Moments of Traces for Circular β-ensembles

TiefengJiang

University of Minnesota

This is joint work with Sho Matsumoto
April 5, 2010

Outline

－Moments for Haar Unitary Matrices（D．E．Thm）
－Background for Circular β－Ensembles
－Moments for Circular β－Ensembles
－Proofs by Jack Polynomials

1. Moments for Haar Unitary Matrices

- What is Haar-invariant unitary matrix Γ_{n} ? Mathematically,
Γ_{n} : nomalized Haar measure on $U(n)$: set of n by n unitary matrices.

1. Moments for Haar Unitary Matrices

- What is Haar-invariant unitary matrix Γ_{n} ? Mathematically,
Γ_{n} : normalized Haar measure on $U(n)$: set of n by n unitary matrices.

Statistically,
Assumethe entries of $Y=Y_{n \times n}$ are i.i.d. $\mathbb{C N}(0,1)$. Two ways to generate such matrices

1. Moments for Haar Unitary Matrices

- What is Haar-invariant unitary matrix Γ_{n} ? Mathematically,
Γ_{n} : nomalized Haar measure on $U(n)$: set of n by n unitary matrices.

Statistically,
Assumethe entries of $Y=Y_{n \times n}$ arei.i.d. $\mathbb{C} N(0,1)$. Two ways to

1. Moments for Haar Unitary Matrices

- What is Haar-invariant unitary matrix Γ_{n} ?

Mathematically,
Γ_{n} : normalized Haar measure on $U(n)$: set of n by n unitary matrices.

Statistically,
Assumethe entries of $Y=Y_{n \times n}$ arei.i.d. $\mathbb{C} N(0,1)$. Two ways to generate such matrices

1) The matrix Q in QR (Gram-Schmidt) decomposition of Y
2) $\Gamma_{n} \stackrel{d}{=} Y\left(Y^{*} Y\right)^{-1 / 2}$

- Theorem (Diaconis and Evans: 2001)
(a) $a=\left(a_{1}, \quad, a_{k}\right), b=\left(b_{1}, \quad, b_{k}\right)$ with $a_{j}, b_{j} 2 \mathrm{f} 0,1,2, \quad \mathrm{~g}$.
X_{1}, \quad, X_{k} : i.i.d. $\mathbb{C} N(0,1) . \quad$ If $n \quad \sum_{j=1}^{k}$
- Theorem (Diaconis and Evans: 2001)
(a) $a=\left(a_{1}, \quad, a_{k}\right), b=\left(b_{1}, \quad, b_{k}\right)$ with $a_{j}, b_{j} 2 \mathrm{f} 0,1,2, \quad \mathrm{~g}$.
X_{1}, \quad, X_{k} : i.i.d. $\mathbb{C} N(0,1) . \quad$ If $n \quad \sum_{j=1}^{k} j a_{j} \sum_{j=1}^{k} j b_{j}$,

$$
\mathbb{E}\left[\prod_{j=1}^{k}\left(\operatorname{Tr}\left(U_{n}^{j}\right)\right)^{a_{j}} \overline{\left(\operatorname{Tr}\left(U_{n}^{j}\right)\right)^{b_{j}}}\right]
$$

$$
=
$$

- Theorem (Diaconis and Evans: 2001)
(a) $a=\left(a_{1}, \quad, a_{k}\right), b=\left(b_{1}, \quad, b_{k}\right)$ with $a_{j}, b_{j} 2 \mathrm{f} 0,1,2, \quad \mathrm{~g}$.
X_{1}, \quad, X_{k} : i.i.d. $\mathbb{C} N(0,1) . \quad$ If $n \quad \sum_{j=1}^{k} j a_{j} \sum_{j=1}^{k} j b_{j}$,

$$
\begin{aligned}
& \mathbb{E}\left[\prod_{j=1}^{k}\left(\operatorname{Tr}\left(U_{n}^{j}\right)\right)^{a_{j}} \overline{\left(\operatorname{Tr}\left(U_{n}^{j}\right)\right)^{b_{j}}}\right] \\
= & \delta_{a b} \prod_{j=1}^{k} j^{a_{j}} a_{j}!
\end{aligned}
$$

