and connected, the bundles E ihemselves are classified by a single integer k, the second Chern number, or instanton number,

$$
k=c_{2}(E)[X]
$$

We therefore have a decomposition

$$
M_{N}(X)=\underbrace{}_{k} \Lambda_{N N}(X)
$$

Each $M_{N, k}(X)$ is finite-dimensional, and for generic choice of Riemannian metric it will be a smooth manifold, except at reduinle solutions: i.e. those where A preserves some orthogonal decomposition of E. An index calculation yields a formula for the dimension of $M_{N, k}$,

$$
\begin{equation*}
\operatorname{dim} M_{N, k}=4 N k-\left(N^{2}-1\right)(\chi+\sigma) / 2 \tag{2}
\end{equation*}
$$

in which χ and σ are the signature an Euler number of X. The quantity $(\chi+\sigma) / 2$ is an integer, which can also be written as

$$
b_{+}^{2}-b^{1}+1
$$

where b^{i} is the rank of $H^{i}(X)$ and b_{+}^{2} is the dimension of a maximal positive-definite subspace for the quadratic form on $H^{2}(X ; \mathbb{R})$ defined by the cup-square.

The space $M_{N, k}(X)$ will usually be non-compact, because there may be sequences of sointions $\left(E_{n}, A_{n}\right)$ in which the point-wise norm of the curvature, $\left|F_{A_{n}}\right|$, diverges near finitely many points in X, a "bubbling" phenomenon analyzed by Uhlenbeck in [47].

Having associated to each closed Riemannian 4-manifold an infinite sequence of new spaces, one is led to ask whether the moduli spaces $M_{N, k}(X)$ are non-empty. Do the anti-self-dual Yang-Mills equations have solutions? This question was answered in the affirmative by Taubes [44, 45], who constructed solutions on general 4-manifolds X using a grafting technique to transfer standard solutions from flat \mathbb{R}^{4}. Taubes' results tell us in particular that $M_{2, k}(X)$ is non-empty for all $k \geq k_{0}$, where the value of k_{0} depends only on the topology of X. The resulting solutions have curvature concentrated near points in X, the same situation that is allowed in Uhlenbeck's work.
2.2. Donaldson's polynomial invariants. Although they may be non-compact, Donaldson showed that the moduli spaces $M_{N, k}(X)$ have sufficient compactness properties as a consequence of Uhlenbeck's theorems that they may (under mild conditions) be regarded as possessing a fundamental dass $\left[M_{N, k}(X)\right]$ in the homology of the ambient
space in which they sit, namely the space $\mathcal{B}_{N, k}(X)$ which parametrizes all isomorphism classes of $\operatorname{SU}(N)$ connections with instanton number k.

To elaborate on this, the space $\mathcal{B}_{N, k}(X)$ (or more relevantly, the open subspace $\mathcal{B}_{N, k}^{*}(X)$ of irreducible connections) has a well-understood topology, and the "fundamental class" $\left[M_{N, k}(X)\right]$ gives rise to a rich collection of invariants, the Donaldson invariants of X. For these to be defined, it is important that the moduli space be contained in the irreducible part, $\mathcal{B}_{N, k}^{*}(X)$, and this will be true for $N=2$ and for generic choice of Riemannian metric, as long as $b_{+}^{2}(X) \geq 1$ and $k>0$. (We discuss this point again ir the next subsection.) Furthermore, if $b_{+}^{2}(X) \geq 2$, then the fundamental class of the roodult space in $\mathcal{B}_{2, k}^{*}(X)$ is independent of the choice of metric, and so can be regarded as ani invariant of the underlying smooth 4-manifold X.

These invariants, defined originally using the $N=2$ moduli spaces, are usually referred to as Donaldson's polynomial invariants In the $N=2$ case, ine rational cohomology of $\mathcal{B}_{2, k}^{*}$ contains a polynomial algebra [9]. More specificaily, let us introduce the symmetric algebra

$$
\mathbb{A}(X)=\operatorname{Sym}\left(H_{\mathrm{even}}\left(X ; \mathbb{G}_{\mathrm{a}}\right)\right)
$$

graded so that $H_{r}(X ; \mathbb{Q})$ lies in $\mathbb{A}_{4-r}(X)$. Then there is an injection, for each k,

$$
\mu: \mathbb{A}_{d}(X) \rightarrow H^{d}\left(\mathfrak{B}_{2, k}(\mathbb{X}) ; \mathbb{Q}\right) .
$$

The polynomial invariants defined by the moauli spaces $M_{2, k}(X)$ are linear maps

$$
q_{X, k}: \mathbb{A}_{i^{\prime}(\hat{k})}(X) \rightarrow \mathbb{Q}
$$

where $d(k)$ is the dimension of the modeli space (22). If we accept that $M_{2, k}(X)$ carries a fundamental class in homology, then we can regard the definition as:

$$
q_{X, k}(z)=\left\langle\mu(z),\left[M_{2, k}(X)\right]\right\rangle
$$

The definition can be generalized in various way, in particular by considering $N>2$. We can omit k from the notation by taking the sum,

$$
\begin{equation*}
q_{X}=\bigoplus_{k} q_{X, k}: \mathbb{A}(X) \rightarrow \mathbb{Q} \tag{3}
\end{equation*}
$$

There is an understanding that q_{X} is zero on $\mathbb{A}_{d}(X)$ for integers d not of the form $d(k)$.
The invariants q_{X} of smooth 4-manifolds, together with some closely-related invariants $[8]$, were the first tools which were able to show that the the diffeomorphism type of a simply-connected compact 4-manifold is not determined by its cohomology ring alone.
2.3. A generalization, $U(N)$ bundles. In the discussion above, the bundle E had structure group $\mathrm{SU}(N)$. We now consider $U(N)$ bundles with non-trivial determinant instead. A $U(N)$ connection A can be described locally as the sum of an $\operatorname{SU}(N)$ connection and a $U(1)$ connection. More invariantly, and globally, A is determined by

- a $\operatorname{PU}(N)$ connection A^{o}; and
- a connection $\operatorname{tr}(A)$ in the determinant line bundle, the top exterior power $\Lambda^{N} E$. Whether there are anti-self-dual connections on the line bundle $\Lambda^{N} E$ is determined by Hodge theory on X, and usually they will not exist if the line bundle is non-trivial. The appropriate set-up is to ask only that A^{o} is anti-self-dual. More specifically, we fx a line bundle $W \rightarrow X$ and the data we seek is:
- a $U(N)$ bundle $E \rightarrow X$ with $c_{1}(E)=c_{1}(W)$;
- a chosen isomorphism $\iota: \Lambda^{N} E \rightarrow L$;
- an anti-self-dual $\mathrm{PU}(N)$ connection A^{\prime} in the associated $\mathrm{PU}(N)$ bundle of E.

