

Outline

- Review of community detection
- Community extraction
- Simulation study
- Real data analysis
- Asymptotic consistency
- Future work

Network data

Data: links between nodes

- Social and friendship networks, citation networks
- Marketing, recommender systems
- Computer, mobile, sensor networks
- World Wide Web
- Gene regulatory networks, food webs

Notation

Given a network N = (V, E)

- V is the set of nodes, E is the set of edges.
- N is represented by its adjacency matrix A:

$$A_{ij} = \begin{cases} 1 & \text{if there is an edge from node } i \text{ to node } j, \\ 0 & \text{otherwise.} \end{cases}$$

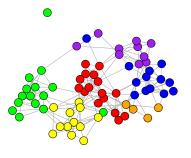
 A can be symmetric (undirected network) or asymmetric (directed network).

Community detection

- Communities: many links within and few links between
- Community detection is typically formulated as finding a partition $V = V_1 \cup \cdots \cup V_K$ which gives "tight" communities in some suitable sense.
- For simplicity, give criteria for partitioning into two communities V_1 and V_2 .

Example: a school friendship network

Colors represent grades



Graph cuts

Min-cut: minimize

$$R = \sum_{i \in V_1, j \in V_2} A_{ij} \ .$$

Trivial solution of $V_1 = V$ or $V_2 = V$.

Graph cuts

Min-cut: minimize

$$R = \sum_{i \in V_1, j \in V_2} A_{ij} .$$

Trivial solution of $V_1 = V$ or $V_2 = V$.

• Ratio cut (Wei and Cheng, 1989): minimize

$$\frac{R}{|V_1|\cdot|V_2|},$$

where $|V_1|$ and $|V_2|$ are the sizes of the two communities.

Graph cuts

Min-cut: minimize

$$R = \sum_{i \in V_1, j \in V_2} A_{ij} .$$

Trivial solution of $V_1 = V$ or $V_2 = V$.

• Ratio cut (Wei and Cheng, 1989): minimize

$$\frac{R}{|V_1|\cdot|V_2|},$$

where $|V_1|$ and $|V_2|$ are the sizes of the two communities.

Normalized cut (Shi and Malik, 2000): minimize

$$\frac{R}{D_1} + \frac{R}{D_2}$$

where $D_k = \sum_{i \in V_k, j \in V} A_{ij}$ is the total number of edges from nodes in V_k .

Modularity (Newman050Nev

$$Q = \sum_{k} \left[\frac{O_{kk}}{L} - \left(\frac{D_{k}}{L} \right)^{2} \right]$$

- Q is the sum of observed expected under the configuration model: probability of edge between nodes with degrees d_i, d_i is d_id_i/L.
- Typically solved by an eigenvalue method via relaxing max_{s_i=±1} s^TMs to max_{||s||=1} s^TMs.

Limitation of partition methods

- Many real-world networks contain nodes with few links that may not belong to any community ("background").
- The "strength" of a community depends on links between nodes not related to the community.
- Determining the number of communities is difficult.

Outline

- √ Review of community detection
- Community extraction
- Simulation study
- Real data analysis
- Asymptotic consistency
- Future work

Community extraction

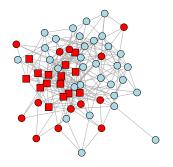
- Allow for background nodes that only have sparse links to other nodes.
- Extract communities sequentially: at each step look for a set with a large number of links within and a small number of links to the rest of the network.
- Stop when no more meaningful communities exist.

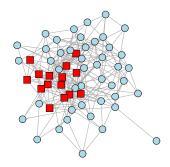
Toy example

- One community with 15 nodes, total 60 nodes.
- Links between community members form independently with probability 0.5.
- Links between community members and other nodes form independently with probability 0.1.
- Links between other nodes form independently with probability 0.1.
- Compare partition into two communities (via modularity) to extraction of a single community.

Shapes represent the truth, colors represent results.

Partition Extraction





Extraction criterion

Maximize

$$W(S) = \frac{O(S)}{|S|^2} - \frac{B(S)}{|S| \cdot |S^c|}$$

where

$$O(S) = \sum_{i,j \in S} A_{ij} \ , \ B(S) = \sum_{i \in S,j \in S^c} A_{ij} \ .$$

The links within the complement of set *S* do not matter.

Adjusted criterion

- In sparse networks, tends to pick small disconnected components first.
- To avoid small communities, can use

Maximize

$$W_a(S) = |S| \cdot |S^c| \left(\frac{O(S)}{|S|^2} - \frac{B(S)}{|S| \cdot |S^c|} \right).$$

The factor $|S| \cdot |S^c|$ encourages more balanced solutions.

Algorithm

- Tabu Search (Glover, 1986; Glover and Laguna, 1997): a local optimization technique based on label switching.
- Switch labels to improve the value of the criterion but each node has to keep its label for at least T iterations.
- Run the algorithm for many randomly ordered nodes.

Outline

- √ Review of community detection
- √ Community extraction
- Simulation study
- Real data analysis
- Asymptotic consistency
- Future work

Numerical evaluation

- S is the extracted community.
- C_S is the true community that matches S best.