- Theorem (Diaconis and Evans: 2001)
(a) $a=\left(a_{1}, \quad, a_{k}\right), b=\left(b_{1}, \quad, b_{k}\right)$ with $a_{j}, b_{j} 2 \mathrm{f} 0,1,2, \quad \mathrm{~g}$.
X_{1}, \quad, X_{k} : i.i.d. $\mathbb{C} N(0,1) . \quad$ If $n \quad \sum_{j=1}^{k} j a_{j} \sum_{j=1}^{k} j b_{j}$,

$$
\begin{aligned}
& \mathbb{E}\left[\prod_{j=1}^{k}\left(\operatorname{Tr}\left(U_{n}^{j}\right)\right)^{a_{j}} \overline{\left(\operatorname{Tr}\left(U_{n}^{j}\right)\right)^{b_{j}}}\right] \\
= & \delta_{a b} \prod_{j=1}^{k} j^{a_{j}} a_{j}!=\delta_{a b} \mathbb{E}\left[\prod_{j=1}^{k}\left(\sqrt{j} X_{j}\right)^{a_{j}} \overline{\left(\sqrt{j} X_{j}\right)^{b_{j}}}\right]
\end{aligned}
$$

- Theorem (Diaconis and Evans: 2001)
(a) $a=\left(a_{1}, \quad, a_{k}\right), b=\left(b_{1}, \quad, b_{k}\right)$ with $a_{j}, b_{j} 2 \mathrm{f} 0,1,2$,
g.
X_{1}, \quad, X_{k} : i.i.d. $\mathbb{C} N(0,1) . \quad$ If $n \quad \sum_{j=1}^{k} j a_{j} _\sum_{j=1}^{k} j b_{j}$,

$$
\begin{aligned}
& \mathbb{E}\left[\prod_{j=1}^{k}\left(\operatorname{Tr}\left(U_{n}^{j}\right)\right)^{a_{j}} \overline{\left(\operatorname{Tr}\left(U_{n}^{j}\right)\right)^{b_{j}}}\right] \\
= & \delta_{a b} \prod_{j=1}^{k} j^{a_{j}} a_{j}!=\delta_{a b} \mathbb{E}\left[\prod_{j=1}^{k}\left(\sqrt{j} X_{j}\right)^{a_{j}} \overline{\left(\sqrt{j} X_{j}\right)^{b_{j}}}\right]
\end{aligned}
$$

(b) For j and k,

$$
\mathbb{E}\left[\operatorname{Tr}\left(U_{n}^{j}\right) \overline{\operatorname{Tr}\left(U_{n}^{k}\right)}\right]=\delta_{j k} j^{\wedge} n
$$

Circular Ensembles and Haar-invariant Matrices from Classical Compact Groups

Circular Ensembles and Haar-invariant Matrices from Classical Compact Groups

Diaconis (2004) believes there is a good formula for COE and CSE

2. Background for Circular β-Ensembles

- Probability density function
$e^{i \theta_{1}}, \quad, e^{i \theta_{n}}$: eigenvalues of Haar-invariant unitary matrix.
pdf: $f\left(\theta_{1}, \quad, \theta_{n} \mathrm{j} \beta=2\right)$, where

2. Background for Circular β-Ensembles

- Probability density function
$e^{i \theta_{1}}, \quad, e^{i \theta_{n}}$: eigenvalues of Haar-invariant unitary matrix.
pdf: $f\left(\theta_{1}, \quad, \theta_{n} \mathrm{j} \beta=2\right)$, where

$$
f\left(\theta_{1}, \quad, \theta_{n} \mathrm{j} \beta\right)=\text { Const } \prod_{1 \leq j<k \leq n} \mathrm{j} e^{i \theta_{j}} \quad e^{i \theta_{k} \mathrm{j}^{\beta}}
$$

$\beta>0, \theta_{i} 2[0,2 \pi)$

2. Background for Circular β-Ensembles

- Probability density function
$e^{i \theta_{1}}, \quad, e^{i \theta_{n}}$: eigenvalues of Haar-invariant unitary matrix.
pdf: $f\left(\theta_{1}, \quad, \theta_{n} \mathbf{j} \beta=2\right)$, where

$$
f\left(\theta_{1}, \quad, \theta_{n} \mathrm{j} \beta\right)=\text { Const } \prod_{1 \leq j<k \leq n} \mathrm{j} e^{i \theta_{j}} \quad e^{i \theta_{k} \mathrm{j}}{ }^{\beta}
$$