The resulting moduli space of solutions $\left(E, l, A^{\prime}\right)$ depends on the Riemannian manifold X and the choice of the class $w=c_{1}(W)$ in $H^{2}(X ; \mathbb{Z})$. The topology of E is detemined by w and the the instanton number, defined now as an appropriately normalized Pontryagin number of the associated $\mathrm{PU}(N)$ bundle. With a standard normalization, the instanton number k is not an integer but satisfies a congruence

$$
k=-\left(\frac{N-1}{2 N}\right) w \cdot w \quad(\bmod \mathbb{Z})
$$

We write $M_{N, k}(X)^{w}$ for this moduli space of anti-self-dual connections with insianion number k. It leads to polynomial invariants,

$$
q_{X, k}^{w}: \mathbb{A}_{d(k)}(X) \rightarrow \mathbb{Q},
$$

generalizing the $q_{X, k}$ (defined using the $N=2$ moduli spaces) and we can combine these again as

$$
q_{X}^{w}=\bigoplus_{k} q_{X, k}^{w}: \mathbb{A}(X) \rightarrow \mathbb{Q} .
$$

This extra generality is introduced not so much for its own sake, but because it serves to avoid the difficulty that was mentioned in cur discussion of the polynomial invariants above. The difficulty is the possible presence or redudibleconnections A in E. We will say that E or w is admissibleif there is an integer homology class σ in $H_{2}(X)$ such that

$$
\begin{equation*}
(w \cdot \sigma) \text { is prime to } N \tag{4}
\end{equation*}
$$

The relevance of admissibility is in the foilowing result.
Proposition 2.1. If E isadrissibleand $b_{+}^{2}(X)>0$, then themoduli space of anti-selfdual connections contains no radudible sol utions, for a generic metric on X. T e sameis true for a generic path of metrics if $b_{+}^{2}(X)>1$.

Remark 2.2. A prototype which captures part of this is the more elementary statement, that if E is a $!j(N)$ bundle on a closed, oriented 2-manifold and the degree of E is prime to N, then the associated $\mathrm{PU}(N)$ bundle E^{\prime} admits no reducible flat connections. In this way, reducible solutions can be avoided, and the invariants q_{X}^{w} can be generalized to higher rank bundles with admissible w.

Remark 2.3. In the case $N=2$, the group $\mathrm{PU}(2)$ is $\mathrm{SO}(3)$ and elements of the moduli space $M_{2, k}(X)^{w}$ give rise to anti-self-dual $\operatorname{SO}(3)$ connections with second Stiefel-Whitney class $w \bmod 2$. There is a distinction between the two setups however. The automorphisms of the pair (E, ι) are the bundle automorphisms of E that have determinant 1 on each fiber. If $H^{1}(X ; \mathbb{Z} / 2)$ is non-zero, then not every automorphism of the associated $\mathrm{PU}(2)$ bundle E^{\prime} lifts to a determinant-1 automorphism of E. The moduli space of anti-self-dual $\mathrm{SO}(3)$ or $\mathrm{PU}(2)$ connections is the quotient of $M_{2, k}(X)^{w}$ by an action of the finite group $H^{1}(X ; \mathbb{Z} / 2)$.
2.4. Non-vanishing for the polynomial invariants. While Taubes' results inform us that $M_{N, k}(X)$ is non-empty for large enough k, one can now ask a different question whose answer reflects the non-triviality of the moduli space in a different way: one can ask whether the Donaldson invariants of X are non-zero; or equivalently, is the fundamental class $\left[M_{N, k}(X)\right]$ non-zero? Donaldson proved the following non-vanishing theorem for the polynomial invariants q_{X} arising from the $\mathrm{SU}(2)$ instanton moduli spaces.

Theorem 2.4 (Donaldson, [9]). If X is the smooth 4-manifold underlying a simplyconnected complex projective algebraic surface, then the polynomial invariants $q_{X, k}$ are non-zero for all suf ciently large k. In particular, $q_{X, k}\left(h^{d / 2}\right)$ is non-zero, where h is the hyperplanedass and $d=d(k)$ is the dimension of themoduli space

This result moves us from the simple non-emptiness of a moduli space to non-triviality in homology. Donaldson's proof uses the fact that, for the Kähler metrics adapted to the complex-algebraic structure, the moduli spaces of instantons can be identified with moduli spaces of stable holomorphic bundles, which are quasi-projective varieties. The nonvanishing eventually derives from the positivity of intersections in complex geometry.

The theorem generalizes to $U(2)$ bundles and the corresponding invariants $q_{X, k}^{w}$ for non-zero w. The authors believe that, using later results and constructions from [19], [36] and [25], the restriction to $N=2$ can be dropped, and that the hypothesis that X is simply-connected is also unnecessary.
2.5. Non-vanishing for symplectic 4-manifolds. Tre non-vanishing theorem for algebraic surfaces was proved when Donaldson's invari ants were first introduced in [9]. A class of 4-manifolds that is in many ways closely related are the sympledic 4-manifolds, i.e. those which carry a closed 2 -form ω for which $\omega \wedge \omega$ is a volume form. Although the original proof of Theorem 2.4 does not extend to the symplectic case, the more general theorem does hold:

Theorem 2.5. T e non-vanishing daternsht of T eorem 24 continues to hold for the larger dass of symplectic 4-manifolds, with therole of thehyperplanedass h now played by thedeRham dass $[\omega]$ of thesympitextic form

Part of the history of this resuli is as follows. A non-vanishing theorem was proved by Taubes [46] for the Seiberg-Witten invariants of symplectic 4-manifolds, and the above theorem should then follow from Witten's conjecture [49] relating the Donaldson invariants to the Seiberg.Witter invariants. A weakened version of Witten's conjecture has been proved by Feetian and Leness [14], building on ideas of Pydstrigach and Tyurin, and this work can be used to deduce Theorem 2.5 for a large class of symplectic 4-manifolds. The generai versjon of Theorem 2.5 was later proved more cleanly, and without use of the Seiberg-Witten invariants: an argument was outlined in [29] and a variant is given in [41]. These later proofs make use of another theorem of Donaldson, on the existence of Lefschetz pencils for symplectic 4-manifolds [10].

