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( )__1Background

e Item nonresponse: occurs frequently in sample surveys.

Example In sample survey on transportation, some vehicles may not be
found, but their tonnage or seat capacity is known to us.

e Solutions: (1) Increasing response probability; (2) Imputing the missing
values of the sampled units.

e Imputation methods: Ratio imputation, regression imputation, random im-
putation etc.

e Shortcoming: Uniform response (often), simple random sampling

e PPSWR sampling: the sampling with probability proportional to size with
replacement which is often used in the first stage of multistage sampling.
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(=) Imputation method under PPSWR
sampling
1. Notation

e Survey population U: consist of [V distinct units identified through
the labels: =1, ..., V.

Suppose that the auxiliary variable, X, is available for each unit of
the population, but the variable of interest, )/, is missing for some
of the sampled units.

e s,. sample with size n drawn from U by PPSWR sampling.
e s, the respondent set with size (> 1).

e s,_,. the nonrespondent set with size n — r.
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e Uniform response mechanism: independent response across sample units Background

Imputation method. ..

and equal response probability, p (¢ = 1 — p). Special case: SAS..

Simulation studies

e Non-uniform response mechanism: independent response across sample Futire researchies
units and possibly unequal response probabilities, p; (¢i = 1 — pj).

e Response indicator on y;: .

1, if the unit ¢ responds to v;,
0, otherwise.
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2. Imputation method

We first let p; be known. For the missing )—values, we suggest the
following imputation method:

. 1 q;Y; .
yi=|—=> |z i€su
n TjESTPJx]



http://192.9.200.1

It is interesting to note that y; is an approximation of the weighted least squares
predictor under the following superpopulation model:

{ yi = fzi + ei,
e(ei) =0, e(e}) = o2z, e(eiej) =0 (i # j).

In fact, it can be seen that under the above superpopulation model, the weighted
least squares estimator of 3 with the weights w; o gi/(piz?) is given by

> s (qivi)/ (pizi)
Zsr 1/pi —r .

Further, the expectation of ) s 1/p; with respect to the response mechanism is

n.
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3. Estimator of population mean and its
variance

Applying the above imputation method to the PPSWR sampling, the
corresponding Hansen-Hurwitz estimator of the population mean Y is

- X i X i
YﬁpsZgZ < ZEZ = f;
(S

ZEST pZ ] . San ]

Theorem 1. The estimator ?;PS Is design-unbiased under the non-
uniform response mechanism.

Theorem 2. Under the non-uniform response, the variance of ?;PS IS
given by

N 2 N 2

where 7, = X;/X.
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4. Jackknife variance estimator
Define the imputed values as follows: For: € s,,_,,

( ( 1 Z qk%)ﬂ ies
n—r . pkgL’k 19 T
*a(5) = ¢ kes,—{j}
Yi \J) = 1 Qkn |
(— E —)371'7 ] € Sp—p
=7 — 1 DiT )
\ keEs,

when the j-th sample unit is deleted.

Based on these imputed values, the estimator of Y can be obtained as

)
X Yi
) E S )
A n — 1 ) Z Did; J d
Vo) =3 ¢ =Y
X U .
b} ] E Sn—T7
n—1 ics, i
\ '

when the j-th sample unit is deleted.
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Define the j-th pseudovalue as follows:

A

Yy = nYpps — (n — 1)Ypps(j)-

A jackknife variance estimator of f/FTPS is then given by

s n—1 ik e .
vy (Yeps) = Z[YPPS _YP?’S(])]Q
j€s,
- A 2
__ 20 Wi, L L
n<n 9 1> ies, p|2$|2 & i€s, Pii

Theorem 3. Let n > 1. Then under the non-uniform response, we have

Elvs(Yeps)] = V(Yips)-

Theorem 3 shows that the jackknife variance estimator v; (ffgps) is design-
unbiased under the non-uniform response.
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and

_ 2
e X* yi 1 Yi
v3(Yeps) = m “?:Ip? m (Z 5 It
respectively.

For the relationship between the estimators with known and unknown pj, under
some regularity conditions, we have

~ 2 1
Yeps = Yops + Op (ﬁ) 7

and

2~ 2 1
v3(Ypps) = va(Yeps) + Op (W) :
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(=) Special case: SRS sampling and uni-
form response

e Imputed value:

e Imputed estimator:

r(n—1)
(r—1)n

Y,ST']]%%S: UpTy + <gr - ’arfr)a

1 :
where u, = ; ZU]' with U; = yj/flfj.

