Outline	Introduction 0000	Adaptive Penalty	Shen and Ye's proposal	Proof	Conclusion

Adaptive Linear Regression Selection

Hung Chen

Department of Mathematics Joint work with Mr. Chiuan-Fa Tang Hsu Centennial Memorial Conference at Peking University

7/07/2010

Outline	Introduction 0000	Adaptive Penalty	Shen and Ye's proposal	Proof	Conclusion

Introduction

- Objective
- Nested Linear Regression Models

2 Adaptive Penalty

- Unbiased Risk Estimate
- Generalized degrees of freedom

Outline	Introduction •୦୦୦	Adaptive Penalty 00000000	

Outline	Introduction 0000	Adaptive Penalty	Shen and Ye's proposal	Proof	Conclusion			
Nested Linear Regression Models								
Linear	[·] Regression	n Models						

Consider a linear regression model with normal error,

$$\mathbf{Y} = \boldsymbol{\mu} + \boldsymbol{\epsilon} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon},$$

where

•
$$\mathbf{X} = (\mathbf{x}_1, \dots, \mathbf{x}_p)$$
 is an $n \times p$ matrix,
• $\boldsymbol{\beta} = (\beta_1 \dots, \beta_p)^T$,
• $\boldsymbol{\mu} = (\mu_1, \dots, \mu_n)^T = \mathbf{X}\boldsymbol{\beta}$,
• $\boldsymbol{\epsilon} = (\varepsilon_1, \dots, \varepsilon_n)^T \sim N(\mathbf{0}, \sigma^2 \mathbf{I})$, and σ^2 is known.

Outline	Introduction ○0●0	Adaptive Penalty	Shen and Ye's proposal	Proof	Conclusion		
Nested Linear Regression Models							
Neste	d Models						

We only consider the nested linear competing model

$$\{M_k, k=0,\ldots,p\}.$$

- Lasso leads to a data-driven nested models.
- For model M_k , $\beta_j \neq 0$ for $j \leq k$ and $\beta_j = 0$ for j > k.
- β 's are estimated by the least square method and
- μ is estimated by

$$\hat{\boldsymbol{\mu}}_{M_k} = P_{M_k} \mathbf{Y},$$

where P_{M_k} is the projection matrix corresponding to model M_k .

• Its residual sum of squares is defined as

$${\it RSS}(M_k) = \left(\mathbf{Y} - \hat{oldsymbol{\mu}}_{M_k}
ight)^{{\it T}} \left(\mathbf{Y} - \hat{oldsymbol{\mu}}_{M_k}
ight).$$

Outline	Introduction ○○○●	Adaptive Penalty 000000000	Shen and Ye's proposal	Proof	Conclusion		
Nested Linear Regression Models							
Model	Selection						

If AIC (Mallows' C_p) is used to score models, we choose the model \hat{M} by minimizing

$$RSS(M_k) + 2|M_k|\sigma^2$$

with respect to all competing models $\{M_k, k = 0, \ldots, p\}$, where $|M_k|$ is the size of M_k .

Note that

- It does not include the random error introduced in model selection procedure.
- What can be done?
 - Refer to the proposal in Shen and Ye (2002).

Outline	Introduction 0000	0000000		

Outline	li troduction cooo	0		

Outline	Introduction
	0000

Adaptive Penalty

Shen and Ye's proposal

Proof

Conclusion

Generalized degrees of freedom

Shen and Ye's proposal (2002, JASA)

Shen and Ye (2002) proposed to choose $\lambda>0$ to minimize the unbiased risk estimator

$$\hat{\lambda} = \operatorname{argmin}_{\lambda > 0} \ \ \operatorname{RSS}(\hat{M}(\lambda)) + g_0(\lambda)\sigma^2$$

The resulting selected model is $\hat{M}(\hat{\lambda})$.

As an attempt to understand their proposal, consider the situation

- BIC is consistent (no underfitting).
- nested competing models
- $\lambda \in [0, \log n]$

ls

$$\hat{M}(\hat{\lambda}) = \hat{M}(\log n) = M_{k_0}$$

or $\hat{\lambda} = \log n$?

