Talk in Peking University
July 5-7, 2010

Extensions of a theorem of Hsu and Robbins

~on the convergence rates
In the law of large numbers

LIU Quansheng (with HAO Shunli)

Univ. de Bretagne-Sud



1 Introduction

1.1 Convergence rate in the law of large numbers: the iid case

Consider i.i.d. r.v. Xj with EX; = 0. Let
Sn = X1+ i+ Xn:

Law of Large numbers:

S
—n—>0:
N

Question: at what rate P (|Sn| = n"") — 07?



The theorem of Hsu-Robbins-Erdos
Hsu and Robbins (1947):
EX{<oo=)» P(ISh|>n")<oc V">0:
n
("complete convergence”, which implies a.s. convergence)

Erdos (1949): the converse also holds:
EX{<oo<«< ) P(ISh|>n")<oco V">0:
n
Spitzer (1956):

Z N~P(|Sh| > Nn") < oo V" = 0 whenever EX; = 0:
n



Baum and Katz (1965): for p = 1;

E|IXi1lP<ooc &) nP?P(|Sh| >n") <oco V"> 0;
N

In particular,
E|X1|P < 0o = P (|Sh| = n") = o(n—(P~1))

Question: is it valid for martingale differences?



1.2 Convergence rates in the law of large numbers: the martingale
case

Is the theorem of Baum and Katz (1965) still valid for martingale
differences (Xj)?

{0; QY =Fog C F1 C i3
Vj, X; are Fj measurable with E[Xj|Fj_1] =0
(& Sn = X1 + i + Xp is a martingale. )



Lesigne and Volney (2001): p > 2
E|X;1|P < o0 = P(|Sn| = n") = o(n™P™?)

and the exponent p=2 is the best possible, even for stationary and
ergodic sequences of martingale differences.

Therefore the theorem of Baum and Katz does not hold for martin-
gale differences without additional conditions.



[ Curiously, Stoica (2007) claimed that the theorem of Baum and Katz
still holds for p = 2 in the case of martingale differences without ad-
ditional assumption. His claim is a contradiction with the conclusion
of Lesigne and Volney (2001), and his proof is wrong: he chose an
element in an empty set! ]



1.3 Under what conditions the theorem of Baum and Katz still holds
for martingale differences?

Alsmeyer (1990) proved that the theorem of Baum and Katz of order
p = 1 still holds for martingale differences (Xj) if for some €

(1;2]andg = (p—1)=( —1),

1 n
sup [|= > E[IXj| |Fj_1lllg < oo
n> N.—

- _]—1
where ||:||q denotes the LY norm.

His result is already nice, but:






Our objective: extend the theorem of Baum and Katz (1965) to a
large class of martingale arrays, in improving Alsmeyer’s result for
martingales, by establishing a sharp comparison result between

oo o0
P() Xpj="and Y P(Xpj=>")
j=1 j=1

for arrays of martingale differences {Xn:j : j > 1}.

Our result is sharper then the known ones even in the independent
(not necessarily identically distributed) case.



2. Main results for martingale arrays

Forn > 1, let {(Xnj; Fnj) : J = 1} be a sequence of martingale
differences, and write

mn( ) = > ElXnjl [Fnj-1li € (1:2];
j=1

J
Sn;j — ani; j > 1;
=1

oo
Sn;oo — Z Xni:
=1



Lemma 1 (Law of large numbers) If for some € (1; 2],

@)

Emn( ) == Y E[[Xnj| ] = 0;
j=1

then for all " = 0,

P {sup |Sn;j| =>"1—0
Jj>1

and
P{|Sh:cc| ="} — O:

We are interested in their convergence rates.



Theorem 1 Let ® : N — [0;00). Suppose that for some €
(1;2];q € [1;00) and g € (0; 1),

® @)
EmJ( ) —»0and » @(n)(EmY( )"0 <oo: (C1)
n=1
Then the following assertions are all equivalent:

> ®(n) ) P{|Xnjl ="} < ooV =>0; (1)
n=1 j=1

Y ®(n)P {sup Spj| ="} < 0o V"' = 0; (2)
n=1 121

Y ®(N)P{|Sn;0c| ="} < o0 V" = 0: (3)

n=1



Remark. The condition (C1) holds if for some r € Rand "1 = 0,

®(n) = O(n") and [[Mn( )llec = O(N™ 1): (C1)

In the case where this holds with = 2, Ghosal and Chandra (1998)
proved that (1) implies (2); our result is sharper because we have the
equivalence.



Theorem2 Let ® : N — [0; oco) be such that ®(n) — oco. Suppose
that forsome € (1;2];q € [1;00) and "¢ € (0; 1),

&(n)(EmA( )"0 =0(1) (resp:0(1)): (C2)



3. Consequences for martingales We now consider the single mar-
tingale case

Sj = X1 + 1+ X
w.r.t. a filtration
{0; 2} = Fog C Fq C i
By definition, E[Xj|Fj_1] = 0.