$\beta>0, \theta_{i} 2[0,2 \pi)$

- This model: circular β-ensemble ($\beta=1,2,4$) by physicist Dyson for study of nuclear scattering data
- Three Important Circular Ensembles
$\operatorname{COE}(\beta=1), \operatorname{CUE}(\beta=2), \operatorname{CSE}(\beta=4)$
- Three Important Circular Ensembles
$\operatorname{COE}(\beta=1), \operatorname{CUE}(\beta=2), \operatorname{CSE}(\beta=4)$
Construction of COE and CUE $U=U_{n \times n}$: Haar unitary
－Three Important Circular Ensembles
$\operatorname{COE}(\beta=1), \operatorname{CUE}(\beta=2), \operatorname{CSE}(\beta=4)$
Construction of COE and CUE
$U=U_{n \times n}$ ：Haar unitary
－U follows CUE
－Three Important Circular Ensembles
$\operatorname{COE}(\beta=1), \operatorname{CUE}(\beta=2), \operatorname{CSE}(\beta=4)$
Construction of COE and CUE
$U=U_{n \times n}$ ：Haar unitary
－U follows CUE
－$U^{T} U$ follows COE
- Three Important Circular Ensembles
$\operatorname{COE}(\beta=1), \operatorname{CUE}(\beta=2), \operatorname{CSE}(\beta=4)$
Construction of COE and CUE
$U=U_{n \times n}$: Haar unitary
- U follows CUE
- $U^{T} U$ follows COE
- CSE is similar but a bit involved (see Mehta)
- Three Important Circular Ensembles
$\operatorname{COE}(\beta=1), \operatorname{CUE}(\beta=2), \operatorname{CSE}(\beta=4)$
Construction of COE and CUE
$U=U_{n \times n}$: Haar unitary
- U follows CUE
- $U^{T} U$ follows COE
- CSE is similar but a bit involved (see Mehta)

Entries of $C U E$: roughly independent $\mathbb{C N}(0,1)$ (J iang, AP06)

- Three Important Circular Ensembles
$\operatorname{COE}(\beta=1), \operatorname{CUE}(\beta=2), \operatorname{CSE}(\beta=4)$
Construction of COE and CUE
$U=U_{n \times n}$: Haar unitary
- U follows CUE
- $U^{T} U$ follows COE
- CSE is similar but a bit involved (see Mehta)

Entries of $C U E$: roughly independent $\mathbb{C N}(0,1)$ (J iang, AP06) Entries of $C O E$: roughly $\mathbb{C} N(0,1)$ (but dependent) (J iang, JMP09)

- Three Important Circular Ensembles
$\operatorname{COE}(\beta=1), \operatorname{CUE}(\beta=2), \operatorname{CSE}(\beta=4)$
Construction of COE and CUE
$U=U_{n \times n}$: Haar unitary
- U follows CUE
- $U^{T} U$ follows COE
- CSE is similar but a bit involved (see Mehta)

Entries of $C U E$: roughly independent $\mathbb{C N}(0,1)$ (J iang, AP06) Entries of $C O E$: roughly $\mathbb{C N}(0,1)$ (but dependent) (J iang, J MP09) Killip \& Nenciu: Matrix models for circular ensembles

Momentsfor Circular β-Ensembles

Moments for Circular β-Ensembles

- Bad news fromCOE:

Moments for Circular β-Ensembles

- Bad news fromCOE: Let M_{n} beCOE. By elementary check

$$
\mathbb{E}\left[\mathrm{j} \operatorname{Tr}\left(M_{n}\right) \mathrm{j}^{2}\right]=\frac{2 n}{n+1}
$$

Moments for Circular β-Ensembles

- Bad news fromCOE: Let M_{n} beCOE. By elementary check

$$
\mathbb{E}\left[\mathrm{j} \operatorname{Tr}\left(M_{n}\right) \mathrm{j}^{2}\right]=\frac{2 n}{n+1}
$$

- Moments depend on n

Moments for Circular β-Ensembles

- Bad news fromCOE: Let M_{n} beCOE. By elementary check

$$
\mathbb{E}\left[\mathrm{j} \operatorname{Tr}\left(M_{n}\right) \mathrm{j}^{2}\right]=\frac{2 n}{n+1}
$$

- Moments depend on n
- Later results: $\mathbb{E}\left[\mathrm{j} \operatorname{Tr}\left(M_{n}\right) \mathrm{j}^{2}\right]$ not depend on n only at $\beta=2$

Moments for Circular β-Ensembles

- Bad news fromCOE: Let M_{n} beCOE. By elementary check

$$
\mathbb{E}\left[\mathrm{j} \operatorname{Tr}\left(M_{n}\right) \mathrm{j}^{2}\right]=\frac{2 n}{n+1}
$$

- Moments depend on n
- Later results: $\mathbb{E}\left[\mathrm{j} \operatorname{Tr}\left(M_{n}\right) \mathrm{j}^{2}\right]$ not depend on n only at $\beta=2$
- This suggest: moments for general β-ensemble depend on n
- Notation
- $\lambda=\left(\lambda_{1}, \lambda_{2}, \quad\right):$ partition
- Notation
- $\lambda=\left(\lambda_{1}, \lambda_{2}, \quad\right)$:partition
- $j \lambda j=\lambda_{1}+\lambda_{2}+\quad:$ weight

