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1. Introduction — Motivations

(Q,F,F,P) 1 acomplete flitered probability space

W(-) 1 aone-dimensional standard Brownian motion

F = {F:}+>0 | natural flitration of W(-), augmented by all
P-null sets

Consider FSDE:
8

= dX(t) = b(t, X(t))dt + o(t, X(£))dW(t),

RV
- X(0) = x.
Equivalent to:
Z t VA t
(1.2)  X(t)=x+ . b(s, X(s))ds + . a(s, X(s))dW(s).

General forward stochastic Volterra integral equation: (FSVIE)
VA t Z t

(1.3) X(t) = p(t)+ . b(t,s, X(s))ds + . o(t,s, X(s))dW(s).



e In general, FSVIE (1.3) cannot be transformed into a form of
FSDE (1.1).

e FSVIE (1.3) allows some long-range dependence on the noises.

e Could allow o(t,s, X(s)) to be F;-measurable, still might have
adapted solutions (Pardoux—Protter, 1990).

e May model wealth process involving investment delay, etc.
(Duffie-Huang, 1986).



Consider BSDE:
8

<dY(t):—g(t, Y(t), Z(t))dt+Z(t)dW(t), te]0,T],

TY(T)=¢.

e Linear case was introduced by Bismut (1973).

e Nonlinear case was introduced by Pardoux—Peng (1990).

e Can be applied to (European) contingent claim pricing,
stochastic differential utility, dynamic risk measures,...

e Leads to nonlinear Feynman-Kac formula,
pointwise convergence in homogenization problems,
nonlinear expectation, ...

(1.4)



BSDE (1.4) is equivalent to
Z ; z .
(1.5) Y()=¢&+ g(s,Y(s),Z(s))ds — Z(s)dW(s).

t t

Called a backward stochastic Volterra integral equation (BSVIE).

Recall:
VA t z t
(1.2) X(t)=x+  b(s,X(s))ds+  o(s,X(s))dW(s).
0 0
Z t Z t
(1.3) X(t) =p(t)+  b(t,s,X(s))ds+  o(t,s, X(s))dW(s).
0 0
Question:

What is the analog of (1.3) for (1.5) as (1.3) for (1.2)?



A Proposed Form:

Z 7
Y(t) =y(t)+ g(t,s, Y(s),Z(t,s),Z(s,t))ds

(1.6) 7

Z(t,s)dW(s), te]lo,T],

t
(Y(-),Z(-,-)) I unknown process
Remarks:
e The term Z(t,s) depends on t and s;
e The drift depends on both Z(t,s) and Z(s, t).
e (1.6) is strictly more general than BSDE (1.5).
e 1/(-) does not have to be F-adapted.
. Igee;d Z(t,-) to be F-adapted, and

|Z(t,s)?ds < o0, ae. t €0, T], as.



By taking conditional expectation on (1.6), we have

h Zr H i
Y(t) =E ¢(t)+ g(t,s,Y(s), Z(t,s), Z(s,t))ds"F; .

t

This leads to the second interesting motivation.

e Expected discounted utility (process) has the form:

h Z H i
Y(t)=E e P09 1 y(C(s))e PE=DgsllF, | telo, T]
t

C(-) — consumption process, u(-) — utility function

(B — discount rate, £ — terminal time wealth

e Expected discounted utility is equivalent to a linear BSDE:

Y(t) =&+ — BY(s) + C(u(s)) ds — Z(s)dW(s).

t t



o e B(—1) exhibits a time-consistent memory effect. If the memory
is not time-consistent, the utility process will not be a solution
to a BSDE! But, it might be a solution to a BSVIE!

e Duffie-Epstein (1992) introduced stochastic differential utility:

h Zr7 H i
Y(t)=E £+ g(s, Y(s))ds"F: , te[0, T].

t

which is equivalent to a nonlinear BSDE:
Z Z ;
Y(t)=¢+ g(s, Y(s))ds — Z(s)dW(s).

t t






2. Definition of Solutions.

Let H = R™ R™*9, eﬂtc with norm |- |. .
L2(Q)= ¢: Q— H §6fT,E|§|2<oo :
L2((0,T)xQ) = ¢:(0,T)xQ—H

