Extensions of a theorem of Hsu and Robbins

on the convergence rates in the law of large numbers

LIU Quansheng (with HAO Shunli)

Univ. de Bretagne-Sud
(Univ. of South-Brittanyeyv4d50(ates)-27

1 Introduction
1.1 Convergence rate in the law of large numbers: the iid case

Consider i.i.d. r.v. with $=0$. Let

$$
=1+\ldots+
$$

Law of Large numbers:

$$
-\rightarrow 0
$$

Question: at what rate $\quad(|\quad|>\quad) \rightarrow 0$?

The theorem of Hsu-Robbins-Erdos

Hsu and Robbins (1947):

$$
\stackrel{2}{1}<\infty \Rightarrow \sum \quad(|\quad|>\quad)<\infty \quad \forall>0
$$

("complete convergence", which implies a.s. convergence)

Erdos (1949): the converse also holds:

$$
{ }_{1}^{2}<\infty \Leftarrow \sum \quad(|\quad|>\quad)<\infty \quad \forall>0
$$

Spitzer (1956):

$$
\sum^{-1}(|\quad|>\quad)<\infty \quad \forall>0 \text { whenever } \quad 1=0
$$

Baum and Katz (1965): for >1,

$$
|1|<\infty \Leftrightarrow \sum \quad-2 \quad(|\quad|>\quad)<\infty \quad \forall>0
$$

in particular,

$$
|1|<\infty \Rightarrow(|\quad|>\quad)=(-(-1))
$$

Question: is it valid for martingale differences?
1.2 Convergence rates in the law of large numbers: the martingale case

Is the theorem of Baum and Katz (1965) still valid for martingale differences ()?

$$
\{\emptyset, \Omega\}=\mathcal{F}_{0} \subset \mathcal{F}_{1} \subset \ldots,
$$

\forall, \quad are \mathcal{F} measurable with $\left[\quad \mid \mathcal{F}{ }_{-1}\right]=0$

$$
(\Leftrightarrow \quad=1+\ldots+\quad \text { is a martingale. })
$$

Lesigne and Volney (2001): ≥ 2

$$
|1|<\infty \Rightarrow(|\quad|>\quad)=(-/ 2)
$$

and the exponent / 2 is the best possible, even for stationary and ergodic sequences of martingale differences.

Therefore the theorem of Baum and Katz does not hold for martingale differences without additional conditions.
[Curiously, Stoica (2007) claimed that the theorem of Baum and Katz still holds for >2 in the case of martingale differences without additional assumption. His claim is a contradiction with the conclusion of Lesigne and Volney (2001), and his proof is wrong: he chose an element in an empty set!]
1.3 Under what conditions the theorem of Baum and Katz still holds for martingale differences?

Alsmeyer (1990) proved that the theorem of Baum and Katz of order
>1 still holds for martingale differences () if for some \in $(1,2]$ and $>(-1) /(-1)$,

$$
\sup _{\geq}\left\|\frac{1}{-} \sum_{=1} \quad\left[|\quad| \mid \mathcal{F}_{-1}\right]\right\|<\infty
$$

where $\|$.$\| denotes the norm.$
His result is already nice, but:

Our objective: extend the theorem of Baum and Katz (1965) to a large class of martingale arrays, in improving Alsmeyer's result for martingales, by establishing a sharp comparison result between

$$
\left(\sum_{=1}^{\infty},>\right) \text { and } \sum_{=1}^{\infty}(\quad,>)
$$

for arrays of martingale differences $\{,: \geq 1\}$.

Our result is sharper then the known ones even in the independent (not necessarily identically distributed) case.
2. Main results for martingale arrays

For ≥ 1, let $\{(\quad, \mathcal{F}): \geq 1\}$ be a sequence of martingale differences, and write

$$
\begin{gathered}
\left(\mathrm{)}=\sum_{=1}^{\infty} \mathbb{E}[|\quad| \mid \mathcal{F},-1], \quad \in(1,2]\right. \\
,=\sum_{=1}, \quad \geq 1 \\
, \infty=\sum_{=1}^{\infty} .
\end{gathered}
$$

Lemma 1 (Law of large numbers) If for some $\in(1,2]$,

$$
\mathbb{E} \quad(\quad):=\sum_{=1}^{\infty} \mathbb{E}[|\quad|] \rightarrow 0
$$

then for all >0,

$$
\left\{\sup _{\geq 1}|,|>\quad\right\} \rightarrow 0
$$

and

$$
\{|\quad, \infty|>\quad\} \rightarrow 0
$$

We are interested in their convergence rates.