- Notation

- $\lambda=\left(\lambda_{1}, \lambda_{2}, \quad\right)$: partition
- $j \lambda j=\lambda_{1}+\lambda_{2}+\quad:$ weight
- $m_{i}(\lambda):$ multi of i in $\left(\lambda_{1}, \lambda_{2}, \quad\right)$

- Notation

- $\lambda=\left(\lambda_{1}, \lambda_{2}, \quad\right)$: partition
- $j \lambda j=\lambda_{1}+\lambda_{2}+\quad$: weight
- $m_{i}(\lambda):$ multi of i in $\left(\lambda_{1}, \lambda_{2}, \quad\right)$
- $l(\lambda)=$ \#of positive λ_{i} in λ : length

- Notation

- $\lambda=\left(\lambda_{1}, \lambda_{2}, \quad\right)$: partition
- $j \lambda j=\lambda_{1}+\lambda_{2}+\quad$: weight
- $m_{i}(\lambda):$ multi of i in $\left(\lambda_{1}, \lambda_{2}, \quad\right)$
- $l(\lambda)=$ \#of positive λ_{i} in λ : length

$$
z_{\lambda}=\prod_{i \geq 1} i^{m_{i}(\lambda)} m_{i}(\lambda)!
$$

- Notation

- $\lambda=\left(\lambda_{1}, \lambda_{2}, \quad\right)$: partition
- $j \lambda j=\lambda_{1}+\lambda_{2}+\quad:$ weight
- $m_{i}(\lambda):$ multi of i in $\left(\lambda_{1}, \lambda_{2}, \quad\right)$
- $l(\lambda)=$ \#of positive λ_{i} in $\lambda:$ length

$$
z_{\lambda}=\prod_{i \geq 1} i^{m_{i}(\lambda)} m_{i}(\lambda)!
$$

- $p_{\lambda}=\prod_{i=1}^{l(\lambda)} p_{\lambda_{i}}$, where $p_{k}\left(x_{1}, x_{2}, \quad\right)=x_{1}^{k}+x_{2}^{k}+$

- Notation

- $\lambda=\left(\lambda_{1}, \lambda_{2}, \quad\right)$: partition
- $j \lambda j=\lambda_{1}+\lambda_{2}+\quad:$ weight
- $m_{i}(\lambda):$ multi of i in $\left(\lambda_{1}, \lambda_{2}, \quad\right)$
- $l(\lambda)=$ \#of positive λ_{i} in λ : length

$$
z_{\lambda}=\prod_{i \geq 1} i^{m_{i}(\lambda)} m_{i}(\lambda)!
$$

- $p_{\lambda}=\prod_{i=1}^{l(\lambda)} p_{\lambda_{i}}$, where $p_{k}\left(x_{1}, x_{2}, \quad\right)=x_{1}^{k}+x_{2}^{k}+$

$$
\begin{gathered}
\lambda=(3,2,2): \mathrm{j} \lambda \mathrm{j}=7, m_{2}(\lambda)=2, m_{3}(\lambda)=1, l(\lambda)=3, \\
p_{\lambda}=\left(\sum_{i} \lambda_{i}^{3}\right)\left(\sum_{i} \lambda_{i}^{2}\right)^{2}
\end{gathered}
$$

$\alpha>0, K \quad 1, n \quad 1$, define

$$
\begin{aligned}
& A=\left(\begin{array}{lll}
1 & \frac{\mathrm{j} \alpha}{\mathrm{l} j} \mathrm{j} \\
n+\alpha \\
& \left(\begin{array}{ll}
\alpha & 1
\end{array}\right)
\end{array}\right)^{K} \\
& B=\left(1+\frac{\mathrm{j} \alpha \mathrm{l} \mathrm{j}}{n \quad K+\alpha} \delta(\alpha<1)\right)^{K}
\end{aligned}
$$

$\alpha>0, K \quad 1, n \quad 1$, define

$$
\left.\left.\begin{array}{rl}
A & =\left(\begin{array}{ll}
1 & \frac{\mathrm{j} \alpha}{\mathrm{l} ~ \mathrm{j}} \\
n+\alpha \\
& \left(\begin{array}{ll}
\alpha & 1
\end{array}\right)
\end{array}\right)^{K} \\
B & =\left(1+\frac{\mathrm{j} \alpha \mathrm{l}}{n \quad K+\alpha} \delta(\alpha<1\right.
\end{array}\right)\right)^{K} .
$$

Let $\theta_{1}, \quad, \theta_{n} \quad f\left(\theta_{1}, \quad, \theta_{n} \mathrm{j} \beta\right), \alpha=2 / \beta$.