3. Instanton homology for 3-manifolds

3.1. Formalities, and non-vanishing. The instanton homology groups of an oriented 3-manifold Y arise naturally when one seeks to understand the Donaldson invariants of a 4-manifold X which is decomposed as a union of two manifolds with common boundary Y :

$$
\begin{gather*}
X=X_{+} \cup_{Y} X_{-} \\
\partial X_{+}=Y \tag{5}\\
\partial X_{-}=-Y .
\end{gather*}
$$

(We use $-Y$ to denote Y equipped with the opposite orientation.) There are several variants of Floer's construction depending on, among other choices, the gauge group and the coefficient ring, and some variants are applicable only to certain 3-manifolds (such as homology spheres) or only allow certain bundles.

Floer's first construction worked only for homology 3-spheres and structure group SU(2). To each oriented connected homology 3-sphere Y it gave a finitely-generated abelian group $\mathrm{I}(Y)$. The simplest property of this invariant is that the instanton homologies of Y and $-Y$ are related as the homology and cohomology of a complex, so that in particular there is a perfect pairing

$$
\begin{equation*}
\mathrm{I}(Y) \otimes \mathrm{I}(-Y) \rightarrow \mathbb{Z} \tag{6}
\end{equation*}
$$

If we work with rational coefficients, as we often will, then these are dual vect se spaces.
When a connected, oriented 4-manifold X is decomposed as in (5) where I is a bomology sphere and $b_{+}^{2}\left(X_{ \pm}\right)>0$ then the Donaldson invariant $q_{X}(3)$ can be expressed in terms of the relative invariants of the two pieces $X_{ \pm}$. These relative invariants take the form of linear maps

$$
\begin{aligned}
q_{X_{+}}: \mathbb{A}\left(X_{+}\right) & \rightarrow \mathbf{I}(Y) \\
q_{X_{-}}: \mathbb{A}\left(X_{-}\right) & \rightarrow \mathbf{I}(-Y)
\end{aligned}
$$

and the Donaldson invariant of the closed manifold X is expressed using the pairing (6) as

$$
\begin{equation*}
q_{X}(z)=\left\langle q_{X_{+}}\left(z_{+}\right), q_{X}\left(z_{-}\right)^{\prime}\right\rangle \tag{7}
\end{equation*}
$$

where $z=i_{+}\left(z_{+}\right) i_{i}\left(z_{-}\right)$and $i_{ \pm}: \mathbb{A}\left(X_{ \pm}\right) \rightarrow \mathcal{A}\left(X_{)}\right.$arise from the inclusion maps. This pairing formula has a straightforward corollary:

Proposition 3.1. If $q_{X} \neq 0$ for some. 1 rrenifold X, and a homology 3-sphere Y can be placed into X in such a way that X iscierarposed into two pieces, each with $b_{+}^{2}>0$, then it must bethat $\mathrm{I}(Y) \otimes \mathbb{Q}$ is non-zers.

Remark 3.2. Unlike ordiriary homology, the instanton homology groups are not \mathbb{Z} graded. The version $I(Y)$ discassed here has a cyclic grading by $\mathbb{Z} / 8$. Some versions we will encounter later have not grading at all, as they arise as the homology $\operatorname{ker}(d) / \operatorname{im}(d)$ for a differential d on an urgraded abelian group rather than a chain complex.
3.2. Sketch oithe construction. The basic idea for instanton Floer homology [15] can be motivated b_{y} thinking of solutions to the anti-self-duality equations on a closed 4manifold X, decemposed as above, but with a Riemannian metric containing long cylinder $[-L, L] \times . Y$. By means of a gauge transformation on this cylinder we can assume that a comection A in $E \rightarrow[-L, L] \times Y$ is pulled back from path of connections $B(t)$, for $t \in[-2, L]$, in $E \rightarrow Y$. The anti-self-duality equation for A becomes the equation

$$
\begin{equation*}
\frac{\partial B}{\partial t}+* F_{B} . \tag{8}
\end{equation*}
$$

In particular, translationally invariant solutions to the ASD equation (i.e. solutions with $\frac{\partial B}{\partial t}=0$) are flat connections B on Y, so that $F_{B}=0$. A key observarion in [15] is that the above equation for a path $B(t)$ is formally the downward gradient flow for a functional the Chern-Simons fundional - on a space of connections on the 3-manifold. To see this, consider for simplicity a trivial bundle on a 3-manifold Y. We write a connection B as sum of the connection Γ coming from a trivialization and a 1-form with values in the Lie algebra $\mathfrak{s u}(N)$:

$$
B=\Gamma+b, \text { where } b \in \Omega^{1}(Y) \otimes \mathfrak{s u}(N) .
$$

In this form, the Chern-Simons function is given by

$$
\operatorname{CS}(B)=-\frac{1}{2} \int_{Y} \operatorname{tr}\left(b \wedge d b+\frac{1}{3} b \wedge b \wedge b\right)
$$

The first variation of $C S$ is given by

$$
\begin{aligned}
\left.\frac{d}{d t} C S(B+t \beta)\right|_{t=0} & =-\int_{Y} \operatorname{tr}\left(\beta \wedge\left(d b+\frac{1}{2} b \wedge b\right)\right) \\
& =-\int_{Y} \operatorname{tr}\left(\beta \wedge F_{B}\right)
\end{aligned}
$$

so the stationary points are flat connections, $F_{B}=0$. If Y is given a Riemannian metric, then the standard inner product on $s u(N)$-valued one forms can be written

$$
\langle\alpha, \beta\rangle=-\int_{Y} \operatorname{tr}(\alpha \wedge * \beta)
$$

With respect to this inner product, the gradient of $C S$ at the connection B is $* F_{B}$, which verifies that the equation (8) is indeed the downward gradient flow.

Floer's construction applies the ideas of Morse theory to the Chern-Simons functional. In the case of a finite-dimensional compact manifold B carrying a Morse function f, the ordinary homology of B can be computed as the Morsehomology of f. This is the

Corollary 3.4. If the homology 3-sphere Y admits a taut foliation, then there is a non-trivial homomorphism $\rho: \pi_{1}(Y) \rightarrow \mathrm{SU}(2)$.