JESr
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The estimator ?ngs Is a design-unbiased estimator under uniform response. It is
interesting that it is just the version of Hartley-Ross estimator (Hartley and Ross
1954, Nature) for estimating the population mean under two-phase sampling.

e \ariance:

N 1 N . Ny Y Yy 1
‘NKQQ—;@B$+GMQYUX+U%ﬂ(ﬂxz2UZﬂ+O(—),

n2

N N
where T = %2T. with T; = X2, and Z = %;Zi with Z; = YiX;,
and

1
N — 14

Sy = (Vi = Y)"

N
=1
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Two approximate Jackknife variance estimators:

Uh(Fghs) = ~Tskm) + (@ = Fa)d(r) = 2@ — Fn)oyu(r) + s3(r)

X (1 _ 3) u2s2(r) + 2 (1 - 1) Ur[(Tr — Tn)sux(r) — syx(7)],

r n T n

and

o (Tgh) = watskn) + 15500 + (1 - 2 ) k) =2 (5 - 1) weat)

T n
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Asymptotic design-unbiasedness:

A

(l) E[UJ (YSTQS)] = V(YS%S) + O (%) . Background

Imputation method. ..

.. = = Special case: SRS. ..
(l I) E [US (YS”I]QS ):| — V (YST?S ) + O (#) . Simulation studies

Future researches

(i) E[o}(Yike)] = V(YiRks) + O ().

i Il |
Remark: We should note that the (approximate) design-unbiasedness is the ran |

main requirement for a good estimator in survey sampling. The approximate « | »
design-unbiasedness of the Jackknife variance estimators has been found first in <] o
Zou and Feng (1998), and then in Skinner and Rao (2002) and Zou et al. (2002). |

Such a property universally holds from our subsequent analysis. e
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() Simulation studies

The data are generated from the three ratio models which are different
only in the auxiliary variables:

W = oS TF sy

with x; ~ U(0.1,2.1), N(1,1), and N(20, 16), respectively, &; ~
N(0,1), and z; and ; are assumed to be independent.

In the case of uniform response, we set p = 0.76; In the case of non-
uniform response, the unequal response probability p; for the unit ¢
follows the logistic model

_exp(—1+2.3x)
1+ exp(—1+2.3z;)

Di
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Madel o Bstimator Mean Variance Jackknife variance estimator
(population mean)
Ml 100 Yiee 4305 0.01648 0.01610
(4.305) Vips 4306 0.05491 0.05488
500 Vies 4305 0003133 0.003210
Vips 4304 0.01079 0.01098
M2 100 ¥Yipe 3961  0.01350 0.01361
(3.961) Yips 3961  0.03485 0.03578
500 Viee 3962 0.002729 0.002717
Yips 8962 0.007372 0.007154
M3 100 Yips 7782 5.187 5.250
(77.82) Yopg  T1.83  3.865 3.980
500 Yhee 7782 1.029 1.048
Vipe 7782 0.7839 (.7969



http://192.9.200.1

Table 1 summarizes the results on the simulated mean, variance and jackknife
variance estimate. It can be seen from the table that both of the estimators }i/F!pS
and }ifgps are very close to the true population means for the three distributions
of auxiliary variable. Also, the jackknife variance estimators perform very well.
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To study the effect of the response probability, we set various response proba-
bilities: p = 0.5 for uniform response, and p; follows

~ exp{0.3(zi — X)}
1+ exp{0.3(zi — X)}

bi

for non-uniform response. The results are presented in Table 2. It is observed
that the approximate design-unbiasedness of the proposed estimators still holds.
On the other hand, it is also clear that the variances become larger for low re-
sponse probability. For some other settings of response probability, we obtain
the similar results but omit them here for saving space.
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Mean  Variance Jackknife variance estimator
(population thean)
Yips 4309 0.02481 0.02410
Yips 4311 0.2007 0.1939
Vips 4305 0.004787 0.004876
Vips 4305  0.03875 0.03855
Vips  3.961  0.02059 0.02078
3.965  0.1451 0.1419
3,962 0.004256 0.004134
3.962  0.02734 0.02779
T7.82 8281 8.198
6.97 1069 105.8
T8 1596 1.598
7T 19.97 20.85
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(&) Future researches

e Incomplete auxiliary information and multiple auxiliary informa-
tion

e Estimation of response probability: the use of non-parametric ap-
proach.

e Other unequal probability sampling
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Thank you!
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