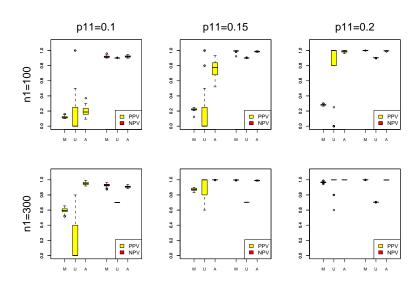
PPV and NPV

$$PPV = \frac{|C_S \cap S|}{|S|}$$
 Purity
$$NPV = 1 - \frac{|C_S \cap S^c|}{|S^c|}$$
 Completeness

Simulation I

- One community with background
- n = 1000
- $n_1 = 100,200,300$
- $p_{12} = 0.05, p_{22} = 0.05$
- $p_{11} = 0.1, 0.15, 0.2$

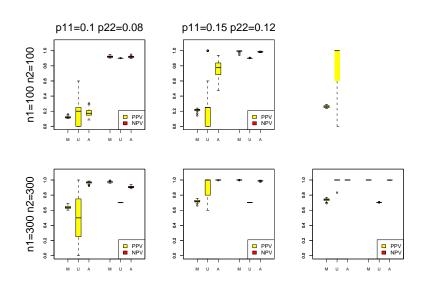
Results of simulation I



Simulation II

- Two communities plus background
- n = 1000
- $n_1 = 100,300, n_2 = 100,300$
- $p_{12} = p_{23} = p_{13} = p_{33} = 0.05$
- $p_{11} = 0.1, 0.15, 0.2$
- $p_{22} = 0.08, 0.12, 0.16$

Results for simulation II



Outline

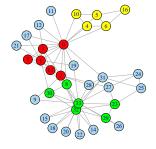
- √ Review of community detection
- √ Community extraction
- √ Simulation study
- Real data analysis

Karate club network

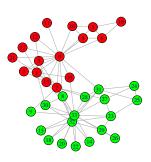
- Friendships between 34 members of a karate club (Zachary, 1977).
- This club has subsequently split into two parts following a disagreement between an instructor (node 0) and an administrator (node 33).

Karate club network

Community extraction



Modularity



Political books network

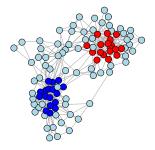
Links in the political books network (Newman, 2006) represent pairs of books frequently bought together on amazon.com.

Blue: liberal

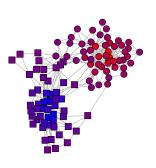
Red: conservative

Political books network

Community extraction



Modularity

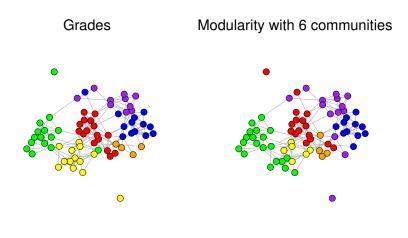


School friendship network

The school friendship network is complied from the National Longitudinal Study of Adolescent Health (AddHealth).

Grade 7: red Grade 8: blue Grade 9: green Grade 10: yellow Grade 11: purple Grade 12: orange

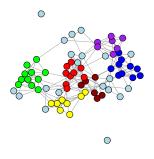
School friendship network

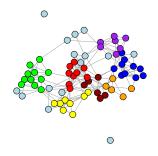


School friendship network

Extracting 6 communities

Extracting 7 communities





Outline

- √ Review of community detection
- √ Community extraction
- √ Simulation study
- √ Real data analysis
- Asymptotic consistency
- Future work

Block models

One of the simplest random graph models for communities

- Each node is assigned to a block independently of other nodes, with probability $_k$ for block k, $\sum_{k=1}^{K}$ $_k = 1$.
- Given that node i belongs to block a and node j belongs to block b, $P[A_{ij} = 1] = p_{ab}$, and all edges are independent.
- Parametrized as $P_n = {}_nP$, where ${}_n = P_n[A_{ii} = 1] \rightarrow 0$.
- Expected node degree n = n n
- Can stipulate background: assume p_{aK} < p_{bb} for all a = 1,..., K, and all b = 1,..., K − 1.

Asymptotic consistency result

- For simplicity, assume one community and background $(K = 2 \text{ with parameters } p_{11}, p_{12}, p_{22},)$.
- Let c be the true labels, $\hat{c}^{(n)}$ the estimated labels.

Theorem

For any 0 < < 1, if $p_{11} > p_{12}$, $p_{11} > p_{22}$ and $p_{11} + p_{22} > 2p_{12}$, $\frac{n}{\log n} \to \infty$, the maximizer $\hat{\boldsymbol{c}}^{(n)}$ of both unadjusted and adjusted criteria satisfies

$$P[\hat{\boldsymbol{c}}^{(n)} = \boldsymbol{c}] \rightarrow 1$$
 as $n \rightarrow \infty$.

- Holds for $p_{12} = p_{22} = p < p_{11}$
- Proof: apply Bickel and Chen (PNAS, 2009)

Bickel & Chen consistency framework

- Assume a block model with known K
- Given a proposed label assignment s, true labels c, let R be the confusion matrix with

$$R_{ab}(\mathbf{s},\mathbf{c}) = \frac{1}{n} \sum_{i=1}^{n} I(s_i = a, c_i = b)$$
.

- Many criteria, including ours, can be written as a function of the confusion matrix.
- Key condition: the population version of the criterion is maximized by the "correct" confusion matrix diag(1,..., k).

Future work

- Eigenvalue method
- Determining the number of communities
- Adjusted criterion

$$W_a(S) = \left(|S| \cdot |S^c|\right) \quad \left(\frac{O(S)}{|S|^2} - \frac{B(S)}{|S| \cdot |S^c|}\right)$$