As indicated earlier (Question 1.5), the general case of a 3-manifold with non-zero fundamental group remains open.
3.3. Using $U(N)$ bundles. The instanton homology we have just described is the first version which Floer defined. Rather than work with homology spheres where the unique reducible connection can be excluded, Floer observed that there is an alternative setup for 3-manifolds with $b_{1}(Y) \neq 0$ where reducible flat connections can be forided entirely. One works with 3-manifolds that carry an $S O(3)$ bundle whose the second StiefelWhitney class $\omega \in H^{2}(Y ; \mathbb{Z} / 2)$ has non-zero evaluation on some integral homology class. Almost the same, as we did for Donaldson's invariants in section 3.3, we may fix a line bundle $W \rightarrow Y$ and work with triples $\left(E, \iota, A^{\prime}\right)$, where E a $U(2)$ bundie, ι is an isomorphism $\Lambda^{2} E \rightarrow W$, and A^{\prime} is a connection in the associated vundle $\mathrm{PU}(2)$. We define admissibility for W - or equivalently for its first Chern class $w-c_{1}(W)$ - just as in the 4-dimensional situation, equation (4). In the admissible case there are no reducible flat connections A^{\prime}. (See Remark 2.2.)

We arrive at instanton homology groups $\mathrm{I}^{w}(Y$, lateled by admissible classes w. A pairing formula similar to equation 7 holds in this coritext. Suppose again that X is decomposed along Y as in (5), and suppose now that v is a class in $H^{2}(X ; \mathbb{Z})$ whose restriction, w, to Y is also admissible. Then we have relative invariants,

$$
\begin{aligned}
q_{X_{+}}^{v_{+}}: q_{(}\left(X_{+}\right) & \rightarrow I^{w}(Y) \\
a_{K_{-}}^{\alpha_{-}}: \mathbb{A}\left(Y_{-}\right) & \rightarrow I^{w}(-Y)
\end{aligned}
$$

and a pairing formula,

$$
\begin{equation*}
q_{X}^{v}(z)=\left\langle q_{X_{+}}^{v_{+}}, q_{X_{-}}^{v_{-}}\right\rangle \tag{9}
\end{equation*}
$$

where $z=i_{+}\left(z_{+}\right) i_{-}\left(z_{-}\right)$as before.
Along the same lines as Proposition 3.1, we now have:
Proposition 3.5. Let Y begiven, and let w bean admissibledass on Y. Suppose that Y can beenterided as a separating hypersurfacein X in such a way that the dass w extends to a dassv $\in H^{2}(X ; \mathbb{Z})$, and supposethat theDonaldson invariant q_{X}^{v} is non-zero. T en the instantion homology group $I^{w}(Y) \otimes \mathbb{Q}$ is non-zero.

As in the case of a homology 3-sphere (see Corollary 3.4), one can deduce that if Y admits a taut foliation, then $I^{w}(Y)$ is non-zero for any admissible w, and there exists a representation $\rho: \pi_{1}(Y) \rightarrow \mathrm{SO}(3)$ with $w_{2}(\rho)=w \bmod 2$. Unlike the case of homology 3-spheres however, irreducible 3-manifolds with non-zero Betti number all carry taut foliations, by a deep existence result due to Gabai [17]. So we have:

Corollary 3.6. If Y is irredudible with $b_{1} \neq 0$ and w is any admissible dass, then $I^{w}(Y) \otimes \mathbb{Q}$ is non-zero.

In this way we arrive at an existence result for representations that is sufficiently general to deduce the necessary and sufficient condition, Theorem 1.6 .

4. Sutured manifolds

In [29], the authors found a much more efficient proof of Corollary 3.6 and Theorem 1.6. The original arguments outlined above used the existence of a taut foliation,

Figure 6. An example of sutured manifold decomposition: a sutured solid torus is decomposed along an embedded disk. The new sutured manifold (center) is isomorphic to a standard sutured ball (right). Ked and green indicate R_{+}and R_{-}, while blue curves are sutar \in s.
which had been proved by Gabai [17] using his theory of sutured manifolds. The later argument in [29] uses Gabai's sutured manifold theory more directly. This strategy is inspired in part by the construction of sutured Heegaard Fioer homology by Juhasz [22] and its precursors in the work of Ni and Ghiggin; $[35,18]$. On the gauge theory side, the non-vanishing theorem for Donaldson invariants and the difficult proof of the relation between Donaldson and Seiberg-Witten invariants is replaced by work of Munoz [34] in computing of the instanton homology groups of $S^{1} \times \Sigma_{g}$. We will explain how some of this works, beginning with Gabai's work.
4.1. Sutured manifold decompositions. An important idea in 3-manifold topology going back to Haken and waldhausen [21,48] and further developed by Gabai is that of surface decomposition: cutting a 3-manifold along a surface may result in a simpler 3-manifold. In order to orgainize a sequence of surface decompositions of manifolds with boundary, Gabai defined a notion of sutured manifold. This is an oriented 3-manifold with boundary, Y, tagether with a decomposition of its boundary into two parts,

$$
\partial Y=R_{+} \cup R_{-},
$$

intersecting along a union of simple closed curves $\gamma \subset \partial Y$. These simple closed curves are the sutures The simplest example is a 3-ball, with its boundary divided into upper and lower hemispheres, meeting at the equator (Figure 6c). We can always orient γ by first orienting R_{+}as the boundary of Y and then orienting γ as the boundary of R_{+}.

A decomposing surface S for a sutured manifold (Y, γ) is an oriented embedded surface $S \subset Y$ with $\partial S \subset \partial Y$. It is required that S and ∂Y meet transversally, so that ∂S a union of simply closed curves in ∂Y; and each of these is required to either meet the sutures γ transversally, or to coincide with a component of γ as an oriented 1-manifold. If a component of ∂S is disjoint from γ, then it is required that this circle does not bound a disk in $R_{ \pm}$nor a disk in S. Given such a decomposing surface, one obtains a new sutured manifold Y^{\prime} by cutting Y open along S and smoothing the corners. The new decomposition of ∂Y^{\prime} as $R_{+}^{\prime} \cup R_{-}^{\prime}$ is defined by setting

$$
R_{+}^{\prime}=R_{+} \cup S_{+} \quad R_{-}^{\prime}=R_{-} \cup S_{-}
$$

where S_{+}is the copy of S in ∂Y^{\prime} picked out by the oriented normal to $S \subset Y$. The process of forming $\left(Y^{\prime}, \gamma^{\prime}\right)$ from (Y, γ) in this way is called a sutured manifold decomposition. (See Figure 6.)