Outline	Introduction 0000	Adaptive Penalty ○00●00000	Shen and Ye's proposal	Proof	Conclusion			
Generalized d	Generalized degrees of freedom							
Assum	ptions: Bl	C is consiste	nt					

Recall that p_0 is the number of covariates in the true model. Assume that

Assumption B1. There exists a constant c > 0 such that $\mu^{T}(\mathbf{I} - \mathbf{P}_{M_{k}})\mu \geq cn$ for all $k < p_{0}$, where

$$\boldsymbol{\mu} = \mathbf{X}_{p_0}(\beta_1, \ldots, \beta_{p_0})^T$$

is the mean vector of the true model.

Assumption B2. The simple size *n* is large enough such that $cn > 2p_0 \log n$.

Assumption N. log $n > 2 \log(p - p_0)$.

Outline	Introdu 0000	iction	Adaptive Penalty 000000000	Shen and Ye's proposal	Proof	Conclusion		
Generalized d	Generalized degrees of freedom							
Deterr	nine	$_{0}(\lambda).$						

It follows from the results of Spitzer (1956), Woodroofe (1982) and Zhang (1992) that, for all $\lambda \in [0, \log n]$,

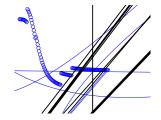
$$g_0(\lambda) = 2 \sum_{j=1}^{p-p_0} \left[P(\chi_{j+2}^2 > j\lambda) \right] + 2p_0.$$

Note that

- $g_0(\lambda)$ is strictly decreasing.
- $g_0(0) = 2p$.
- $g_0(\log n) \rightarrow 2p_0$ as $n \rightarrow \infty$.

Outline	Introduction 0000	Adaptive Penalty 000000000	Shen and Ye's proposal	Proof	Conclusion
Generalized	degrees of freedom				
AMS	improves.				

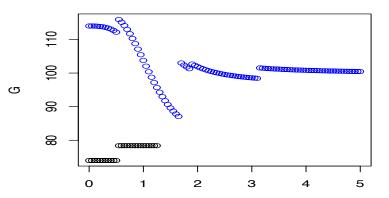
Consider a simulation study with $p_0 = 0$, $p - p_0 = 20$, n = 404(log n = 6), and $\sigma^2 = 1$. The black points are $RSS(\hat{M}(\lambda)) - RSS(M_{p_0})$ and the blue points are $RSS(\hat{M}(\lambda)) + g_0(\lambda) - RSS(M_{p_0})$.



Outline	Introduction 0000	Adaptive Penalty ○○○○○○●○	Shen and Ye's proposal	Proof	Conclusion
Generalized	degrees of freedom				
4440			6 2		

AMS may not work but how often?

K-k_0=20



λ

Outline	Introduction	Adaptive Penalty	Shen and Ye's proposal	Proof	Conclusion
	0000	00000000			

Generalized degrees of freedom

Probability of correct selection:

$\hat{M}(\hat{\lambda}) = M_{P_0+}$	[0, log <i>n</i>]	[0.5, log <i>n</i>]	[1, log <i>n</i>]	[1.5, log <i>n</i>]	[2, log <i>n</i>]
0	0.5457	0.5457	0.5457	0.6483	0.7539
1	0.0565	0.0565	0.0565	0.0681	0.0807
2	0.0312	0.0312	0.0312	0.0386	0.0474
3	0.0262	0.0262	0.0262	0.0320	0.0348
4	0.0239	0.0239	0.0239	0.0283	0.0249
5	0.0188	0.0188	0.0188	0.0227	0.0166
6	0.0156	0.0156	0.0156	0.0190	0.0103
7	0.0134	0.0134	0.0134	0.0169	0.0071
8	0.0136	0.0136	0.0136	0.0157	0.0051
9	0.0140	0.0140	0.0140	0.0151	0.0041
10	0.0155	0.0155	0.0155	0.0132	0.0039
11	0.0155	0.0155	0.0155	0.0107	0.0022
12	0.0153	0.0153	0.0153	0.0106	0.0018
13	0.0163	0.0163	0.0163	0.0097	0.0018
14	0.0177	0.0177	0.0177	0.0080	0.0015
15	0.0185	0.0185	0.0185	0.0074	0.0012
16	0.0210	0.0210	0.0210	0.0070	0.0008
17	0.0242	0.0242	0.0242	0.0074	0.0005
18	0.0212	0.0212	0.0212	0.0069	0.0006
19	0.0307	0.0307	0.0307	0.0065	0.0005
20	0.0452	0.0452	0.0452	0.0079	0.0003

Outline	Introductio
	0000

Adaptive Penalty

Need a detailed description of $_0(\lambda)$

Recall

$$\hat{\lambda} = \min_{\lambda>0} \{\lambda : RSS(\hat{M}(\lambda)) + g_0(\lambda)\}$$

and choose model $\hat{M}(\hat{\lambda})$ which retains the first $\hat{j}(\hat{\lambda})$ predictors.