T 113
¢ is B([0, T]) ® Fr-measurable, E  |¢ (t)\zdt <o,
0

[2(0,T) = ¢ e L%((0,T) x Q), () is F- adapted

[2(0,T;L2(0, T)) = Z;[0,TPPxQ— H
Zg,i is F-adapted,a.e. t € [0, T],
T (13

E |Z(t,s)[?dsdt < oo .
0 O



Recall:

Y(t) =(t) + g(t,s, Y(s),Z(t,s),Z(s,t))ds

- Z(t,s)dW(s), telo, T],

t
Similar to BSDEs, it seems to be reasonable to introduce

Definition 2.1. (Y,Z) € L2(0, T) x L2(0, T; L2(0, T)) satisfying
(2.1) is called an adapted solution of BSVIE (2.1).



Example 2.2. Consider BSVIE:

Z ; Z ;
(2.2) Y(t)= Z(s, t)ds — Z(t,s)dW(s), te[0,T].
t t
We can check that
8
<<

Y(t)=(T—t)¢(t), telo,T],
= Z(t,s) = hoq(s)C(s),  (t.s)e[o, T]x[o, Tl

is an adapted solution of (2.2) for any ¢(-) € L3(0, T;R). Thus,
adapted solutions are not unique!



Observation:
Y(t) =(t) + g(t,s, Y(s),Z(t,s),Z(s,t))ds

- Z(t,s)dW(s), te]o,T],

t

does not give enough \restrictions" on Z(t,s) with
0<s<t<T.

Need to \specify" Z(t,s) for0 <s<t<T.
Definition 2.3. (Y, Z) € L2(0, T) x L?(0, T; L2(0, T)) is called
an adapted M-solution of (2.1) if (2.1) is satisfled and also
Z t
(2.3) Y(t)=EY(t)+  Z(t,s)dW(s), t €0, T].
0



3. Well-posedness of BSVIEs.

(H1) Map g is measurable satisfying

YA T:tz T )
E lg(t,s,0,0)|ds dt < o,
0 t

and exists a (deterministic) function L with
Z
sup L(t,s)***ds < oo,

te[0,T] t
for some £ > 0 such that
|g(t)s7.y7_z7€) _g(t7s).)_/727§)|
| _ _ —
<L(t,s) ly—yl+lz—z|+[¢C— (] -



Theorem 3.1. Let (H1) hold. Then Vi, (2.1) admits a unique
adapted M-solution (Y, Z). Moreover: for any r € [0, T],

Zr Z7lZr
E|Y(t)|2dt + E|Z(t,s)|?dsdt

3]_ r r r
1) hZ r Zrilr PR
<C E|y(t)|?dt + 1g(t,s,0,0)|ds dt .

r r r

If (Y, Z) is the adapted M-solution corresponding to 1, then

Zr _ Z LT _
E|Y(t) — Y(t)]dt+ E|Z(t,s) — Z(t,s)|*dsdt

(32) r ZT ror

< C  E[(t) —o(t)dt, Yre o, T.

r



A Difference between BSDEs and BSVIEs:

For BSDE
Z ; zZ .
Y(t)=¢+ g(s,Y(s),Z(s))ds — Z(s)dW(s)
z' Z .
=&+ g(s,Y(s),Z(s))ds — Z(s)dW(s)
T-6 T—6
T—6 Z s
+ g(s, Y(s),Z(s))ds — Z(s)dW(s)
t Z 7 t Z 715
=Y(T -9+ g(s,Y(s), Z(s))ds— Z(s)dW(s),
tel0, T -9

Thus, one can obtain the solvability on [T — 4, T], then on
[T —24, T — 0], etc., to get solvability on [0, T].



For BSVIE: (with t € [0, T — 4])

. z .
Y(t)=v¢(t)+ g(t,s, Y(s),Z(t,s),Z(s,t))ds—  Z(t,s)dW(s)
2, -
=(t) + g(t,s,Y(s),Z(t,s), Z(s,t))ds — Z(t,s)dW(s)
T-6 T-6
T-5 Z s
+ g(t,s, Y(s),Z(t,s),Z(s,t))ds — Z(t,s)dW(s)

7, Z
=B(t) + g(t,s, Y(s),Z(t,s),Z(s,t))ds — Z(t,s)dW(s),

t t

where it is not obvious if ®(t) is/can be chosen Fr_s-measurable!