- $\quad Z_{n}=\left(e^{i \theta_{1}}, \quad, e^{i \theta_{n}}\right)$,
- $\quad p_{\mu}\left(Z_{n}\right)=p_{\mu}\left(e^{i \theta_{1}}, \quad, e^{i \theta_{n}}\right)$

Theorem
(a) If $n \quad K=\mathrm{j} \mu \mathrm{j}$, then

$$
A \frac{\mathbb{E}\left[\mathrm{j} p_{\mu}\left(Z_{n}\right) \mathrm{j}^{2}\right]}{\alpha^{l(\mu)} z_{\mu}} \quad B
$$

Theorem

(a) If $n \quad K=\mathrm{j} \mu \mathrm{j}$, then

$$
A \frac{\mathbb{E}\left[\mathrm{j} p_{\mu}\left(Z_{n}\right) \mathrm{j}^{2}\right]}{\alpha^{l(\mu)} z_{\mu}} \quad B
$$

(b) If $\mathrm{j} \mu \mathrm{j} G \mathrm{j} \nu \mathrm{j}$, then $\mathbb{E}\left[p_{\mu}\left(Z_{n}\right) \overline{p_{\nu}\left(Z_{n}\right)}\right]=0$.

Theorem

(a) If $n \quad K=\mathrm{j} \mu \mathrm{j}$, then

$$
A \frac{\mathbb{E}\left[\mathrm{j} p_{\mu}\left(Z_{n}\right) \mathrm{j}^{2}\right]}{\alpha^{l(\mu)} z_{\mu}} \quad B
$$

(b) If $\mathrm{j} \mu \mathrm{j} G \mathrm{j} \nu \mathrm{j}$, then $\mathbb{E}\left[p_{\mu}\left(Z_{n}\right) \overline{p_{\nu}\left(Z_{n}\right)}\right]=0$.

If $\mu \sigma \nu$ and $n \quad K=\mathrm{j} \mu \mathrm{j} _\mathrm{j} \nu \mathrm{j}$, then

$$
\left|\mathbb{E}\left[p_{\mu}\left(Z_{n}\right) \overline{p_{\nu}\left(Z_{n}\right)}\right]\right| \quad \operatorname{maxf} \mathrm{j} A \quad 1 \mathrm{j}, \mathrm{j} B \quad 1 \mathrm{jg} \alpha^{(l(\mu)+l(\nu)) / 2}\left(z_{\mu} z_{\nu}\right)^{1 / 2}
$$

Theorem

(a) If $n \quad K=\mathrm{j} \mu \mathrm{j}$, then

$$
A \frac{\mathbb{E}\left[\mathrm{j} p_{\mu}\left(Z_{n}\right) \mathrm{j}^{2}\right]}{\alpha^{l(\mu)} z_{\mu}} \quad B
$$

(b) If $\mathrm{j} \mu \mathrm{j} \in \mathrm{j} \nu \mathrm{j}$, then $\mathbb{E}\left[p_{\mu}\left(Z_{n}\right) \overline{p_{\nu}\left(Z_{n}\right)}\right]=0$.

If $\mu \in \nu$ and $n \quad K=\mathrm{j} \mu \mathrm{j} _\mathrm{j} \nu \mathrm{j}$, then

$$
\left|\mathbb{E}\left[p_{\mu}\left(Z_{n}\right) \overline{p_{\nu}\left(Z_{n}\right)}\right]\right| \quad \operatorname{maxf} \mathrm{j} A \quad 1 \mathrm{j}, \mathrm{j} B \quad \operatorname{ljg} \alpha^{(l(\mu)+l(\nu)) / 2}\left(z_{\mu} z_{\nu}\right)^{1 / 2}
$$

(c) $9 C=C(\beta)$ s.t. $8 m \quad 1, n \quad 2$

$$
\left|\mathbb{E}\left[\mathrm{j} p_{m}\left(Z_{n}\right) \mathrm{j}^{2}\right] \quad n\right| \quad C \frac{n^{3} 2^{n \beta}}{m^{1 \wedge \beta}}
$$

Take $\beta=2$, then $A=B=1$. We recover

- Theroem (Diaconis and Evans: 2001)
$a=\left(a_{1}, \quad, a_{k}\right), b=\left(b_{1}, \quad, b_{k}\right)$ with $a_{j}, b_{j} 2 \mathrm{f} 0,1,2, \quad \mathrm{~g}$. For $n \quad \sum_{j=1}^{k} j a_{j} \sum_{j=1}^{k} j b_{j}$,

$$
\mathbb{E}\left[\prod_{j=1}^{k}\left(\operatorname{Tr}\left(U_{n}^{j}\right)\right)^{a_{j}} \overline{\left(\operatorname{Tr}\left(U_{n}^{j}\right)\right)^{b_{j}}}\right]=\delta_{a b} \prod_{j=1}^{k} j^{a_{j}} a_{j}!
$$