- When $\lambda = 0$, $|\hat{M}(0)| = p$ for all realizations and $RSS(\hat{M}(0)) = \mathbf{Y}^T (\mathbf{I} \mathbf{P}_p) \mathbf{Y}$. Then $g_0(0) = 2p$.
- When $\lambda = \ln n$, $|\hat{M}(\ln n)| = p_0$ for almost all realizations and $RSS(\hat{M}(\ln n)) = \mathbf{Y}^T (\mathbf{I} \mathbf{P}_{p_0}) \mathbf{Y}$. Then $g_0(\ln n) = 2p_0$.

Note that

$$RSS(\hat{M}(0)) + 2p\sigma^2 - RSS(\hat{M}(\ln n)) + 2p_0\sigma^2 = \sigma^2 \sum_{k=1}^{p-p_0} (2-V_k)$$

which is greater than 0 with probability close to 1 when $p - p_0$ is large.

Outline			
	000		

Adaptive selection over $\lambda \in [0, 0.5] \cup \{ \text{log.} \}$

Show that $\hat{\lambda} = \log n$ with probability close to 1 by finding a bound on the following probability.

 $P\left(RSS(\hat{j}(\lambda)) + g_0(\lambda) < RSS(\hat{j}(\ln n)) + g_0(\ln n) \text{ for all } \lambda \in [0, 0.5]\right).$

Note that

$$\begin{split} & P\left(V_1 + \dots + V_{\hat{j}(\lambda)} < g_0(\lambda) \text{ for all } \lambda \in [0.0.5]\right) \\ & \geq P\left(V_1 + \dots + V_{p-p_0} < g_0(0) - 4\right) \\ & = P\left(V_1 + \dots + V_{p-p_0} < 2(p-p_0) - 4\right). \end{split}$$

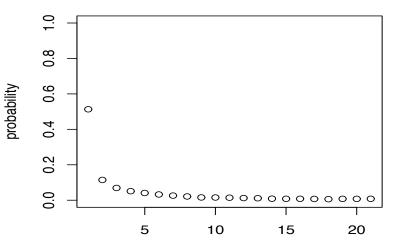
Note that

- $g_0(\lambda)$ is strickly decreasing and continuous on $\lambda \in [0, \ln n]$.
- For all $g_0(\ln n) < \delta \le g_0(0)$, there exists a unique λ_{δ} such that $g_0(\lambda_{\delta}) = g_0(0) \delta$.
- Claim: When $\delta = 4$, $0.5 \leq \lambda_{\delta}$.

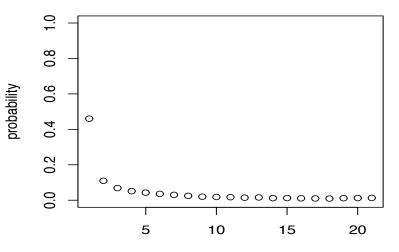
Outline			
	000		

Outline	Introduction	
	0000	00

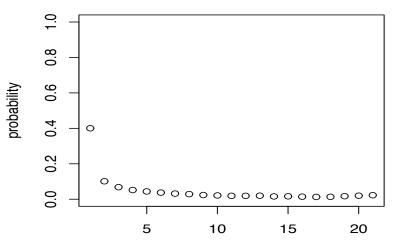
Outline	Introduction 0000	Adaptive Penalty	Shen and Ye's proposal	Proof	Conclusion
Simul	ation of {S	$S_k(1.5)\}$			



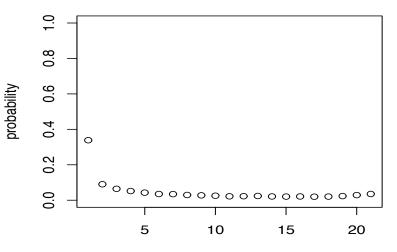
Outline	Introduction 0000	Adaptive Penalty	Shen and Ye's proposal	Proof	Conclusion
Simul	ation of {S	$S_k(1.4)$			