The following is a slightly special case of one of Gabai's central results about sutured manifolds.

Theorem 4.1 ([17]). Let Y be a dosed irredudible 3-manifold, regarded as a sutured manifold without boundary. Suppose that the Bet i number $b_{1}(Y)$ is non-zero. T en wecan f nd a sequence of sutured manifolds, starting with Y, each obtained from the previous one by sutured manifold decomposition, and ending with a disjoint union of 3-balls with one equatorial sutureeach:

$$
\begin{equation*}
(Y, \varnothing)=\left(Y^{0}, \gamma^{0}\right) \rightsquigarrow\left(Y^{1}, \gamma^{1}\right) \rightsquigarrow \cdots \leadsto\left(Y^{k}, \gamma^{k}\right)=\coprod_{1}^{m}\left(B^{3}, \text { equator }\right) . \tag{10}
\end{equation*}
$$

Furthermore, for the $\mathrm{f} r$ decomposition in the sequence, the decomposing surface $S \subset Y$ can be chosen to be any connected genus-minimizing surface a surface that achieves the minimum genus among all oriented surfaces in the same homology dass. Conversely, the genus-minimizing property for thef rst at is a necessary condition for theexistence of such a decomposition ending with standard 3-balls.

This result provides a broad framework for proving existence results for structures on an irreducible 3-manifold Y, by starting with existence (of whatever structure) on the trivial $\left(Y^{k}, \gamma^{k}\right)$, and working back up to Y. In Gabai's work this framework is used to prove the existence of taut foliations, and in our context it can be used to prove that the instanton homology $I^{w}(Y)$ is non-zero (Corollary 3.6). What needs to be done is:
(1) extend the definition of instanton homology $I^{w}(Y)$ to the case of sutured manifolds;
(2) show that the rank of the instanton homology of sutured manifolds is monotone decreasing in any sequence of decompositions such as (10);
(3) show that the instanton homology has non-zero rank for the disjoint union of sutured balls.

Once one has item (1) of the above three, the remaining pieces fall into place quite easily. The non-trivial ingredient needed for the definition in (1) is what we turn to next.
4.2. Munoz' computation of $I^{w}\left(S^{1} \times \Sigma\right)$ and its consequences. In [\qquad

Munoz' work can be used to determine the spectrum, and indeed joint spectrum, of the operators coming from $H_{*}\left(S^{1} \times \Sigma\right)$. Let $s \in H_{2}\left(S^{1} \times \Sigma\right)$ be the homology class of (point) $\times \Sigma$ and $y \in H_{0}\left(S^{1} \times \Sigma\right)$ be the homology class of a point.

Theorem 4.2. Ten the simultaneous eigenvalues of the action of \hat{s} and \hat{y} on $I^{w}\left(S^{1} \times\right.$ $\left.\Sigma_{g}\right) \otimes \mathbb{C}$ are the pairs of complex numbers $\left(i^{m}(2 k),(-1)^{m} 2\right)$ for all the integers k in the range $0 \leq k \leq g-1$ and all $m=0,1,2,3$. Here i denotes $\sqrt{-1}$.

Furthermore thegeneralized eigenspacecorresponding to $(2 g-2,2)$ is onedimaticicnal hencesimple

As a corollary of this one can deduce an result for a general 3-manifold r. If we have a 2-dimensional homology class s represented by a connected surface S in Y. with genus $g>1$, and a point y thought of as a 0 -dimensional homology class, then the following holds.

Theorem 4.3. For any admissibledass $w \in H^{2}(Y)$ with. $w \cdot s=1$, thesimultaneous eigenvalues of theaction of \hat{s} and \hat{y} on $I^{w}(Y) \otimes \mathbb{C}$ are contaired in the pairs that arisein the case of theproduct manifold $S^{1} \times S$. T at is, they arepairs of complex numbers

$$
\left(i^{m}(2 k),(-1)^{m} 2\right)
$$

where k is in therange $0 \leq k \leq g-1$.
We return now to a sutured manifold ($Y i^{\prime}$), which we shall suppose satisfies the condition that Juhasz [22] calls balancad, namely we require that $\chi\left(R_{+}\right)=\chi\left(R_{-}\right)$, that no component of Y is a closed 3-manifold, and that every component of ∂Y contains a suture. The first of these conditions holds automatically for the sutured manifolds (Y^{i}, γ^{i}) in Theorem 4.1, and one can arrange that the other two mild conditions hold from Y^{2} onwards. For such balanced sutured manifold one can form (not uniquely) a dosure \bar{Y} as follows.

Choose an oriented cennected surface T whose boundary admits an orientationreversing diffeomorphism $\partial T \rightarrow \gamma$. Extend this diffeomorphism to a diffeomorphism ϕ of $[-1,1] \times \partial 7$ witi a tubular neighborhood (in ∂Y) of γ. Then form the new 3-manifold with boundary

$$
\tilde{Y}=Y \cup_{\phi}[-1,1] \times \partial T
$$

Note that our assumptions imply that the boundary of \tilde{Y} has two connected components $\bar{\lambda}_{ \pm}$formed from $R_{ \pm}$and $\pm 1 \times T$. The balanced assumption implies that $\bar{R}_{+} \bar{R}_{-}$have the same Euler characteristic, and since these are connected these surfaces are diffeomorphic. Ch:oosing a diffeomorphism ψ we construct an closed, connected 3-manifold

$$
\bar{Y}=\left.\tilde{Y}\right|_{\psi}
$$

where the two boundary components are glued together using ψ. The original sutured manifold Y can be obtained from the closed manifold \bar{Y} by a sequence of two sutured manifold decompositions, decomposing first along \bar{R} and then along the annuli $[-1,1] \times$ ∂T.

