Strong Law of large number Law of the iterated logarithm for nonlinear probabilities

Zenguing Chen

Home Page
Title Page

$$
\text { July 5, } 2010
$$

Outline

\diamond History of LLN and LIL for probabilities
\diamond Why to study LLN and LIL for capacities
\diamond Nonlinear probabilities and nonlinear expectations
\diamond Main results
\diamond Applications

0.1. History of LLN and LIL for probability

? Law of large number(LLN):
(1) Brahmagupta (598-668), Cardano (1501-1576)
(2) Jakob Bernoulli(1713), Poisson (1835)
(3) Chebyshev, Markov, Borel(1909), Cantelli and Kolmogorov(IID).
? Law of iterated logarithm(LIL):
(1) Khintchine(1924) for Bernoulli model

Kolmogorov(1929), Hartman-Wintner(1941) (IID)
(2) Levy(1937) for Martingale
(3) Strassen(1964) for functional random variables.

0.2. Strong LLN and LIL for probabilities

Assumption: $\left\{\mathrm{X}_{\mathrm{i}}\right\}$ IID $, \mathrm{S}_{\mathrm{n}} / \mathrm{n}:=\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{X}_{\mathrm{i}}, \mathrm{EX}_{1}=\mu$, Then Theorem 1:Kolmogorov:

$$
P\left(\lim _{n \rightarrow \infty} S_{n} / n=\mu\right)=1
$$

Theorem 2: Hartman-Wintner(1941): If $E X_{1}=0, E X_{1}^{2}=\sigma^{2}$, Then

$$
\begin{equation*}
P\left(\limsup _{n \rightarrow \infty} \frac{S_{n}}{\sqrt{2 n \log \log n}}=\sigma\right)=1 \tag{a}
\end{equation*}
$$

(b)

$$
P\left(\liminf _{n \rightarrow \infty} \frac{S_{n}}{\sqrt{2 n \log \log n}}=-\sigma\right)=1
$$

(c) Suppose that $C\left(\left\{x_{n}\right\}\right)$ is the cluster set of a sequence of $\left\{x_{n}\right\}$ in R, then

$$
P\left(C\left(\left\{\omega: S_{n}(\omega) / \sqrt{2 n \log \log n}\right\}\right)=[-\sigma, \sigma]\right)=1
$$

0.3. Why to study LLN and LIL in Finance

Theorem 1 (Black-Scholes, 1973:) In complete markets, there exists a unique probability measure Q, such that the pricing of option ξ at strike date T is given by $\mathrm{E}_{\mathrm{Q}}\left[\xi \mathrm{e}^{-\mathrm{rT}}\right]$. Wherer $=0$ is interest rate of bond.
Monte Carlo, $\lim _{h \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} X_{i}=E_{Q}[\xi]$.
? (Linear) expectation \leftarrow Black-Scholes \rightarrow Complete Markets
? $\inf _{\mathrm{Q} \in \mathcal{P}} \mathrm{E}_{\mathrm{Q}}[\xi], \sup _{\mathrm{Q} \in \mathcal{P}} \mathrm{E}_{\mathrm{Q}}[\xi] \Longleftrightarrow$ Incomplete Markets, Q is not unique, SET \mathcal{P}.
? Super-pricing: $\inf _{\mathrm{Q} \in \mathcal{P}} \mathrm{E}_{\mathrm{Q}}[\xi], \sup _{\mathrm{Q} \in \mathcal{P}} \mathrm{E}_{\mathrm{Q}}[\xi]$. Nonlinear expectation! $\lim _{\mathrm{n} \rightarrow \infty} \mathrm{S}_{\mathrm{n}} / \mathrm{n}=$?

0.4. Bernoulli Trials with ambiguity

? Bernoulli Trials:
Repeated independent trials are called Bernoulli trials if there are only two possible outcomes for each trial and their probabilities REMAIN (are no longer) the same throughout the trials.
? Let $X_{i}=1$ if head occurs and $X_{i}=0$ if tail occurs.

$$
P_{\theta}\left(X_{i}=1\right)=\theta, \quad P_{\theta}\left(X_{i}=0\right)=1-\theta, \quad S_{n}:=\sum_{i=1}^{n} X_{i}
$$

? If $\theta=1 / 2$ (Unbalance), LLN stats

$$
P_{\theta}\left(\lim _{n \rightarrow \infty} S_{n} / n=1 / 2\right)=1
$$

Or

$$
\lim _{n \rightarrow \infty} S_{n} / n=1 / 2 \quad \text { a.s } \quad\left(P_{\theta}\right)
$$

Modes of nonlinear expectations and capacity

(1)Choquet expectations (Choquet 1953, physics)

$$
\mathrm{C}_{\mathrm{V}}[\mathrm{X}]:=\int_{0}^{\infty} \mathrm{V}(\mathrm{X} \geq \mathrm{t}) \mathrm{dt}+\int_{-\infty}^{0}[\mathrm{~V}(\mathrm{X} \geq \mathrm{t})-1] \mathrm{dt}
$$

(2)g-expectation (Peng 1997)
(3) Sub-linear expectation(Peng 2007).
(1) Distorted probability measure: $\mathrm{V}(\mathrm{A})=\mathrm{g}(\mathrm{P}(\mathrm{A})), \mathrm{g}:[0,1] \rightarrow[0,1]$.
(2) 2-alternating capacity: $\mathrm{V}(\mathrm{A} \cup \mathrm{B}) \leq \mathrm{V}(\mathrm{A})+\mathrm{V}(B)-\mathrm{V}(\mathrm{A} \cap B)$
(3) $V(A)=\max _{P \in \mathcal{P}} P(A), \mathcal{P}$ set of Probability.