Corollary

 $8 \beta>0$,(a) $\lim _{n \rightarrow \infty} \mathbb{E}\left[p_{\mu}\left(Z_{n}\right) \overline{p_{\nu}\left(Z_{n}\right)}\right]=\delta_{\mu \nu}\left(\frac{2}{\beta}\right)^{l(\mu)} z_{\mu} ;$

Corollary

$8 \beta>0$,
(a) $\lim _{n \rightarrow \infty} \mathbb{E}\left[p_{\mu}\left(Z_{n}\right) \overline{p_{\nu}\left(Z_{n}\right)}\right]=\delta_{\mu \nu}\left(\frac{2}{\beta}\right)^{l(\mu)} z_{\mu} ;$
(b) $\lim _{m \rightarrow \infty} \mathbb{E}\left[\mathrm{j} p_{m}\left(Z_{n}\right) \mathrm{j}^{2}\right]=n \quad$ for any $n \quad 2$.

Corollary

$\mu \in \nu: K=\mathrm{j} \mu \mathrm{j}_{-} \mathrm{j} \nu \mathrm{j}$. If $n \quad 2 K$, then

$$
\text { (a) }\left|\frac{\mathbb{E}\left[j p_{\mu}\left(Z_{n}\right) \mathrm{j}^{2}\right]}{\alpha^{l(\mu)} z_{\mu}} \quad 1\right| \quad \frac{6 j 1 \quad \alpha j K}{n} \text {; }
$$

Corollary

$\mu \in \nu: K=\mathrm{j} \mu \mathrm{j} _\mathrm{j} \nu \mathrm{j}$. If $n \quad 2 K$, then
(a) $\left|\frac{\mathbb{E}\left[\mathrm{j} p_{\mu}\left(Z_{n}\right) \mathrm{j}^{2}\right]}{\alpha^{l(\mu)} z_{\mu}} \quad 1\right| \quad \frac{6 \mathrm{j} 1 \quad \alpha \mathrm{j} K}{n}$;
(b) $\left|\mathbb{E}\left[p_{\mu}\left(Z_{n}\right) \overline{p_{\nu}\left(Z_{n}\right)}\right]\right| \quad \frac{6 \mathrm{j} 1 \quad \alpha \mathrm{j} K}{n} \alpha^{(l(\mu)+l(\nu)) / 2}\left(z_{\mu} z_{\nu}\right)^{1 / 2}$.

- Exact formula The exact formula gives

$$
\mathbb{E}\left[\mathrm{j} p_{1}\left(Z_{n}\right) \mathrm{j}^{2}\right]=\frac{2}{\beta} \frac{n}{n} 1+2 \beta^{-1}
$$

- Exact formula The exact formula gives

$$
\mathbb{E}\left[\mathrm{j} p_{1}\left(Z_{n}\right) \mathrm{j}^{2}\right]=\frac{2}{\beta} \frac{n}{n} 1+2 \beta^{-1}= \begin{cases}\frac{2 n}{n+1}, & \text { if } \beta=1 \\ 1, & \text { if } \beta=2 \\ \frac{n}{2 n-1}, & \text { if } \beta=4\end{cases}
$$

- Exact formula The exact formula gives

$$
\mathbb{E}\left[\mathrm{j} p_{1}\left(Z_{n}\right) \mathrm{j}^{2}\right]=\frac{2}{\beta} \frac{n}{n} 1+2 \beta^{-1}= \begin{cases}\frac{2 n}{n+1}, & \text { if } \beta=1 \\ 1, & \text { if } \beta=2 \\ \frac{n}{2 n-1}, & \text { if } \beta=4\end{cases}
$$

Exact formula is given next

Proofs by J ack Polynomial

- Jack Polynomial

Jack polynomial $J_{\lambda}^{(\alpha)}=J_{\lambda}^{(\alpha)}\left(x_{1}, \quad, x_{n}\right)$ is symmetric in x_{1}, \quad, x_{n}

Proofs by J ack Polynomial

- Jack Polynomial

Jack polynomial $J_{\lambda}^{(\alpha)}=J_{\lambda}^{(\alpha)}\left(x_{1}, \quad, x_{n}\right)$ is symmetric in x_{1}, \quad, x_{n}

- $\alpha=1$, it is Schur polynomial

Proofs by J ack Polynomial

- Jack Polynomial

Jack polynomial $J_{\lambda}^{(\alpha)}=J_{\lambda}^{(\alpha)}\left(x_{1}, \quad, x_{n}\right)$ is symmetric in x_{1}, \quad, x_{n}