Theorem 1 Let $\Phi: \mathbb{N} \mapsto[0, \infty)$. Suppose that for some $(1,2], \quad \in[1, \infty)$ and $0 \in(0,1)$,

$$
\begin{equation*}
\mathbb{E} \quad() \rightarrow 0 \text { and } \sum_{=1}^{\infty} \Phi()(\mathbb{E} \quad())^{1-0}<\infty . \tag{1}
\end{equation*}
$$

Then the following assertions are all equivalent:

$$
\begin{align*}
& \sum_{=1}^{\infty} \Phi() \sum_{=1}^{\infty}\{|\quad|>\}<\infty \forall>0 ; \tag{1}\\
& \left.\sum_{=1}^{\infty} \Phi() \quad \sup _{\geq 1}^{\infty} \mid>\right\}<\infty \forall>0 \tag{2}\\
& \sum_{=1}^{\infty} \Phi() \quad\{|\quad, \infty|>\}<\infty \forall>0 . \tag{3}
\end{align*}
$$

Remark. The condition (C1) holds if for some $\in \mathbb{R}$ and $1>0$,

$$
\Phi()=(\quad) \text { and }\|\quad(\quad)\|_{\infty}=\left(-^{1}\right)
$$

In the case where this holds with $=2$, Ghosal and Chandra (1998) proved that (1) implies (2); our result is sharper because we have the equivalence.

Theorem 2 Let $\Phi: \mathbb{N} \mapsto[0, \infty)$ be such that $\Phi() \rightarrow \infty$. Suppose that for some $\in(1,2], \in[1, \infty)$ and $0 \in(0,1)$,

$$
\Phi(\quad)(\mathbb{E} \quad())^{1-0}=(1) \quad(\quad . \quad(1))
$$

3. Consequences for martingales We now consider the single martingale case

$$
=1+\ldots+
$$

w.r.t. a filtration

$$
\{\emptyset, \Omega\}=\mathcal{F}_{0} \subset \mathcal{F}_{1} \subset \ldots
$$

By definition, $\quad[\quad \mid \mathcal{F}-1]=0$.
For simplicity, let us only consider the case where

$$
\Phi()={ }^{-2} \ell(),
$$

where $>1, \ell$ is a function slowly varying at ∞ :

$$
\lim _{\rightarrow \infty} \frac{\ell(\quad)}{\ell()}=1 \quad \forall>0 .
$$

Notice that

$$
/ \rightarrow 0 \text { a.s. iff } \quad\left(\sup _{\geq} \frac{\mid}{}>\quad\right) \rightarrow 0 \forall>0
$$

To consider its rate of convergence, we shall use the condition that for some $\in(1,2]$ and $\in[1, \infty)$ with $>(-1) /(-1)$,

$$
\begin{equation*}
\sup _{\geq 1}\left\|_{-}(, \quad)\right\|<\infty \tag{3}
\end{equation*}
$$

where__(,) $=\underline{1} \sum_{=1} \mathbb{E}[|\quad| \mid \mathcal{F}-1]$. Remark that (C3) holds evidently if for some constant >0 and all ≥ 1,

$$
\begin{equation*}
\mathbb{E}\left[|\quad| \mid \mathcal{F}_{-1}\right] \leq \tag{4}
\end{equation*}
$$

Theorem 3 Let >1 and $\ell \geq 0$ be slowly varying at ∞. Under (C3) or (C4), the following assertions are equivalent:

$$
\begin{align*}
& \sum_{=1}^{\infty} \quad{ }^{-2} \ell() \sum_{=1}\{|\quad|>\quad\}<\infty \quad \forall>0 ; \tag{7}\\
& \sum_{=1}^{\infty}{ }^{-2} \ell() \quad\left\{\sup _{1 \leq \leq}|\quad|>\quad\right\}<\infty \quad \forall>0 ; \tag{8}\\
& { }^{-2} \ell()\{|\quad|>\quad\}<\infty \quad \forall>0 . \tag{9}\\
& \left.\sum_{=1}^{\infty}{ }^{-2} \ell() \operatorname{sip}_{\geq} \underline{| |}>\right\}<\infty \quad \forall>0 . \tag{10}
\end{align*}
$$

Remark. If are identically distributed, then (7) is equivalent to the moment condition

$$
|\quad 1| \ell(|\quad 1|)<\infty
$$

So Theorem 3 is an extension of the result of Baum and Katz (1965). When ℓ is a constant, it was proved by Alsmeyer (1991).

Theorem 4 Let >1 and $\ell \geq 0$ be slowly varying at ∞. Under (C3) or (C4), the following assertions are equivalent:

$$
\begin{align*}
& { }^{-1} \ell() \sum_{=1}\{|\quad|>\quad\}=(1) \quad(\quad . \quad(1)) \quad \forall>0 ; \\
& =1 \\
& { }^{-1} \ell() \quad\left\{\sup _{1 \leq \leq}\right. \\
& { }^{-1} \ell\left(\begin{array}{l}
\text {) }\{\mid>\quad\}=(1) \quad(\quad . \quad(1)) \quad \forall>0 .
\end{array}\right. \tag{13}\\
& \left.{ }^{-1} \ell() \underset{\geq}{\{\sup } \frac{| |}{\geq}\right\}=(1) \quad(\quad . \quad(1)) \quad \forall>0 . \tag{14}
\end{align*}
$$