Main Question Main Question Reports

Main Question

Home Page
Title Page
$44 \geqslant$
$4 \mid>$
Page 11 of 21
Go Back

Full Screen

Close
Quit

3. Definition: capacity and nonlinear expectation

(3)Property:

$$
V(A)+V\left(A^{c}\right) \geq 1, \quad v(A)+v\left(A^{c}\right) \leq 1
$$

but

$$
V(A)+v\left(A^{c}\right)=1
$$

(4) Nonlinear expectations: Lower-upper expectation $\mathcal{E}[\xi]$ and $\mathbb{E}[\xi]$

$$
\mathcal{E}[\xi]=\inf _{\mathrm{Q} \in \mathcal{P}} \mathrm{E}_{\mathrm{Q}}[\xi], \quad \mathbb{E}[\xi]=\sup _{\mathrm{Q} \in \mathcal{P}} \mathrm{E}_{\mathrm{Q}}[\xi]
$$

Main Question Main Question Reports

Main Question

Home Page
Title Page
44 中
$4 \mid>$
Page 13 of 21
Go Back

Full Screen
Close
Quit

4.1. Limit theorem 1

Theorem: If $\left\{X_{i}\right\}$ is IID, then $\frac{S_{n}}{n}$ converges as $n \rightarrow \infty$ a.s. v if and only if

$$
\mathcal{E}\left[\mathrm{X}_{1}\right]=\mathbb{E}\left[\mathrm{X}_{1}\right] .
$$

In this case,
$\lim S_{n} / n=\mathcal{E}\left[X_{1}\right]$, a.s. v.

5. Main results

$$
\begin{aligned}
& V\left(\omega \in \Omega: \limsup _{n \rightarrow \infty} S_{n}(\omega) / n=\mu\right)=1 \\
& V\left(\omega \in \Omega: \liminf _{n \rightarrow \infty} S_{n}(\omega) / n=\underline{\mu}\right)=1
\end{aligned}
$$

(III) Suppose that $C\left(\left\{S_{n}(\omega) / n\right\}\right)$ is the cluster set of a sequence of $\left\{S_{n}(\omega) / n\right\}$, then

$$
V\left(\omega \in \Omega: C\left(\left\{S_{n}(\omega) / n\right\}\right)=[\underline{\mu}, \mu]\right)=1
$$

6. Law of iterated logarithm for sub-linear expectations

Theorem $4\left\{\mathrm{X}_{\mathrm{n}}\right\}$ bounded IID. $\mathbb{E}\left[\mathrm{X}_{1}\right]=\mathcal{E}\left[\mathrm{X}_{1}\right]=0, \mathrm{\sigma}^{2}:=\mathbb{E}\left[\mathrm{X}_{1}^{2}\right], \underline{\sigma}^{2}:=$ $\mathcal{E}\left[X_{1}^{2}\right]$. Let $S_{n}:=\sum_{i=1}^{n} X_{i}, a_{n}:=\sqrt{2 n \lg \lg n}$, then
(I)

$$
v\left(\underline{\sigma} \leq \limsup \frac{S_{n}}{a_{n}} \leq \sigma\right)=1 ;
$$

$$
\begin{equation*}
v\left(-\sigma \leq \liminf _{n} \frac{S_{n}}{a_{n}} \leq-\underline{\sigma}\right)=1 . \tag{II}
\end{equation*}
$$

(III) Suppose that $C\left(\left\{x_{n}\right\}\right)$ is the cluster set of a sequence of $\left\{x_{n}\right\}$ in R, then

$$
v\left(C\left(\left\{\mathrm{~S}_{\mathrm{n}} / \sqrt{2 \mathrm{nloglogn}}\right\}\right) \supset(-\underline{\sigma}, \underline{\sigma})\right)=1 .
$$

THEOREM 5 Suppose ξ is distributed to G normal $N\left(0 ;\left[\underline{\sigma}^{2}, \sigma^{2}\right]\right)$, where $0<$ $\underline{\sigma} \leq \sigma<\infty$. Let φ bea bounded continuous function. Furthermore, if φ is a positively even function, then, for any $b \in R$,

$$
\mathrm{e}^{-\frac{\mathrm{b}^{2}}{2 \underline{\sigma}^{2}} \mathcal{E}}[\varphi(\xi)] \leq \mathcal{E}[\varphi(\xi-\mathrm{b})] .
$$

8. Application

Total 100 balls in box, Black + Red + Yellow $=100$,
Black $=$ Red, Yellow $\in[30,40]$, then $P_{Y} \in[3 / 10,4 / 10]$.
Take a ball from this box,
$X_{i}=1$, if ball is black, $X_{i}=0$, if ball is Yellow, $X_{i}=-1$ for red.
$S_{n}=\sum_{i=1}^{n} X_{i}$, is the excess frequency of black than Red
Then
(a) $\mathbb{E}\left[\mathrm{X}_{\mathrm{i}}\right]=\mathcal{E}\left[\mathrm{X}_{\mathrm{i}}\right]=0$
(b)

$$
\sqrt{6 / 10} \leq \limsup _{n \rightarrow \infty} \frac{S_{n}}{\sqrt{2 n \lg \lg }} \leq \sqrt{7 / 10} .
$$

Thank you!

Home Page

Title Page

\square

Page 21 of 21

Go Back

Full Screen

Close