4. Properties of Solutions.
e A Duality Principle

ODE case: Consider

(4.1) x(t) = Ax(t) + f(t), x(0)=0,
(4.2) y(t) = =ATy(t) —g(t), y(T)=0.
Then

dt yd

o (x(0,y(2)) = (f(t), y(t)) = (x(t), &(1)) -
Thus,

Z ; Z

(4.3) x(De) = (). £(0)) o

e (4.2) is called an adjoint equation of (4.1).
e (4.3) is called a duality between (4.1) and (4.2).

e (linear) SDE and BSDE have a similar duality principle. 1t6’s
formula is commonly used.



Theorem 4.1. Let € L§(0, T) and ¢ &,L*((0, T) x Q). Let
(14) X(0) = o)+ Ao(t,5)X(s)ds - Aa(t,5)X(s)dW(s),

L3 e
Y(t)=w(t)+  Ao(s, t)TY(s)+Ai(s, t) " Z(s, t) ds

- Z(t,s)dW(s), te][0,T].

t

Then the foyowing relation holds: 7
T T

(@6) B (Y(O.0())dt=E (v(t)X(1))dt

(4.5) | the adjoint equation of (4.4)
(4.6) | the duality between (4.4) and (4.5).



e A Comparison Theorem
ConsideréBSDEs: (k=1,2)
= dyk(e) = —gk(t, YX(t), Z¥(t))dt + Z¥(£)dW(t),

4.7)
T YN =¢-
Let s
g sy <gtsy2), Vtsy2),
T as
Then
(4.9) Yi(t) < Y3(t), te[0,T], as.

e [t6 formula is used in the proof.
e Does not rely on the comparison of FSDEs.



Theorem 4.2. For k = 1,2, let gk : [0, T]2 «R xR — R and
Yi() € L]%(Og- R) such that

<
(4.10) = glts,y.Q) <g2(tsy,0), V(ts,y.0),

S plt) <YA(t),  telo,T], as.
Let (Y*(-), Z*(-,-)) be the adapted M-solution of BSIVE
Zr

YE(t) =9k(t)+  gX(t,s, Y*(s),Z"(s, t))ds
(4.11) t

Then the following holds:

(4.12) Yi(t) < Y?3(t), vtelo, T].



e Sub-Additivity and Convexity.
Let (Y(:), Z(-,-)) be the adapted solution of BSVIE

Z
Y(t) =y(t)+ Tg(t,s, Y(s),Z(s,t))ds
(4.13) 5
- Z(t,s)dW(s).
Denote
(4.14) p(t; () = Y(t), te[0, Tl

e (:) — p(t; —(-)) is essentially a dynamic risk measure.



Proposition 4.4. Let g : [0, T]> x R x R = R.
(i) Suppose (y,¢) — g(t,s, y,() is sub-additive:

g(t.,s,y1+y2,C1+ ) < g(t,s,y1,¢1) + g(t, s, y2, ),
V(t,S) € [07 T]27 ,y2 € Ra ClaCZ c Rd> a.s. ,
Then () — p(t;1(-)) is sub-additive:

p(t:1() +92()) < p(t:91()) + p(t:¢2(-)), t [0, T], as.



(ii) Suppose (v, z) — g(t,s,y, () is convex:

g(tv S, >‘y1 + (1 - )\)_)/27 )‘Cl + (1 - )‘)CZ)
< g(t,s,y1,C1) + (1 = N)g(t, s, y2,¢2),
Y(t,s) € [0, T, 1,2 €R, ¢1,& €RY, as., Ae[0,1].

Then ¢(-) — p(t; 1(-)) is convex:

p(t; A1(-) + (L = A)2(0)) < Ap(tiha(+)) + (1 = Mp(t;02(+)),
tel0,T], as., Ae]0,1].

e Similar results hold if exchanging super-additivity and
sub-additivity, convexity and concavity, respectively.



5. Some Remarks:

¢ Regularity of adapted M-solutions:

Z
Y(t) = () + g(t,s, Y(s),Z(t,s),Z(s,t))ds
(1.6) z t
— Z(t,s)dW(s), t €0, T].

t

Continuity of t — Y/(t) is not trivial. Malliavin calculus will be
involved.

e Necessary conditions for optimal control of FSVIEs can be
obtained.

e Existence of dynamic risk measure for general position
processes.



Thank You!



