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Nested Linear Regression Models

Linear Regression Models

Consider a linear regression model with normal error,

Y = µ+ ϵ = Xβ + ϵ,

where

X = (x1, . . . , xp) is an n × p matrix,

β = (β1 . . . , βp)
T ,

µ = (µ1, . . . , µn)
T = Xβ,

ϵ = (ε1, . . . , εn)
T ∼ N(0, σ2I), and σ2 is known.
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Nested Linear Regression Models

Nested Models

We only consider the nested linear competing model

{Mk , k = 0, . . . , p}.

Lasso leads to a data-driven nested models.

For model Mk , βj 6= 0 for j ≤ k and βj = 0 for j > k.

β’s are estimated by the least square method and

µ is estimated by
µ̂Mk

= PMk
Y,

where PMk
is the projection matrix corresponding to model

Mk .

Its residual sum of squares is defined as

RSS(Mk) =
(
Y − µ̂Mk

)T (
Y − µ̂Mk

)
.
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Nested Linear Regression Models

Model Selection

If AIC (Mallows’ Cp) is used to score models, we choose the model
M̂ by minimizing

RSS(Mk) + 2|Mk |σ2

with respect to all competing models {Mk , k = 0, . . . , p}, where
|Mk | is the size of Mk .
Note that

It does not include the random error introduced in model
selection procedure.

What can be done?

Refer to the proposal in Shen and Ye (2002).
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Generalized degrees of freedom

Shen and Ye’s proposal (2002, JASA)

Shen and Ye (2002) proposed to choose λ > 0 to minimize the
unbiased risk estimator

λ̂ = argminλ>0

{
RSS(M̂(λ)) + g0(λ)σ

2
}
.

The resulting selected model is M̂(λ̂).
As an attempt to understand their proposal, consider the situation

BIC is consistent (no underfitting).

nested competing models

λ ∈ [0, log n]

Is
M̂(λ̂) = M̂(log n) = Mk0

or λ̂ = log n?
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Generalized degrees of freedom

Assumptions: BIC is consistent

Recall that p0 is the number of covariates in the true model.
Assume that

Assumption B1. There exists a constant c > 0 such that
µT (I− PMk

)µ ≥ cn for all k < p0, where

µ = Xp0(β1, . . . , βp0)
T

is the mean vector of the true model.

Assumption B2. The simple size n is large enough such that
cn > 2p0 log n.

Assumption N. log n > 2 log(p − p0).
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Generalized degrees of freedom

Determine g0(λ).

It follows from the results of Spitzer (1956), Woodroofe (1982)
and Zhang (1992) that, for all λ ∈ [0, log n],

g0(λ) = 2

p−p0∑
j=1

[
P(χ2

j+2 > jλ)
]
+ 2p0.

Note that

g0(λ) is strictly decreasing.

g0(0) = 2p.

g0(log n) → 2p0 as n → ∞.
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Generalized degrees of freedom

AMS improves.

Consider a simulation study with p0 = 0, p − p0 = 20, n = 404
(log n = 6), and σ2 = 1.
The black points are RSS(M̂(λ))− RSS(Mp0) and the blue points
are RSS(M̂(λ)) + g0(λ)− RSS(Mp0).
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Generalized degrees of freedom

AMS may not work but how often?
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Generalized degrees of freedom

Probability of correct selection:

M̂(λ̂) = Mp0+ [0, log n] [0.5, log n] [1, log n] [1.5, log n] [2, log n]
0 0.5457 0.5457 0.5457 0.6483 0.7539
1 0.0565 0.0565 0.0565 0.0681 0.0807
2 0.0312 0.0312 0.0312 0.0386 0.0474
3 0.0262 0.0262 0.0262 0.0320 0.0348
4 0.0239 0.0239 0.0239 0.0283 0.0249
5 0.0188 0.0188 0.0188 0.0227 0.0166
6 0.0156 0.0156 0.0156 0.0190 0.0103
7 0.0134 0.0134 0.0134 0.0169 0.0071
8 0.0136 0.0136 0.0136 0.0157 0.0051
9 0.0140 0.0140 0.0140 0.0151 0.0041
10 0.0155 0.0155 0.0155 0.0132 0.0039
11 0.0155 0.0155 0.0155 0.0107 0.0022
12 0.0153 0.0153 0.0153 0.0106 0.0018
13 0.0163 0.0163 0.0163 0.0097 0.0018
14 0.0177 0.0177 0.0177 0.0080 0.0015
15 0.0185 0.0185 0.0185 0.0074 0.0012
16 0.0210 0.0210 0.0210 0.0070 0.0008
17 0.0242 0.0242 0.0242 0.0074 0.0005
18 0.0212 0.0212 0.0212 0.0069 0.0006
19 0.0307 0.0307 0.0307 0.0065 0.0005
20 0.0452 0.0452 0.0452 0.0079 0.0003
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Need a detailed description of g0(λ)

Recall
λ̂ = min

λ>0
{λ : RSS(M̂(λ)) + g0(λ)}

and choose model M̂(λ̂) which retains the first ĵ(λ̂) predictors.

When λ = 0, |M̂(0)| = p for all realizations and
RSS(M̂(0)) = YT (I− Pp)Y. Then g0(0) = 2p.

When λ = ln n, |M̂(ln n)| = p0 for almost all realizations and
RSS(M̂(ln n)) = YT (I− Pp0)Y. Then g0(ln n) = 2p0.

Note that[
RSS(M̂(0)) + 2pσ2

]
−
[
RSS(M̂(ln n)) + 2p0σ

2
]
= σ2

p−p0∑
k=1

(2−Vk)

which is greater than 0 with probability close to 1 when p − p0 is
large.
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Adaptive selection over λ ∈ [0, 0.5] ∪ {log n}
Show that λ̂ = log n with probability close to 1 by finding a bound
on the following probability.

P
(
RSS (̂j(λ)) + g0(λ) < RSS (̂j(ln n)) + g0(ln n) for all λ ∈ [0, 0.5]

)
.

Note that

P
(
V1 + · · ·+ Vĵ(λ) < g0(λ) for all λ ∈ [0.0.5]

)
≥ P (V1 + · · ·+ Vp−p0 < g0(0)− 4)

= P (V1 + · · ·+ Vp−p0 < 2(p − p0)− 4) .

Note that

g0(λ) is strickly decreasing and continuous on λ ∈ [0, ln n].

For all g0(ln n) < δ ≤ g0(0), there exists a unique λδ such
that g0(λδ) = g0(0)− δ.

Claim: When δ = 4, 0.5 ≤ λδ.
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Simulation of {Sk(1.5)}
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Simulation of {Sk(1.4)}
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Simulation of {Sk(1.3)}
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Simulation of {Sk(1.2)}
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Simulation of {Sk(1.1)}
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Simulation of {Sk(1.0)}
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Simulation of {Sk(0.9)}
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Simulation of {Sk(0.8)}
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Simulation of {Sk(0.7)}
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Simulation of {Sk(0.6)}
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Simulation of {Sk(0.5)}

5 10 15 20

0.0
0.2

0.4
0.6

0.8
1.0
 = 0.5

covariates

pro
ba

bil
ity



Outline
. . . .
Introduction

. . . . . . . . .
Adaptive Penalty Shen and Ye’s proposal Proof Conclusion

Conclusion

When λ ∈ (2, log n], there are about 75% to choose the true
model.

The probability of selecting correct model decreases to 55% if
λ ∈ [1, 2) ∪ [2, log n].

For the region of λ are [0, log n], ∈ [0.5, log n], or n[1, log n],
there are no differences in the probability of correct selection.

We still cannot provide a good interpretation.
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