For simplicity, let us only consider the case where
&(n) = nP~24(n);
where p = 1, “ is a function slowly varying at oo:

lim (x)

=1 V =0:
X—00 ‘(X)




Notice that
S-
Sn=n — 0 a.s. iff P (sup Q =>") — OV" = 0:
i>n 1
To consider its rate of convergence, we shall use the condition that
forsome € (1;2]andq € [1;00) withg = (p—1)=( —1),
sup [|mn( ;n)llq < oo; (C3)
n>1
where mn( ;N) = &> j_; E[IXj| |Fj_1]. Remark that (C3)
holds evidently if for some constant C = 0and all j > 1,

E[Xj] [Fj_] < C as: (C4)



Theorem 3 Letp = 1 and © > 0 be slowly varying at co. Under
(C3) or (C4), the following assertions are equivalent:

o0 N
Y P72 ) Y P{IXj|>n"}<oco V'=0; (7)
n=1 j=1

Z nP=2<(n)P{ sup ISj| =>n"} <oco V"=0; (8)

Nn=1 1Sjgn
oo
Y nP24(n)P{|Sn| > n"} <oco V">0: (9)
n=1
— —2 Sj
Z NP~2“(N)P{sup——=>"}<oco V'=0: (10)
Nn=1 jZn J



Remark. If X; are identically distributed, then (7) is equivalent to
the moment condition

E|X1|P*(IX1]) < oo:

So Theorem 3 is an extension of the result of Baum and Katz (1965).
When © is a constant, it was proved by Alsmeyer (1991).



Theorem 4 Let p = 1 and © > 0 be slowly varying at co. Under
(C3) or (C4), the following assertions are equivalent:

nP=1<(n) zn: P{|Xj| =n"} =0(1) (resp:0(1)) V"= 0;
= (11)
nP~1*(N)P{ sup [Sj| >n"} =o0(1) (resp:O(1)) V" > 0;
1<j<n
(12)

NP~1<(nN)P{|Sn| = n"} = o(1) (resp: O(1)) V" = 0:
(13)

nP~1<(n)P {sup @ >"}=0(1) (resp:0(1)) V" =o0:
izn J
(14)



4. Applications to sums of weighted random variables.
Example: Cesaro summation for martingale differences.

Fora>= —1,let A§ = 1 and
( +)@+2)---(a+n)
n!
Then A8 ~ n® __asn — oo; and —aZJ_OAa 1 — 1. We

_ I'(a+1)
consider convergence rates of

n a—1v, .
Zj :O An_' XJ ]
AR
where {(Xj; Fj);J = 0} are martingale differences that are iden-
tically distributed.

Al =

;N> 1:




For simplicity, suppose that for some € (1;2];C = 0 and all
J =1

E [IXj] |Fj-1] £ Ca:s: (15)



Theorem 5. Let {(Xj;Fj);J = 0} be identically distributed mar-
tingale differences satisfying (15). Let p > 1, and assume that

v

\
Then

® @)

n=1

E

E

E

p—1 _ 1
at+l < oo fo<a<1l-——;
P
_ 1
Plog(e v |X1]) < o0 Ifa:l_a; (16)
_ 1
P < |f1—6<a§1:

N
ST PP Y AT IX | > AZ"} < coforall " > 0: (17)

j=0

Remark: in the independent case, the result is due to Gut (1993).



5. Proofs of main results

The proofs are based on some maximal inequalities for martingales.



A. Relation between

P X;|l=")and P S;| ="
(1r<_n.a<xn| il ) (1r§n.a<xn| il )

for martingale differences (Xj):



Lemma A Let {(Xj;Fj);1 < jJ < n} be a finite sequence of
martingale differences. Then forany " = 0; € (1;2];q > 1, and
L € N,

P Xi|=>2"1 < P S:| ="
{1r§njagxn| il } < {1%5‘%‘”' j }
<P X;il| =
< {1r§nja§><n| jl 4(L+1)}
—q (L+1) 1+L
+C™ att (Em( ))9+E,; (18)

where C = C( ;q;L) = 0is a constant depending only on ;(

and L,
N

mn( ) =) E[Xjl| |Fj_1l:
j=1



B. Relation between

P(max Xj>")and > P(Xj=>")
= 1<j<n

for adapted sequences (Xj):

Lemma B Let {(Xj; Fj);1 < ]
rv. Thenfor™ = 0; = 0andq

N} be an adapted sequence of
1,

IV INA

n

<Y PG >

=1

<(1+" )P{lrgjagnxj >"}+"" EmJ( );

where min( ) = S5 EIXG| [Fj_1]

Vv

P{ max X;
1<p<n



C. Relation between

P S;| =")and P (|Sh| ="
(jmax. [Sj] > ") and P (|Sn| > ")

for martingale differences (Xj):

Lemma C Let {(Xj;F));00 < | < \} be a finite sequence of
martingale differences. Thenfor"™ = 0; € (1;2]andq > 1,

P Si| ="} <2P{|Snh| = —-
{max [Sj| > "} < 2P{ISn| > )

+=4 200 T HYEMY( );
where mp( ) = Z}‘Zl E[1X]| |Fj—1l.
C()= (18 3=2=( —1)1=2) .



Thank you!
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