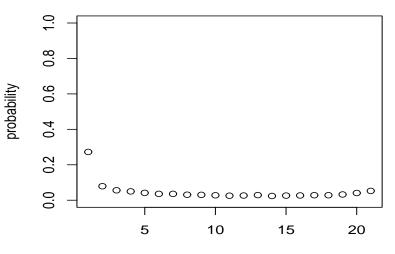
Outline	Introduction 0000	Adaptive Penalty 000000000	Shen and Ye's proposal	Proof	Conclusion
Simul	ation of $\{$	$S_k(1.3)$			
			= 1.3		



Outline	Introduction 0000	Adaptive Penalty	Shen and Ye's proposal	Proof	Conclusion
Simul	ation of $\{S$	$S_k(1.2)\}$			

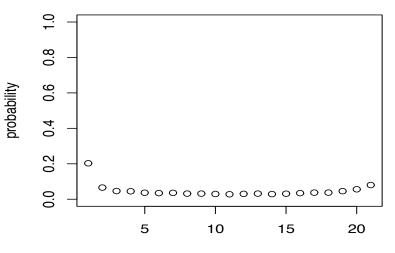


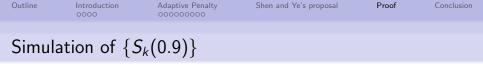
Outline	Introduction 0000	Adaptive Penalty	Shen and Ye's proposal	Proof	Conclusion
Simul	ation of {S	$S_k(1.1)\}$			

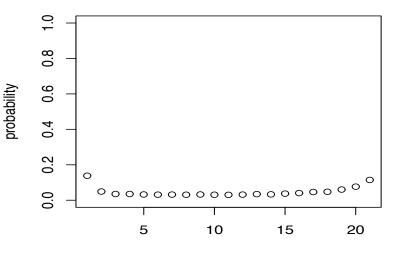


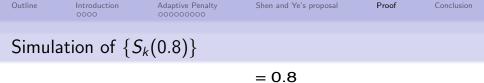
Outline	Introduction 0000	Adaptive Penalty	Shen and Ye's proposal	Proof	Conclusion
Simul	ation of $\{S$	$S_k(1.0)\}$			

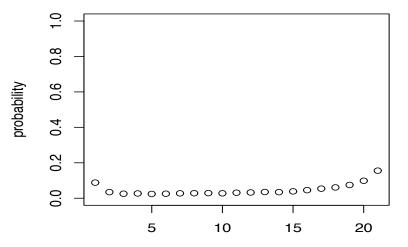
 $\lambda = 1.0$



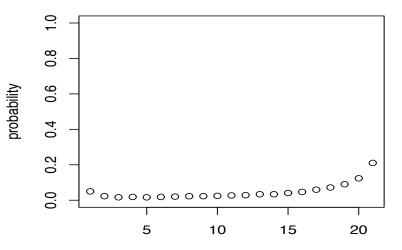


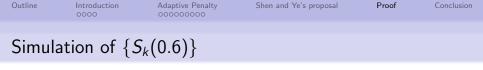


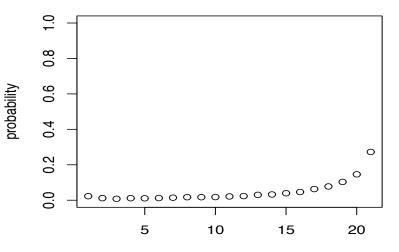




Outline	Introduction 0000	Adaptive Penalty	Shen and Ye's proposal	Proof	Conclusion
Simul	ation of {S	$S_k(0.7)$			

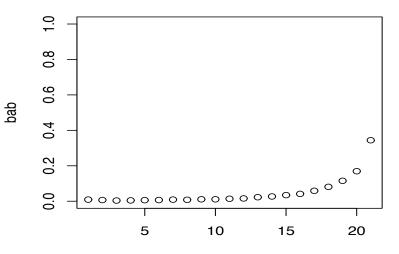






Outline	Introduction 0000	Adaptive Penalty	Shen and Ye's proposal	Proof	Conclusion
Simul	ation of {S	$S_k(0.5)\}$			

 $\lambda = 0.5$



a a

Outline	Introduction 0000	Adaptive Penalty	Shen and Ye's proposal	Proof	Conclusion
Concl	usion				

- When λ ∈ (2, log n], there are about 75% to choose the true model.
- The probability of selecting correct model decreases to 55% if $\lambda \in [1,2) \cup [2, \log n]$.
- For the region of λ are [0, log n], ∈ [0.5, log n], or n[1, log n], there are no differences in the probability of correct selection.
 - We still cannot provide a good interpretation.