- $\alpha=1$, it is Schur polynomial
- $\alpha=2$, it is Zonal polynomial

Proofs by J ack Polynomial

- Jack Polynomial

Jack polynomial $J_{\lambda}^{(\alpha)}=J_{\lambda}^{(\alpha)}\left(x_{1}, \quad, x_{n}\right)$ is symmetric in x_{1}, \quad, x_{n}

- $\alpha=1$, it is Schur polynomial
- $\alpha=2$, it is Zonal polynomial
- $\alpha=1 / 2$, it is Zonal spherical function

Proofs by J ack Polynomial

- Jack Polynomial

Jack polynomial $J_{\lambda}^{(\alpha)}=J_{\lambda}^{(\alpha)}\left(x_{1}, \quad, x_{n}\right)$ is symmetric in x_{1}, \quad, x_{n}

- $\alpha=1$, it is Schur polynomial
- $\alpha=2$, it is Zonal polynomial
- $\alpha=1 / 2$, it is Zonal spherical function

Orthogonal property: $Z_{n}=\left(e^{i \theta_{1}}, \ldots, e^{i \theta_{n}}\right)$

Proofs by J ack Polynomial

- Jack Polynomial

Jack polynomial $J_{\lambda}^{(\alpha)}=J_{\lambda}^{(\alpha)}\left(x_{1}\right.$

Write

$$
\begin{aligned}
& J_{\lambda}^{(\alpha)}=\sum_{\rho:|\rho|=|\lambda|} \theta_{\rho}^{\lambda}(\alpha) p_{\rho} \\
& p_{\rho}=\sum_{\lambda:|\lambda|=|\rho|} \Theta_{\rho}^{\lambda}(\alpha) J_{\lambda}^{(\alpha)}
\end{aligned}
$$

Write

$$
\begin{aligned}
& J_{\lambda}^{(\alpha)}=\sum_{\rho:|\rho|=|\lambda|} \theta_{\rho}^{\lambda}(\alpha) p_{\rho} \\
& p_{\rho}=\sum_{\lambda:|\lambda|=|\rho|} \Theta_{\rho}^{\lambda}(\alpha) J_{\lambda}^{(\alpha)}
\end{aligned}
$$

For $\mathrm{j} \mu \mathrm{j}=\mathrm{j} \nu \mathrm{j}=K$,

$$
\mathbb{E}\left[p_{\mu}\left(Z_{n}\right) \overline{p_{\nu}\left(Z_{n}\right)}\right]=\sum_{\lambda \vdash K: l(\lambda) \leq n} \Theta_{\mu}^{\lambda}(\alpha) \Theta_{\nu}^{\lambda}(\alpha) \mathbb{E}\left(J_{\lambda}^{(\alpha)} \overline{J_{\lambda}^{(\alpha)}}\right)
$$

Use

- explicit form of $\mathbb{E}\left(J_{\lambda}^{(\alpha)} \overline{J_{\lambda}^{(\alpha)}}\right)$
- relationship between $\theta_{\rho}^{\lambda}(\alpha)$ and $\Theta_{\rho}^{\lambda}(\alpha)$

Use

- explicit form of $\mathbb{E}\left(J_{\lambda}^{(\alpha)} \overline{J_{\lambda}^{(\alpha)}}\right)$
- relationship between $\theta_{\rho}^{\lambda}(\alpha)$ and $\Theta_{\rho}^{\lambda}(\alpha)$

we have

$$
\begin{aligned}
& \mathbb{E}\left[p_{\mu}\left(Z_{n}\right) \overline{p_{\nu}\left(Z_{n}\right)}\right] \\
= & \alpha^{l(\mu)+l(\nu)} z_{\mu} z_{\nu} \sum_{\lambda \vdash K: l(\lambda) \leq n} \frac{\theta_{\mu}^{\lambda}(\alpha) \theta_{\nu}^{\lambda}(\alpha)}{C_{\lambda}(\alpha)} \mathbf{N}_{\lambda}^{\alpha}(n)
\end{aligned}
$$

Use

- explicit form of $\mathbb{E}\left(J_{\lambda}^{(\alpha)} \overline{J_{\lambda}^{(\alpha)}}\right)$
- relationship between $\theta_{\rho}^{\lambda}(\alpha)$ and $\Theta_{\rho}^{\lambda}(\alpha)$

we have

$$
\begin{gathered}
\mathbb{E}\left[p_{\mu}\left(Z_{n}\right) \overline{p_{\nu}\left(Z_{n}\right)}\right] \\
=\alpha^{l(\mu)+l(\nu)} z_{\mu} z_{\nu} \sum_{\lambda \vdash K: l(\lambda) \leq n} \frac{\theta_{\mu}^{\lambda}(\alpha) \theta_{\nu}^{\lambda}(\alpha)}{C_{\lambda}(\alpha)} \mathbf{N}_{\lambda}^{\alpha}(n) \\
C_{\lambda}(\alpha)=\prod_{(i, j) \in \lambda}\left\{\left(\begin{array}{llll}
\alpha\left(\begin{array}{lll}
\lambda_{i} & j)+\lambda_{j}^{\prime} & i+1)\left(\alpha\left(\begin{array}{lll}
\lambda_{i} & j)+\lambda_{j}^{\prime} & i+\alpha)
\end{array}\right\}\right.
\end{array} .\right.
\end{array} . \begin{array}{ll}
\end{array}\right.\right.
\end{gathered}
$$