Formed in this way, the closure \bar{Y} contains a distinguished non-separating connected surface \bar{R} carrying a homology class $r \in H_{2}(\bar{Y})$. Let w be an admissible class with $w \cdot r=1$, and consider the application of Theorem 4.3 to the operators

$$
\hat{r}, \hat{y}: I^{w}(\bar{Y}) \otimes \mathbb{C} \rightarrow I^{w}(\bar{Y}) \otimes \mathbb{C}
$$

According to the theorem, the integers that arise in the spectrum of \hat{r} are bounded above by $2 g-2$. We make the following defintion:

Definition 4.4. The suturedinstanton homology of the sutured manifold (Y, γ), written $\operatorname{SHI}(Y, \gamma)$ is defined to be the simultaneous eigenspace for the pair $(2 g-2,2)$ for the operators (\hat{r}, \hat{y}) on $I^{w}(\bar{Y}) \otimes \mathbb{Q}$ for any closure \bar{Y}.

In showing that this definition is good (i.e. is independent of the choice of closure) an important role is played by last clause of Theorem 4.2. Note in particular that it tells us that the dimension of $\operatorname{SHI}(Y, \gamma)$ is 1 in the case that the sutured manifold is (B^{3}, equator) or a union of such, for in this case we can take the closure to be $S^{1} \times \bar{R}$.

Returning to the three-step plan (1)-(3) from the end of section 4.1, we see that what remains for a proof of the non-vanishing theorem, Corollary 3.6, is item (2) there. That is, one must show that if (Y, γ) is decomposed along S to obtain $\left(Y^{\prime}, \gamma^{\prime}\right)$, then $\mathrm{SHI}\left(Y^{\prime}, \gamma^{\prime}\right)$ has rank no larger than the rank of $\operatorname{SHI}(Y, \gamma)$. The idea of the proof here is to construct a particular closure \bar{Y} for Y so that S becomes a closed surface \bar{S}, and consider the operators \hat{s} that it gives rise to on $\operatorname{SHI}(Y, \gamma)$. One then seeks to identify $\mathrm{SHI}\left(Y^{\prime}, \gamma^{\prime}\right)$ with an eigenspace of the operator \hat{s}, thus exhibiting it as a subspace of $\operatorname{SHI}(Y, \gamma)$.

Note that in nearly all cases, this line of proof gives a considerable strengthening of the non-vanishing theorem, Corollary 3.6. As a very simple example:

Corollary 4.5. Let Y be an irredudible 3-manifold containing a non-separating connected surfaces of genus at least 2 which is genus-minimizing in its homology dasss. T en $I^{w}(Y)$ has rank at least 4, for every admissible w with $w \cdot s=1$.

Proof. Consider the operators (\hat{s}, \hat{y}) again. The proof of non-vanishing shows that the simultaneous eigenspace for the pair $(2 g-2,2)$ for \hat{s} is non-zero. For formal reasons, the eigenspaces of the pair $\left(i^{r}(2 g-2),(-1)^{r} 2\right)$ are all of the same dimension, and if $2 g-2$ is non-zero then these four pairs are distinct.
4.3. Sutured manifolds and knots. As Juhasz observed in [22], one can use the sutured manifold formalism to define an instanton homology for knots. For simplicity, let us consider a classical knot K in S^{3}, and let Y be the "knot complement": the manifold with torus boundary obtained by removing from S^{3} an open tubular neighborhood of K. Let γ be the union of two disjoint meridional curves on ∂Y, with opposite orientations. In this way we associate a sutured manifold (Y, γ) to $K \subset S^{3}$, and the sutured instanton homology of
eigenspace of \hat{y} for the eigenvalue 2 . In the case of the unknot, \bar{Y} is a 3-torus, the instanton homology $I^{w}(\bar{Y})$ has rank 2, and the +2 and -2 eigenspaces of \hat{y} are both 1-dimensional. For a non-trivial knot, the dimensions are larger, by the argument of Corollary 4.5, for there is a genus-minimizing surface $S \subset Y$ of genus at least 2 , obtained from a Seifert surface for K as described above.

Since instanton homology is defined ultimately in terms of flat connections, one can use the above proposition to deduce that, if K is a non-trivial knot, then the $\mathrm{SU}(2)$ or $\mathrm{SO}(3)$ representations of the knot group $\pi(K)$ is strictly larger than the case of the unknot. In this way, one can derive Theorem 1.2 from the first section.

Remark 4.7. In the Heegaard Floer homology setting, Juhasz's construction recovers the simplest version of the Heegaard knot homology of Ozsváth-Szabó and Rasmussen [37, 39]. On the basis of the few existing calculations in the instanton

The first Chern class of such an orbifold bundle E is a class dual to a relative 1-cycle w (thought of geometrically as a 1-manifold in the smooth part of O with possible endpoints on the singular part).

As long as w is admissible one can define an instanton homology group $I^{w}(O)$ much as before. The critical points of the Chern-Simons functional are flat $\mathrm{PU}(2)$ connections on the complement of the singular set whose monodromy around the meridional links has order 2 and whose Stiefel-Whitney class is $w \bmod 2$.

Recall that, for a classical link K in S^{3}, we write $\operatorname{Orb}\left(S^{3}, K\right)$ for the orbifotid whose singular set is K. A first Chern class w on $\operatorname{Orb}\left(S^{3}, K\right)$ will be admissible if it is dival to an arc joining two components of K, because such a w evaluates to 1 on an orierted surface separating the components. To achieve admissibility in general, we adopt the following device. Given classical knot or link K, we form a new link by taking the union of K with a small meridional loop L, linking K at chosen point $x \in K$. We take w is be the admissible class dual to an arc joining the new loop L to K. We may then define.

$$
\begin{equation*}
I^{\natural}(K)=I^{w}(K \cup L) . \tag{11}
\end{equation*}
$$

If K has more than one component, then the choice of the point x may be material, but we still omit x from the notation.

To understand the definition a little, observe that when K is an unknot, the union $K \cup L$ is a Hopf link. It is not hard to verify in this case that there is exactly one critical point of the Chern-Simons functional on the corresponding orbifold with the correct determinant w. This flat connection corresporids to the Klein 4-group representation of the fundamental group of the complement, $\pi(K \cup L)=\mathbb{Z} \oplus \mathbb{Z}$. This unique critical point is the generator for $I^{\natural}(K)$. Having , usi one generator, $I^{\natural}(K)$ is infinite cyclic.