4. Applications to sums of weighted random variables.

Example: Ces`ro summation for martingale differences.
For >-1, let $\quad 0=1$ and

$$
=\frac{(+1)(+2) \cdots(+)}{!}, \quad \geq 1 \text {. }
$$

Then $\quad \sim \overline{\Gamma(+1)} \quad \rightarrow \infty$, and $\frac{1}{-} \sum=0 \quad{ }_{-}^{-1}=1$. We consider convergence rates of

$$
\begin{array}{ll}
\sum=0 \quad{ }_{-}^{-1} \\
\hline
\end{array}
$$

where $\{(\quad, \mathcal{F}), \geq 0\}$ are martingale differences that are identically distributed.

For simplicity, suppose that for some $\in(1,2],>0$ and all
≥ 1,

$$
\mathbb{E}\left[\begin{array}{l|ll}
\mid & \mid & \mathcal{F}_{-1} \tag{15}
\end{array}\right] \leq
$$

Theorem 5. Let $\{(, \mathcal{F}), \geq 0\}$ be identically distributed martingale differences satisfying (15). Let ≥ 1, and assume that

$$
\begin{cases}\mathbb{E} \mid & \left.1\right|^{\frac{-1}{+1}<\infty} \tag{16}\\ \mathbb{E} \mid & \text { if } 0 \ll 1-\frac{1}{-l}, \\ \mathbb{E} \mid & 1 \mid<\infty \\ & \text { if }=1-\frac{1}{-}, \\ 1 \mid)<\infty & \text { if } 1-\frac{1}{-} \leq 1\end{cases}
$$

Then

$$
\begin{equation*}
\sum_{=1}^{\infty}{ }^{-2}\left\{\left|\sum_{=0}{ }_{-}^{-1} \quad\right|>\quad\right\}<\infty \text { for all }>0 \tag{17}
\end{equation*}
$$

Remark: in the independent case, the result is due to Gut (1993).
5. Proofs of main results

The proofs are based on some maximal inequalities for martingales.
A. Relation between

$$
\left(\max _{1 \leq \leq}|\quad|>\right) \text { and }\left(\max _{1 \leq \leq} \mid>\right)
$$

for martingale differences ():

Lemma A Let $\{(, \mathcal{F}), 1 \leq \leq\}$ be a finite sequence of martingale differences. Then for any $>0, \in(1,2], \geq 1$, and $\in \mathbb{N}$,

$$
\begin{gathered}
\left\{\max _{1 \leq \leq}|\quad|>2\right\} \leq\left\{\max _{1 \leq \leq} \mid>\right\} \\
\leq\left\{\max _{1 \leq \leq}| |>\overline{4(+1)}\right\} \\
+\frac{-(+1)}{+}(\mathbb{E}())^{\frac{1+}{+}},
\end{gathered}
$$

$$
=(,,)>0 \text { is a constant depending only on }
$$

where $=(,)>$,0 is a constant depending only on and ,

$$
()=\sum_{=1} \mathbb{E}\left[|\quad| \mid \mathcal{F}{ }_{-1}\right] .
$$

B. Relation between

$$
\left(\max _{1 \leq \leq} \quad>\right) \text { and } \sum_{1 \leq \leq} \quad(>)
$$

for adapted sequences ():
Lemma B Let $\{(\quad, \mathcal{F}), 1 \leq \leq\}$ be an adapted sequence of r.v. Then for $>0,>0$ and ≥ 1,

$$
\begin{aligned}
\left\{\max _{1 \leq \leq}\right. & >\} \leq \sum_{=1}\{>\} \\
\leq(1+-)\left\{\max _{1 \leq \leq}\right. & >\}+-\mathbb{E}()
\end{aligned}
$$

where

$$
()=\sum_{=1} \mathbb{E}[|\quad| \mid \mathcal{F}-1] .
$$

C. Relation between

$$
\left(\max _{1 \leq \leq}|\quad|>\right) \text { and } \quad(|\quad|>)
$$

for martingale differences ():

Lemma C Let $\left\{\left(\quad, \mathcal{F}_{\mid}\right), \infty \leq \mid \leq \backslash\right\}$ be a finite sequence of martingale differences. Then for $>0, \in(1,2]$ and ≥ 1,

$$
\begin{gathered}
\left\{\max _{1 \leq}|\quad|>\quad\right\} \leq 2 \quad\left\{|\quad|>\frac{-}{2}\right\} \\
+2^{(+1)} \quad() \mathbb{E} \quad()
\end{gathered}
$$

where $\quad()=\sum_{=1} \mathbb{E}\left[|\quad| \mid \mathcal{F}_{-1}\right]$,

$$
()=\left(18^{3 / 2} /(-1)^{1 / 2}\right) .
$$

Thank you!

Quansheng.Liu@univ-ubs.fr