Use

- explicit form of $\mathbb{E}\left(J_{\lambda}^{(\alpha)} \overline{J_{\lambda}^{(\alpha)}}\right)$
- relationship between $\theta_{\rho}^{\lambda}(\alpha)$ and $\Theta_{\rho}^{\lambda}(\alpha)$ we have

$$
\begin{aligned}
& \mathbb{E}\left[p_{\mu}\left(Z_{n}\right) \overline{p_{\nu}\left(Z_{n}\right)}\right] \\
& =\alpha^{l(\mu)+l(\nu)} z_{\mu} z_{\nu} \sum_{\lambda \vdash K: l(\lambda) \leq n} \frac{\theta_{\mu}^{\lambda}(\alpha) \theta_{\nu}^{\lambda}(\alpha)}{C_{\lambda}(\alpha)} \mathbf{N}_{\lambda}^{\alpha}(n) \\
& C_{\lambda}(\alpha)=\prod_{(i, j) \in \lambda}\left\{\left(\begin{array}{ll}
\alpha\left(\begin{array}{ll}
\lambda_{i} & j
\end{array}\right)+\lambda_{j}^{\prime} \quad i+1
\end{array}\right)\left(\alpha\left(\begin{array}{ll}
\lambda_{i} & j
\end{array}\right)+\lambda_{j}^{\prime} \quad i+\alpha\right)\right\} \\
& \mathbf{N}_{\lambda}^{\alpha}(n)=\prod_{(i, j) \in \lambda} \frac{n+\left(\begin{array}{lll}
j & 1
\end{array}\right) \alpha \quad\left(\begin{array}{ll}
i & 1
\end{array}\right)}{n+j \alpha} i \quad
\end{aligned}
$$

Young diagram

Main proof:

- play $C_{\lambda}(\alpha)$
- play $\mathrm{N}_{\lambda}^{\alpha}(n)$
- use orthogonal relations of $\theta_{\mu}^{\lambda}(\alpha)$

- Examples

- Examples

$$
\begin{aligned}
\mathbb{E}\left[j p_{1}\left(Z_{n}\right) \mathrm{j}^{4}\right] & \left.=\frac{2 n \alpha^{2}\left(n^{2}+2\left(\begin{array}{ll}
\alpha & 1) n \\
(n+\alpha & 1)(n+\alpha
\end{array}\right)\right.}{(n)(n+2 \alpha} \quad 1\right) \\
& = \begin{cases}\frac{8\left(n^{2}+2 n-2\right)}{(n+1)(n+3)}, & \text { if } \beta=1 \\
2, & \text { if } \beta=2 \\
\frac{2 n^{2}-2 n-1}{(2 n-1)(2 n-3)}, & \text { if } \beta=4\end{cases}
\end{aligned}
$$

$$
\mathbb{E}\left[p_{2}\left(Z_{n}\right) \overline{p_{1}\left(Z_{n}\right)^{2}}\right]
$$

$$
\begin{aligned}
& \mathbb{E}\left[p_{2}\left(Z_{n}\right) \overline{p_{1}\left(Z_{n}\right)^{2}}\right] \\
= & \left.\frac{2 \alpha^{2}(\alpha}{} 1\right) n \\
\begin{array}{lll}
n+\alpha & 1)(n+2 \alpha & 1)(n+\alpha
\end{array} & 2)
\end{aligned}
$$

$$
\begin{aligned}
& \mathbb{E}\left[p_{2}\left(Z_{n}\right) \overline{p_{1}\left(Z_{n}\right)^{2}}\right] \\
= & \frac{2 \alpha^{2}(\alpha \quad 1) n}{(n+\alpha \quad 1)(n+2 \alpha \quad 1)(n+\alpha \quad 2)} \\
= & \begin{cases}\frac{8}{(n+1)(n+3)}, & \text { if } \beta=1 \\
0, & \text { if } \beta=2 \\
\frac{-1}{(2 n-1)(2 n-3)}, & \text { if } \beta=4\end{cases}
\end{aligned}
$$

TheEnd!

Thanks for your patience！