Although the definition is different, the same techniques of cut-and-paste topology that are used in the constriction of sutured instanton Floer homology can be used to show that the two appreaches yield the same result, for knots:

Proposition 5.1. For a knot K, thehomology groups $K H I(K)$ and $I^{\natural}(K)$ areisomorphic
As a trivial corollary, the orbifold version also detects knottedness:
Coroliaky 5.2. For a knot K in S^{3}, therank of $I^{\natural}(K)$ is at leest 1 , with equality if and only K is the unknot.
5.2. Khovanov homology. An advantage of the orbifold approach to the definition of $I^{h}(K)$ is that it allows a straightforward approach to functoriality. A cobordismbetween classical links K_{0} and K_{1} is an embedded surface Σ in $[0,1] \times S^{3}$, meeting the boundary transversely in K_{0} and K_{1} at the two ends. Without any requirement of orientability, such a cobordism gives rise to a homomorphism $I^{\natural}\left(K_{0}\right) \rightarrow I^{\natural}\left(K_{1}\right)$.

This functoriality is the starting point in making an unexpected connection between this instanton homology and a knot homology group from a quite different stable, namely the Khovanov homology groups introduced in [23]. The Khovanov homology $\mathrm{Kh}(K)$ for a classical knot or link is a "categorification" of the Jones polynomial. It has a definition which is entirely algebraic, and eventually elementary, but $\mathrm{Kh}(K)$ and its generalizations have turned out to have deep connections with geometry, in several directions. In our particular context, we have the following result:

Theorem 5.3. ([[30]) For a dassical knot or link K, thereis a spedral sequencewhose E_{2} pageis the (reduced variant of) theKhovanov homology of K and which abuts to theorbifold instanton homology, $I^{\natural}(K)$.

Like $I^{\natural}(K)$, the reduced Khovanov homology has rank 1 if K is the unknot. From Corollary 5.2 we and the existence of the spectral sequence, we therefore obtain:

Corollary 5.4. For a knot K in S^{3}, therank of the reduced Khovanov homology is at least 1, with equality if and only K is the unknot.

It is an open question whether the Jones polynomial itself is an unknot-detector. Although many geometric techniques can be used to characterize the unknot algorithmically (starting with Haken's work in [21]), the above corollary stands somewhat apart, because of the origins of Khovanov homology in quantum algebra and representation theory.

An interesting avenue to pursue is to replace $U(2)$ in the orbifold setup with $U(N)$ and to explore the relationship to generalizations such as Khovanov-Rezansky homology [24]. See [5, 50].
5.3. Instanton homology for spatial graphs. We retirn to the material of section 1.4, to consider a trivalent spatial graph $K \subset S^{3}$. As w ϵ did for knots and links, we can apply instanton Floer homology to the associated orbifold $O=\operatorname{Orb}\left(S^{3}, K\right)$. Allowing trivalent vertices in K leads to new issues, related in paricular to the possibility of the Uhlenbeck bubbling phenomenon occurring at orbiold points corresponding to vertices of K. In order to have a well-defined instanton honology, it turns out to be necessary to use a ring of coefficients of characteristic 2.

Following this line, the authors defined in [26] an invariant of trivalent spatial graphs K which takes the form of a $\mathbb{Z} / 2$ vector space $J^{\sharp}(K)$. This variant of instanton homology arises from a Chern-Simons functionai whose set of critical points can be identified with the space of $\mathrm{SO}(3)$ representations $\overparen{R}(K)$ considered at (11). (In particular, this is essentially an $\operatorname{SO}(3)$ gauge theory, not the type of $U(2)$ gauge theory used in the definition of $I^{w}(Y)$ before.)

Once again, by reducirg the question to one about the instanton homology of a sutured manifold (essentially the complement of K) one can prove a non-vanishing theorem for graphs that are spatially bridgeless in the sense of section 1.4:

Theorem 5.5. Í $K \subset \mathbb{R}^{3}$ is a spatially bridgeless trivalent graph, then the instanton homolog' grour $j^{\#}(K)$ is non-zero.

An immediate corollary is that the space of representations $\mathcal{R}(K)$ is non-empty, which is the statement of Theorem 1.11 in the introduction.

As mentioned in section 1.4, the space of $\mathrm{SO}(3)$ representations $\mathcal{R}(K)$ contains the set of representations, $\pi(K) \rightarrow V_{4}$, into the Klein 4-group, which are in one-to-one correspondence with Tait colorings of K. It is difficult to compute $J^{\sharp}(K)$, but an examination of the simplest examples prompts this question.

Question 5.6. For a spatial trivalent graph K that is planar (that is, embedded in a plane \mathbb{R}^{2} in \mathbb{R}^{3}), is it the case that the dimension of $J^{\sharp}(K)$ is equal to the number of Tait colorings?

It is known that, if the answer is no, then a minimal counterexample can have no bigons, triangles or squares [26]. Various equivalent forms of the question are given in [31] and [32]. It is also known [32] that the number of Tait colorings is a lower bound for the dimension of $J^{\sharp}(K)$. Because of the connection between Tait coloring the edges and four-coloring the regions of a planar trivalent graph (see section 1.4 again), an affirmative answer to the question would provide a new proof that every planar map can be fourcolored.

References

[1] S. Akbulut and J. D. McCarthy. Casson's invariant for oriented homology 3-spheres, volume 36 of Mathe matical Notes Princeton University Press, Princeton, NJ, 1990. An exposition.
[2] K. Appel and W. Haken. Every planar map is four colorable, volume 98 of Contemporary Mathematics American Mathematical Society, Providence, RI, 1989. With the collaboration of J. Koch.
[3] J. A. Baldwin and S. Sivek. Stein fillings and SU(2) representations. preprint, 2016.
[4] J. H. Conway and C. M. Gordon. Knots and links in spatial graphs. J. Graph T eory, 7(4):445-453, 1983.
[5] A. Daemi. Symmetric Spaces and Knot InvariantsfromGaugeT eory. PhD thesis, Harvard University, 2014.
[6] A. Daemi and Y. Xie. Sutured manifolds and polynomial invariants from higher rank bundles. preprint, 2017.
[7] S. K. Donaldson. An application of gauge theory to four-dimensional topology. J. Diferential Geom, 18(2):279-315, 1983.
[8] S. K. Donaldson. Irrationality and the h-cobordism conjecture. J. Dif erential Geom, 26(i):141-168, 1987.
[9] S. K. Donaldson. Polynomial invariants for smooth four-manifolds. Topology, 2C (3):257-315, 1990.
[10] S. K. Donaldson. Lefschetz pencils on symplectic manifolds. J. Dif erential Gerrn, 33 (2):205-236, 1999.
[11] Y. Eliashberg. A few remarks about symplectic filling. Geom. Topol., 8:277-29’’, 20004.
[12] Y. M. Eliashberg and W. P. Thurston. Confoliations, volume 13 of Univg sity LedureSeries American Mathematical Society, Providence, RI, 1998.
[13] J. B. Etnyre. On symplectic fillings. Algebr. Geom. Topol., 4:73-85, 2004.
[14] P. M. N. Feehan and T. G. Leness. Witten's conjecture for many fcur-manifolds of simple type. J. Eur. Math. Soc. (JEMS), 17(4):899-923, 2015.
[15] A. Floer. An instanton-invariant for 3-manifolds. Ccimn i/iatn. Phys., 118(2):215-240, 1988.
[16] R. H. Fox. A quick trip through knot theory. In Torcicay' of 3-manifolds and retated topics (Proc. T eUniv. of Georgia Institute, 1961), pages 120-167. Prentice-Hall, Englewood Cliffs, N.J., 1962.
[17] D. Gabai. Foliations and the topology of 3-manifcids. J. Dif erential Geom, 18(3):445-503, 1983.
[18] P. Ghiggini. Knot Floer homology detects genas-cne fibred knots. Amer. J. Math., 130(5):1151-1169, 2008.
[19] D. Gieseker and J. Li. Moduli of high rank vector bundles over surfaces. J. Amer. Math. Soc, 9(1):107-151, 1996.
[20] E. Giroux. Géométrie de contact: de la dimension trois vers les dimensions supérieures. In Proceedings of the International Congress of iMath is inaticians, Vol. II (Beijing, 2002), pages 405-414, Beijing, 2002. Higher Ed. Press.
[21] W. Haken. Theorie der Nc rmalfachen. Acta Math., 105:245-375, 1961.
[22] A. Juhász. Floer homolog. and surface decompositions. Geom Topol., 12(1):299-350, 2008.
[23] M. Khovanov. A caiegorification of the Jones polynomial. DukeMath. J ., 101(3):359-426, 2000.
[24] M. Khovanoy and L. Rozansky. Matrix factorizations and link homology. Fund. Math., 199(1):1-91, 2008.
[25] P. B. Kronheimer. Four-manifold invariants from higher-rank bundles. J. Dif erential Geom, 70(1):59-112, 2005.
[26] P. B. Kronieeimer and T. S. Mrowka. Tait colorings, and an instanton homology for webs and foams. To appear in J. Eur. Math. Soc.
[27] P. B. Kronheimer and T. S. Mrowka. Dehn surgery, the fundamental group and SU(2). Math. Res. Let., 11(5-6):741-754, 2004.
[28] P. B. Kronheimer and T. S. Mrowka. Witten's conjecture and property P. Geom. Topol., 8:295-310, 2004.
[20] P. B. Kronheimer and T. S. Mrowka. Knots, sutures, and excision. J. Dif erential Geom, 84(2):301-364, 2010.
[30] P. B. Kronheimer and T. S. Mrowka. Khovanov homology is an unknot-detector. Publ. Math. IHES, 113:97208, 2012.
[31] P. B. Kronheimer and T. S. Mrowka. Exact triangles for $S O(3)$ instanton homology of webs. J. Topol., 9(3):774-796, 2016.
[32] P. B. Kronheimer and T. S. Mrowka. A deformation of instanton homology for webs. preprint, 2017.
[33] J. Lott. The work of Grigory Perelman. In International Congress of Mathematidians. Vol. I, pages 66-76. Eur. Math. Soc., Zürich, 2007.
[34] V. Muñoz. Ring structure of the Floer cohomology of $\Sigma \times \mathbf{S}^{1}$. Topology, 38(3):517-528, 1999.
[35] Y. Ni. Knot Floer homology detects fibred knots. Invent. Math., 170(3):577-608, 2007.
[36] K. G. O'Grady. Moduli of vector bundles on projective surfaces: some basic results. Invent. Math., 123(1):141-207, 1996.
[37] P. Ozsváth and Z. Szabó. Holomorphic disks and knot invariants. Adv. Math., 186(1):58-116, 2004.
[38] C. D. Papakyriakopoulos. On Dehn's lemma and the asphericity of knots. Ann. of Math. (2), 66:1-26, 1957.
[39] J. Rasmussen. Floe homology and knot complements PhD thesis, Harvard University, 2003.
[40] N. Robertson, D. Sanders, P. Seymour, and R. Thomas. The four-colour theorem. J. Combin. T eory Ser. B, 70(1):2-44, 1997.
[41] S. Sivek. Donaldson invariants of symplectic manifolds. Int. Math. Res. Not. IMRN, 6:1688-1716, 2015.
[42] I. Smith. Floer cohomology and pencils of quadrics. Invent. Math., 189(1):149-250, 2012.
[43] P. G. Tait. Listing's Topologie. Philosophical Magazine(5th Series), 17:30-46, 1884.
[44] C. H. Taubes. Self-dual Yang-Mills connections on non-self-dual 4-manifolds. J. Dif erential Geom, 17(1):139-170, 1982.
[45] C. H. Taubes. Self-dual connections on 4-manifolds with indefinite intersection matrix. J. Dif éential Geom, 19(2):517-560, 1984.
[46] C. H. Taubes. The Seiberg-Witten invariants and symplectic forms. Math. Res. Let ., 1(6):809-822, 1994.
[47] K. K. Uhlenbeck. Connections with L^{p} bounds on curvature. Comm. Math. Phys., 83(1):31-42, 1582.
[48] F. Waldhausen. On irreducible 3-manifolds which are sufficiently large. Ann. of Math. (2) $8^{\prime}: 55$ - $88,1968$.
[49] E. Witten. Monopoles and four-manifolds. Math. Res. Let ., 1(6):769-796, 1994.
[50] Y. Xie. On the Framed Singular Instanton Floer Homology from Higher Rank Buncile; PhD thesis, Harvard University, 2016.

[^0]: The work of the first author was supported by the National Science Foundation through NSF grants DMS1405652 and DMS-1707924. The work of the second author was supported by NSF grant DMS-1406348 and by a grant from the Simons Foundation, grant number 503559 TSM..

